References
Barbour MM, Evans JR, Simonin KA, von Caemmerer S. 2016. Online
CO2 and H2O oxygen isotope fractionation
allows estimation of mesophyll conductance in C4 plants,
and reveals that mesophyll conductance decreases as leaves age in both
C4 and C3 plants. New Phytologist210 (3): 875-889.
Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a
surge in leaf photosynthetic capacity during early angiosperm
diversification. Ecol Lett 13 (2): 175-183.
Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum
photosynthetic rate and venation are linked by hydraulics. Plant
Physiology 144 (4): 1890-1898.
Brodribb TJ, Holbrook NM. 2004. Stomatal protection against
hydraulic failure: a comparison of coexisting ferns and angiosperms.New Phytologist 162 (3): 663-670.
Bucher SF, Auerswald K, Grün-Wenzel C, Higgins SI, Garcia Jorge
J, Römermann C. 2017. Stomatal traits relate to habitat preferences of
herbaceous species in a temperate climate. Flora 229 :
107-115.
Buckley TN. 2015. The contributions of apoplastic, symplastic
and gas phase pathways for water transport outside the bundle sheath in
leaves. Plant, Cell and Environment 38 (1): 7-22.
Buckley TN, John GP, Scoffoni C, Sack L. 2015. How does leaf
anatomy influence water transport outside the xylem? Plant
Physiology 168 (4): 1616-1635.
Caringella MA, Bongers FJ, Sack L. 2015. Leaf hydraulic
conductance varies with vein anatomy across Arabidopsis thalianawild-type and leaf vein mutants. Plant, Cell and Environment38 (12): 2735-2746.
Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G,
Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical
enablers and the evolution of C4 photosynthesis in
grasses. Proceedings of the National Academy of Sciences110 (4): 1381-1386.
Cousins AB, Mullendore DL, Sonawane BV. 2020. Recent
developments in mesophyll conductance in C3,
C4, and crassulacean acid metabolism plants. The
Plant Journal .
de Boer HJ, Drake PL, Wendt E, Price CA, Schulze E-D, Turner NC,
Nicolle D, Veneklaas EJ. 2016. Apparent overinvestment in leaf venation
relaxes leaf morphological constraints on photosynthesis in arid
habitats. Plant Physiology 172 (4): 2286-2299.
De Kauwe MG, Zhou SX, Medlyn BE, Pitman AJ, Wang YP, Duursma RA,
Prentice IC. 2015. Do land surface models need to include differential
plant species responses to drought? Examining model predictions across a
mesic-xeric gradient in Europe. Biogeosciences 12 (24):
7503-7518.
Drake PL, de Boer HJ, Schymanski SJ, Veneklaas EJ. 2019. Two
sides to every leaf: water and CO2 transport in
hypostomatous and amphistomatous leaves. New Phytologist222 : 1179-1187.
Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the
shady history of C4 grasses. Proceedings of the
National Academy of Sciences 107 (6): 2532-2537.
Edwards EJ, Still CJ. 2008. Climate, phylogeny and the
ecological distribution of C4 grasses. Ecol Lett11 (3): 266-276.
Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances
along the CO2 diffusion pathway inside leaves.Journal of Experimental Botany 60 (8): 2235-2248.
Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago
J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, et al. 2016. Mesophyll
conductance to CO2 and Rubisco as targets for improving
intrinsic water use efficiency in C3 plants.Plant, Cell and Environment 39 (5): 965-982.
Flexas J, Ribas-CarbÓ M, Diaz-Espejo A, GalmÉS J, Medrano H.
2008. Mesophyll conductance to CO2: current knowledge
and future prospects. Plant, Cell and Environment 31 (5):
602-621.
Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll
conductance and leaf hydraulic conductance: an introduction to their
measurement and coordination. Journal of Experimental Botany64 (13): 3965-3981.
Galmés J, Flexas J, Medrano H, Niinemets Ü, Valladares F 2012.Ecophysiology of photosynthesis in semi-arid environments.Terrestrial Photosynthesis in a Changing Environment : Cambridge
University Press, Cambridge, UK., 448-464.
Griffiths H, Weller G, Toy LFM, Dennis RJ. 2013. You’re so
vein: bundle sheath physiology, phylogeny and evolution in
C3 and C4 plants. Plant, Cell and
Environment 36 (2): 249-261.
Hijmans R, van Etten J. 2012. Geographic analysis and modeling
with raster data. R package version 2 : 1-25.
Ivanova LA, Ivanov LA, Ronzhina DA, Yudina PK, Migalina SV,
Shinehuu T, Tserenkhand G, Voronin PY, Anenkhonov OA, Bazha SN, et al.
2018a. Leaf traits of C3- and C4-plants
indicating climatic adaptation along a latitudinal gradient in Southern
Siberia and Mongolia. Flora .
