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Introduction

Phosphorus (P) is an essential nutrient for plants and in the absence of external P inputs, the productivity of plant communities is frequently limited by the amount of P taken up from the soil 
 ADDIN EN.CITE 

(Veneklaas et al. 2012; Haefele et al. 2013)
. In modern crop production, such limitation is typically alleviated by supplying P fertilizers. Frequent supply of fertilizer P in excess of crop demand, as practiced in many regions of the world 
 ADDIN EN.CITE 

(MacDonald et al. 2011; Withers and Haygarth 2007)
, has led to a buildup of soil P reserves to a level where crops are no longer responsive to additional P inputs. Such excessive P inputs have caused environmental problems through the eutrophication of water bodies and have led to calls for a regulation of P fertilization practices 
 ADDIN EN.CITE 

(Withers and Haygarth 2007; Zhang et al. 2011)
. This contrasts with low-input agricultural systems more typical of less developed regions where resource-poor farmers may not have the financial means to purchase P fertilizers in sufficient quantities to balance P offtake from fields at harvest 
 ADDIN EN.CITE 

(MacDonald et al. 2011; Vandamme et al. 2016)
. 
Solutions to both problems will ideally involve socio-economic interventions, but the development of more P efficient cultivars that produce high yields at reduced fertilizer inputs and acceptable yields in low-input scenarios is seen as one important component of the overall solution (Veneklaas et al. 2012). The P efficiency of a cultivar depends on its capacity to take up P from the soil, which is in essence the product of root size and P acquisition efficiency (PAE; P uptake per unit root size), and on internal P utilization efficiency (PUE; biomass produced per unit P in the plant). In rice, screening experiments with a wide collection of modern and traditional accessions have shown that genetic variation for root size and PAE 
 ADDIN EN.CITE 

(Fageria and Barbosa 2007; Mori et al. 2016)
 and PUE (Wissuwa et al. 2015) exists within the rice gene pool and that traditional varieties are typically more efficient compared to their modern counterparts. Such efficient traditional varieties can be used as donors in breeding programs and this process is already under way to enhance P uptake since selectable markers are available in rice (Wissuwa et al. 2016). 
Few advancements have been made for PUE and Rose et al. (2011) attributed the lack of progress to the inherent difficulty in measuring PUE experimentally, particularly if the objective is to assess differences in P uptake simultaneously. This is caused by the much larger variation present for P uptake than for PUE 
 ADDIN EN.CITE 

(Fageria and Barbosa 2007; Mori et al. 2016; Wissuwa et al. 2015)
 and the negative correlation between both traits as cultivars with higher P uptake are less P starved and maintain higher tissue P concentrations compared to cultivars with insufficient P uptake 
 ADDIN EN.CITE 

(Rose et al. 2011; Vandamme et al. 2016)
. Avoiding such potentially confounding effects, Wissuwa et al. (2015) screened close to 300 rice accessions at an equal low plant P content and identified several loci associated with PUE at the vegetative stage. The most influential locus was located at 7.2 Mb on chromosome 1 and traditional varieties like ’Mudgo’ and ’Yodanya’ were of the rare genotype (haplotype) associated with high PUE (Wissuwa et al. 2015) and may therefore serve as donors for this trait. The superior PUE of Mudgo was confirmed in subsequent experiments conducted at equal plant P content in P deficient soil (Rose et al. 2016). Mudgo had 21% higher PUE at a shoot P content of 6 mg P plant-1 compared to modern variety IR64 and this increased to 30% higher PUE at more severe P deficiency of 3 mg P plant-1.   
PUE estimated as biomass per unit plant P is essentially the inverse of tissue or whole plant P concentrations. Thus, the high PUE of efficient genotypes achieved across a range of plant P contents essentially means their shoot P concentrations are 20-30% lower compared to inefficient genotypes across that range and may be as low as 0.5 mg P g-1, which is far below the deficiency threshold of 1 mg P g-1 (Dobermann and Fairhurst 2000). Since P is essential for many biological processes including energy metabolism, one question of interest is whether the further reduction in P concentrations beyond the already low level present in less efficient genotypes, has negative effect on photosynthesis and other plant metabolic processes.
It is known that P deficiency decreases photosynthetic efficiency of rice (Li et al. 2006; Xu et al. 2007) and negative effects of low cellular inorganic orthophosphate (Pi) concentrations on photosynthesis can be due to stomatal and non-stomatal effects. In rice P deficiency reduced photosynthetic efficiency differently in contrasting genotypes (Li et al. 2006) and neither genotypic differences nor the reduction in carbon assimilation could be attributed to stomatal effects. Non-stomatal effects of potential relevance are a decrease in ribulose- 1,5-bisphosphate (RuBP) pool size (Xu et al. 2007), insufficient ATP production (Xu et al. 2007), or reduced export of triose phosphates in exchange for (Pi) via the triose phosphate:phosphate translocator (TPT), which will lead to the accumulation of starch in chloroplasts and possible feedback-inhibition on photosynthesis (Hernandez and Munne-Bosch 2015). 
Since rice genotypes identified as having high PUE have lower P concentrations in their biomass, it is possible that this would negatively affect photosynthetic efficiency. Alternatively, it is feasible that the reduced tissue P concentrations do not affect Pi but rather some cellular P fraction of no relevance to photosynthesis. To investigate these alternatives, experiments were conducted to measure photosynthetic efficiency and metabolomic patterns in two groups of rice genotypes contrasting for PUE. In particular, we tested the hypothesis that rice genotypes with higher apparent PUE will have equal photosynthetic efficiency compared to low PUE genotypes, thus showing true physiological P efficiency. A second objective of this study was to analyze changes in the metabolome of both genotype groups in response to P deficiency in order to identify processes that may be causally linked to high PUE and photosynthetic efficiency. Last we explore the possibility of identifying some signature metabolite(s) that would allow to predict a priori the level of PUE in a genotype.
Materials and Methods

