References
Barbour MM. 2017. Understanding regulation of leaf internal carbon and water transport using online stable isotope techniques.New Phytologist 213 (1): 83-88.
Barbour MM, Evans JR, Simonin KA, von Caemmerer S. 2016. Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytologist210 (3): 875-889.
Barbour MM, Farquhar GD, Buckley TN. 2017. Leaf water stable isotopes and water transport outside the xylem. Plant Cell Environ 40 (6): 914-920.
Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13 (2): 175-183.
Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144 (4): 1890-1898.
Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms.New Phytologist 162 (3): 663-670.
Bucher SF, Auerswald K, Grün-Wenzel C, Higgins SI, Garcia Jorge J, Römermann C. 2017. Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate. Flora 229 : 107-115.
Buckley TN. 2015. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant, Cell and Environment 38 (1): 7-22.
Buckley TN, John GP, Scoffoni C, Sack L. 2015. How does leaf anatomy influence water transport outside the xylem? Plant Physiology 168 (4): 1616-1635.
Caringella MA, Bongers FJ, Sack L. 2015. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thalianawild-type and leaf vein mutants. Plant, Cell and Environment38 (12): 2735-2746.
Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proceedings of the National Academy of Sciences110 (4): 1381-1386.
Cousins AB, Mullendore DL, Sonawane BV. 2020. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. The Plant Journal .
de Boer HJ, Drake PL, Wendt E, Price CA, Schulze E-D, Turner NC, Nicolle D, Veneklaas EJ. 2016. Apparent overinvestment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiology 172 (4): 2286-2299.
De Kauwe MG, Zhou SX, Medlyn BE, Pitman AJ, Wang YP, Duursma RA, Prentice IC. 2015. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12 (24): 7503-7518.
Drake PL, de Boer HJ, Schymanski SJ, Veneklaas EJ. 2019. Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves. New Phytologist222 : 1179-1187.
Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences 107 (6): 2532-2537.
Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol Lett11 (3): 266-276.
Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves.Journal of Experimental Botany 60 (8): 2235-2248.
Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, et al. 2016. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.Plant, Cell and Environment 39 (5): 965-982.
Flexas J, Ribas-CarbÓ M, Diaz-Espejo A, GalmÉS J, Medrano H. 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell and Environment 31 (5): 602-621.
Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany64 (13): 3965-3981.
Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences106 (25): 10343-10347.
Galmés J, Flexas J, Medrano H, Niinemets Ü, Valladares F 2012.Ecophysiology of photosynthesis in semi-arid environments.Terrestrial Photosynthesis in a Changing Environment : Cambridge University Press, Cambridge, UK., 448-464.
Griffiths H, Weller G, Toy LFM, Dennis RJ. 2013. You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant, Cell and Environment 36 (2): 249-261.
Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature424 (6951): 901-908.
Hijmans R, van Etten J. 2012. Geographic analysis and modeling with raster data. R package version 2 : 1-25.
Ivanova LA, Ivanov LA, Ronzhina DA, Yudina PK, Migalina SV, Shinehuu T, Tserenkhand G, Voronin PY, Anenkhonov OA, Bazha SN, et al. 2018a. Leaf traits of C3- and C4-plants indicating climatic adaptation along a latitudinal gradient in Southern Siberia and Mongolia. Flora .
Ivanova LA, Yudina PK, Ronzhina DA, Ivanov LA, Hölzel N. 2018b.Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity. New Phytologist 217 (2): 558-570.
Kaiser HF. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement20 (1): 141-151.
Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C. 2019a. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Global Change Biology 25 (5): 1820-1838.
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. 2019b. Mesophyll conductance in land surface models: Effects on photosynthesis and transpiration. The Plant Journal .
Kocacinar F, Sage RF. 2003. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment 26 (12): 2015-2026.
Le S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software25 (1): 1-18.
Liu H, Osborne CP. 2015. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. Journal of Experimental Botany 66 (3): 761-773.
Liu H, Taylor SH, Xu Q, Lin Y, Hou H, Wu G, Ye Q. 2019. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C3 and C4 species. Journal of Experimental Botany 70 (5): 1567-1580.
Loucos KE, Simonin KA, Barbour MM. 2017. Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant, Cell and Environment 40 (2): 203-215.
McKown AD, Guy RD, Quamme L, Klapste J, La Mantia J, Constabel CP, El-Kassaby YA, Hamelin RC, Zifkin M, Azam MS. 2014. Association genetics, geography and ecophysiology link stomatal patterning inPopulus trichocarpa with carbon gain and disease resistance trade-offs. Mol Ecol 23 (23): 5771-5790.
Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM. 2010. The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency.Oecologia 164 (2): 287-296.
Mott KA, O’Leary JW. 1984. Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves.Plant Physiology 74 (1): 47-51.