Ivanova LA, Yudina PK, Ronzhina DA, Ivanov LA, Hölzel N. 2018b.Quantitative mesophyll parameters rather than whole-leaf traits predict
response of C3 steppe plants to aridity. New
Phytologist 217 (2): 558-570.
Kaiser HF. 1960. The application of electronic computers to
factor analysis. Educational and Psychological Measurement20 (1): 141-151.
Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE,
Reichstein M, Werner C. 2019a. Effects of mesophyll conductance on
vegetation responses to elevated CO2 concentrations in a
land surface model. Global Change Biology 25 (5):
1820-1838.
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y.
2019b. Mesophyll conductance in land surface models: Effects on
photosynthesis and transpiration. The Plant Journal .
Kocacinar F, Sage RF. 2003. Photosynthetic pathway alters xylem
structure and hydraulic function in herbaceous plants. Plant, Cell
and Environment 26 (12): 2015-2026.
Le S, Josse J, Husson F. 2008. FactoMineR: an R package for
multivariate analysis. Journal of Statistical Software25 (1): 1-18.
Liu H, Osborne CP. 2015. Water relations traits of
C4 grasses depend on phylogenetic lineage,
photosynthetic pathway, and habitat water availability. Journal of
Experimental Botany 66 (3): 761-773.
Liu H, Taylor SH, Xu Q, Lin Y, Hou H, Wu G, Ye Q. 2019. Life
history is a key factor explaining functional trait diversity among
subtropical grasses, and its influence differs between
C3 and C4 species. Journal of
Experimental Botany 70 (5): 1567-1580.
Loucos KE, Simonin KA, Barbour MM. 2017. Leaf hydraulic
conductance and mesophyll conductance are not closely related within a
single species. Plant, Cell and Environment 40 (2):
203-215.
McKown AD, Guy RD, Quamme L, Klapste J, La Mantia J, Constabel
CP, El-Kassaby YA, Hamelin RC, Zifkin M, Azam MS. 2014. Association
genetics, geography and ecophysiology link stomatal patterning inPopulus trichocarpa with carbon gain and disease resistance
trade-offs. Mol Ecol 23 (23): 5771-5790.
Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM.
2010. The blind men and the elephant: the impact of context and scale
in evaluating conflicts between plant hydraulic safety and efficiency.Oecologia 164 (2): 287-296.
Mott KA, O’Leary JW. 1984. Stomatal behavior and
CO2 exchange characteristics in amphistomatous leaves.Plant Physiology 74 (1): 47-51.
Muir CD. 2018. Light and growth form interact to shape stomatal
ratio among British angiosperms. New Phytologist 218 (1):
242-252.
Muir CD. 2019. Is amphistomy an adaptation to high light?
Optimality models of stomatal traits along light gradients.Integrative and Comparative Biology 59 (3): 571-584.
Muir CD, Hangarter RP, Moyle LC, Davis PA. 2014. Morphological
and anatomical determinants of mesophyll conductance in wild relatives
of tomato (Solanum sect. Lycopersicon , sect.Lycopersicoides ; Solanaceae). Plant, Cell and Environment37 (6): 1415-1426.
Nardini A, Luglio J. 2014. Leaf hydraulic capacity and drought
vulnerability: possible trade-offs and correlations with climate across
three major biomes. Functional Ecology 28 (4): 810-818.
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM,
Zwieniecki MA. 2008. Optimal vein density in artificial and real
leaves. Proceedings of the National Academy of Sciences105 (27): 9140-9144.
Ocheltree TW, Nippert JB, Prasad PVV. 2016. A safety vsefficiency trade-off identified in the hydraulic pathway of grass leaves
is decoupled from photosynthesis, stomatal conductance and
precipitation. New Phytologist 210 (1): 97-107.
Ogee J, Wingate L, Genty B. 2018. Mesophyll conductance from
measurements of C18OO photosynthetic discrimination
and carbonic anhydrase activity. Plant Physiology 178 :
728-752.
Osborne CP, Sack L. 2012. Evolution of C4plants: a new hypothesis for an interaction of CO2 and
water relations mediated by plant hydraulics. Philosophical
Transactions of the Royal Society B: Biological Sciences367 (1588): 583-600.
Parkhurst DF. 1978. The adaptive significance of stomatal
occurrence on one or both surfaces of leaves. Journal of Ecology66 (2): 367-383.
Pathare VS, Koteyeva N, Cousins AB. 2020. Increased adaxial
stomatal density is associated with greater mesophyll surface area
exposed to intercellular air spaces and mesophyll conductance in diverse
C4 grasses. New Phytologist 225 (1): 169-182.
Pearcy RW, Ehleringer J. 1984. Comparative ecophysiology of
C3 and C4 plants. Plant, Cell and
Environment 7 (1): 1-13.
Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A,
Niinemets Ü, Sancho-Knapik D, Saz MÁ, Gil-Pelegrín E. 2017. Cell-level
anatomical characteristics explain high mesophyll conductance and
photosynthetic capacity in sclerophyllous Mediterranean oaks. New
Phytologist 214 (2): 585-596.