Plant material and growth condition

Two experiments were conducted under identical conditions in a growth chamber with a 13h light period (28 °C) and a 9h dark period (25 °C) and relative humidity of 64 ± 7%/48 ± 11% (day/night). The total growth periods were 57 or 53 days in experiment 1 and 2, respectively. Seeds of 2 P efficient cultivars (Mudgo and Yodanya) and 2 P inefficient cultivars (Taichung, IR64) that differ for 3 PUE QTL identified earlier 
 ADDIN EN.CITE 

(Wissuwa et al. 2015; Rose et al. 2016)
 were surface-sterilized with 5% NaClO solution for 5 min, rinsed with deionized water 4 times, and incubated at 28 °C in tap water on a floating Styrofoam/mesh tray in the dark. After germination, 0.1 mM CaCl2 and 12 µM Fe-EDTA was added to the deionized water to better support seedling growth. 
Ten days after germination seedlings were transferred to 22-L containers containing 0.2x Yoshida solution (Yoshida et al. 1971) without phosphorus. Five days later, another 0.1x Yoshida solution was added. After another 3 days, the seedlings were transplanted into 1-L black bottles containing 0.25x Yoshida solution. Two seedlings were wrapped with a strip of sponge and fixed in the bottle so that the roots are soaked in the solution. For high P plants, 1 mL of 0.1 M NaH2PO4 solution was added, while the low P plants received 0.1 mL of the solution. The pH of the solution was adjusted to 6.0 twice a week. The nutrient solution was renewed to 0.5x Yoshida solution in 2-week, 10-day, or 1-week intervals, shorter intervals were needed to support accelerating growth rates. Between two solution exchange periods, additional 0.5x Yoshida solution was added. Every time the solution was exchanged, additional P nutrient was added. In total, the high-P plants received 6.2 mg P plant-1 compared to 0.48 mg P plant-1 for low-P plants. The experiment was arranged in a completely randomized block design with 5 replications.
At harvest plants were removed from bottles, roots were rinsed in deionized water and separated from shoots. Leaf number was determined as was the number of leaves that remained green or had senesced. Shoots were separated into leaf 1 (the youngest fully expanded leaf), leaf 2 and 3 (from the top) and the remaining shoot tissue consisting of smaller old leaves and the stem were combined into one stem sample. Each sample was oven-dried for 3 days at 70 °C and dry weights were recorded.
A third experiment was used to test the predictive power of the metabolic markers identified in experiment 2. Experiment 3 used a different set of P efficient and inefficient genotypes, namely Black Gora, Guan-Yin-Tsan, Santhi Sufaid, Short Grain (all efficient), and Byakkoku Y 5006, Jaya and Oryzica Llanos 5 (inefficient). The experimental setup was as described above with 2 plants per genotype grown in 1-L bottles and harvested 53 days after sowing (DAS). Three P treatments were administered: Two low-P treatments (LP1 and LP2) with plants receiving either 0.8 mg P in one addition to the bottle at 14 DAS (LP1), or 0.31 mg P per bottle in weekly intervals between 14 – 42 DAS (5 doses to a total of 1.55 mg P per bottle – LP2). Plants in the high-P treatment received 10-times that amount (3.1 mg P supplied 5 times) to a total of 15.5 mg P per bottle. At harvest one plant per bottle was dried and used to determine root and shoot dry weights and tissue P concentrations (see details below). The second plant was used for metabolite profiling of leaf 1 (the youngest fully expanded leaf), and leaf 3 (from the top). Leaf samples from the mid-section of respective leaves were cut, flash-frozen in liquid N and stored at -80C until further analysis. 