Muir CD. 2018. Light and growth form interact to shape stomatal ratio among British angiosperms. New Phytologist 218 (1): 242-252.
Muir CD. 2019. Is amphistomy an adaptation to high light? Optimality models of stomatal traits along light gradients.Integrative and Comparative Biology 59 (3): 571-584.
Muir CD, Hangarter RP, Moyle LC, Davis PA. 2014. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon , sect.Lycopersicoides ; Solanaceae). Plant, Cell and Environment37 (6): 1415-1426.
Nardini A, Luglio J. 2014. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology 28 (4): 810-818.
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA. 2008. Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences105 (27): 9140-9144.
Ocheltree TW, Nippert JB, Prasad PVV. 2016. A safety vsefficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New Phytologist 210 (1): 97-107.
Ogee J, Wingate L, Genty B. 2018. Mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity. Plant Physiology 178 : 728-752.
Osborne CP, Sack L. 2012. Evolution of C4plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences367 (1588): 583-600.
Parkhurst DF. 1978. The adaptive significance of stomatal occurrence on one or both surfaces of leaves. Journal of Ecology66 (2): 367-383.
Pathare VS, Koteyeva N, Cousins AB. 2020. Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses. New Phytologist 225 (1): 169-182.
Pearcy RW, Ehleringer J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant, Cell and Environment 7 (1): 1-13.
Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü, Sancho-Knapik D, Saz MÁ, Gil-Pelegrín E. 2017. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytologist 214 (2): 585-596.
Reich PB, Wright IJ, Cavender, Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164 (S3): S143-S164.
Sack L, Ball MC, Brodersen C, Davis SD, Des Marais DL, Donovan LA, Givnish TJ, Hacke UG, Huxman T, Jansen S, et al. 2016. Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant, Cell and Environment 39 (9): 2085-2094.
Sack L, Holbrook NM. 2006. Leaf hydraulics. The Annual Review of Plant Biology 57 : 361-381.
Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198 (4): 983-1000.
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA. 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany 64 (13): 4053-4080.
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett MK, Buckley TN, McElrone AJ, Sack L. 2017. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiology 173 (2): 1197-1210.
Scoffoni C, Albuquerque C, Cochard H, Buckley TN, Fletcher LR, Caringella MA, Bartlett M, Brodersen CR, Jansen S, McElrone AJ, et al. 2018. The causes of leaf hydraulic vulnerability and its influence on gas exchange in Arabidopsis thaliana . Plant Physiology178 (4): 1584-1601.
Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L. 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nat Plants 2 : 16072.
Sinclair TR, Zwieniecki MA, Holbrook NM. 2008. Low leaf hydraulic conductance associated with drought tolerance in soybean.Physiologia Plantarum 132 (4): 446-451.
Song X, Barbour MM. 2016. Leaf water oxygen isotope measurement by direct equilibration. New Phytologist 211 (3): 1120-1128.
Taylor SH, Aspinwall MJ, Blackman CJ, Choat B, Tissue DT, Ghannoum O. 2018. CO2 availability influences hydraulic function of C3 and C4 grass leaves.Journal of Experimental Botany 69 (10): 2731-2741.
Terashima I, Miyazawa S-I, Hanba YT. 2001. Why are sun leaves thicker than shade Leaves? — Consideration based on analyses of CO2 diffusion in the leaf. Journal of Plant Research 114 (1): 93-105.
Théroux-Rancourt G, Éthier G, Pepin S. 2014. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.Journal of Experimental Botany 65 (2): 741-753.
Ubierna N, Gandin A, Boyd RA, Cousins AB. 2017. Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination andin vitro V pmax. New Phytologist214 (1): 66-80.
Visser V, Woodward FI, Freckleton RP, Osborne CP. 2012.Environmental factors determining the phylogenetic structure of C4 grass communities. Journal of Biogeography39 (2): 232-246.
Wang X, Du T, Huang J, Peng S, Xiong D. 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of Experimental Botany69 (16): 4033-4045.
Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15 (4): 423-434.
Xiong D, Flexas J, Yu T, Peng S, Huang J. 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza . New Phytologist 213 (2): 572-583.
Xiong D, Nadal M. 2019. Linking water relations and hydraulics with photosynthesis. The Plant Journal n/a (n/a).
Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J. 2015. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. Journal of Experimental Botany 66 (3): 741-748.
Zhou H, Helliker BR, Huber M, Dicks A, Akçay E. 2018.C4 photosynthesis and climate through the lens of optimality. Proceedings of the National Academy of Sciences115 (47): 12057-12062.
Zimmermann MH. 1983. Xylem structure and the ascent of sap : Springer-Verlag.
Zwieniecki MA, Boyce CK. 2014. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology. Proceedings of the Royal Society B: Biological Sciences 281 (1779): 20132829.