Reich PB, Wright IJ, Cavender, Bares J, Craine JM, Oleksyn J,
Westoby M, Walters MB. 2003. The evolution of plant functional
variation: traits, spectra, and strategies. International Journal
of Plant Sciences 164 (S3): S143-S164.
Sack L, Ball MC, Brodersen C, Davis SD, Des Marais DL, Donovan
LA, Givnish TJ, Hacke UG, Huxman T, Jansen S, et al. 2016. Plant
hydraulics as a central hub integrating plant and ecosystem function:
meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington,
DC, May 2015). Plant, Cell and Environment 39 (9):
2085-2094.
Sack L, Holbrook NM. 2006. Leaf hydraulics. The Annual
Review of Plant Biology 57 : 361-381.
Sack L, Scoffoni C. 2013. Leaf venation: structure, function,
development, evolution, ecology and applications in the past, present
and future. New Phytologist 198 (4): 983-1000.
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo
R, Donovan LA. 2013. How do leaf veins influence the worldwide leaf
economic spectrum? Review and synthesis. Journal of Experimental
Botany 64 (13): 4053-4080.
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP,
Bartlett MK, Buckley TN, McElrone AJ, Sack L. 2017. Outside-xylem
vulnerability, not xylem embolism, controls leaf hydraulic decline
during dehydration. Plant Physiology 173 (2): 1197-1210.
Scoffoni C, Albuquerque C, Cochard H, Buckley TN, Fletcher LR,
Caringella MA, Bartlett M, Brodersen CR, Jansen S, McElrone AJ, et al.
2018. The causes of leaf hydraulic vulnerability and its influence on
gas exchange in Arabidopsis thaliana . Plant Physiology178 (4): 1584-1601.
Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ,
Edwards EJ, Sack L. 2016. Hydraulic basis for the evolution of
photosynthetic productivity. Nat Plants 2 : 16072.
Sinclair TR, Zwieniecki MA, Holbrook NM. 2008. Low leaf
hydraulic conductance associated with drought tolerance in soybean.Physiologia Plantarum 132 (4): 446-451.
Taylor SH, Aspinwall MJ, Blackman CJ, Choat B, Tissue DT,
Ghannoum O. 2018. CO2 availability influences hydraulic
function of C3 and C4 grass leaves.Journal of Experimental Botany 69 (10): 2731-2741.
Terashima I, Miyazawa S-I, Hanba YT. 2001. Why are sun leaves
thicker than shade Leaves? — Consideration based on analyses of
CO2 diffusion in the leaf. Journal of Plant
Research 114 (1): 93-105.
Théroux-Rancourt G, Éthier G, Pepin S. 2014. Threshold response
of mesophyll CO2 conductance to leaf hydraulics in
highly transpiring hybrid poplar clones exposed to soil drying.Journal of Experimental Botany 65 (2): 741-753.
Ubierna N, Gandin A, Boyd RA, Cousins AB. 2017. Temperature
response of mesophyll conductance in three C4 species
calculated with two methods: 18O discrimination andin vitro V pmax. New Phytologist214 (1): 66-80.
Visser V, Woodward FI, Freckleton RP, Osborne CP. 2012.Environmental factors determining the phylogenetic structure of
C4 grass communities. Journal of Biogeography39 (2): 232-246.
Wang X, Du T, Huang J, Peng S, Xiong D. 2018. Leaf hydraulic
vulnerability triggers the decline in stomatal and mesophyll conductance
during drought in rice. Journal of Experimental Botany69 (16): 4033-4045.
Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf
physiology, structure and nutrient content between species of high- and
low-rainfall and high- and low-nutrient habitats. Functional
Ecology 15 (4): 423-434.
Xiong D, Flexas J, Yu T, Peng S, Huang J. 2017. Leaf anatomy
mediates coordination of leaf hydraulic conductance and mesophyll
conductance to CO2 in Oryza . New
Phytologist 213 (2): 572-583.
Xiong D, Nadal M. 2019. Linking water relations and hydraulics
with photosynthesis. The Plant Journal n/a (n/a).
Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J. 2015. Leaf
hydraulic conductance is coordinated with leaf morpho-anatomical traits
and nitrogen status in the genus Oryza. Journal of Experimental
Botany 66 (3): 741-748.
Zhou H, Helliker BR, Huber M, Dicks A, Akçay E. 2018.C4 photosynthesis and climate through the lens of
optimality. Proceedings of the National Academy of Sciences115 (47): 12057-12062.
Zimmermann MH. 1983. Xylem structure and the ascent of
sap : Springer-Verlag.
Zwieniecki MA, Boyce CK. 2014. Evolution of a unique anatomical
precision in angiosperm leaf venation lifts constraints on vascular
plant ecology. Proceedings of the Royal Society B: Biological
Sciences 281 (1779): 20132829.