CO2 assimilation measurement (experiment 1)
CO2 assimilation rates were measured using a LI-6400 instrument (LI-COR, Lincoln, NE, USA) with the following setup; flow rate = 400 µmol s-1, reference CO2 concentration = 420 µL L-1, block temperature = 30 °C, PAR = 1500 µmol m-2 s-1. CO2 assimilation wasmeasured in the central part of the top three leaves. For each measured leaf the leaf width at the point of measurement and total leaf length was recorded. 
Tissue-P analysis
Root and stem samples were ground and a subsample of 200 mg was analyzed while entire leaves were ground and digested for leaves 1 to 3. Samples were pre-digested in 8 ml of nitric acid in 50 ml Digitubes (Acid digestion tubes, GL Sciences) overnight, followed by digestion at 105°C for 2 h in a block digester. To fully oxidize samples, 2 ml of hydrogen peroxide was added to the solution and heated at 105°C for a further 2 h. After cooling, the digested solution was diluted to 50 ml with distilled water and filtered through ADVANTEC No. 6 filter paper. Phosphorus concentrations in digests of experiment 1 were measured by the molybdenum blue method (Murphy and Riley 1962). Absorptions were determined using a microplate reader with the following reaction mix in each well: 25 μl of Molybdenum reagent, 10 μl of digested sample solution and 190 μl of distilled water. Absorption at 840 nm wave length was read after 1 h incubation at 37°C to ensure complete reaction. Internal P utilization efficiency (PUE) was estimated as the inverse of tissue or whole-plant P concentration. Leaf samples available for P analysis in experiment 2 were often less than 50 mg in weight and to increase the power of detecting very small amounts of P digests were analyzed using inductively coupled plasma mass spectrometry (ICP-MS; Elan DRC-e, PerkinElmer, Inc, MA, USA). Indium was added to the samples as the internal standard. In addition to the ICP-MS signal at m/z 31for 31P+, the signal at m/z 47 for 31P16O+ was also detected by reaction with oxygen in a dynamic reaction cell (DRC) to avoid possible interference at m/z 31 by 14N16O1H+, 15N16O+, etc.  The methodology was validated by use of certified reference materials, NMIJ CRM 7505-a (No.8). 
Metabolite profiles (experiments 2 and 3)
Extraction buffer (1:3 (v/v) methanol:methyl-tert-butyl-ether solution) was prepared by mixing of 25 mL of methanol with 45 μL a stock solution of corticosterone (1 mg/mL in methanol), 75 mL of methyl-tert-butyl-ether with 45 μL a stock solution of 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine (1 mg/mL in chloroform), 25 μL of ampicillin (1 mg/mL in water) and 50 μL of 13C-sorbitol (1 mg/mL in water). The leaf material (5 mg dry weight) was homogenized in 1 ml of the extraction buffer with shaking for 10 min at 25°C followed by another 10 min of incubation in an ice cooled ultra-sonication bath. After adding 500 μL of water, the sample was vortexed for 15 sec and centrifuged for 5 min at 20,000 g and 25°C. The supernatant (500 μL) as the lipid phase was taken and dried in the speed vacuum concentrator overnight without heating. The remaining lipid phase was removed completely and a volume of 150 μL of methanol was added to the sample. The sample is vortexed for 5 sec and centrifuged for 5 min at 20,000 g and 25°C. Aliquots of 100 µL of the supernatants as polar phase were dried in the speed vacuum concentrator overnight without heating for GCMS and ion analyses. For lipid analysis, the vacuum-dried aliquot of lipid phase was re-suspended in 200 μL of a 7:3 (v/v) acetonitrile-isopropanol mixture. Lipid analysis by LC/ESI-MS was performed with 2 µL sample injection as described previously (Giavalisco et al. 2011). For GCMS analysis, the vacuum-dried aliquot of polar phase was derivatized and analyzed using a previously published GC-TOF–MS method (Lisec et al. 2006). Another vacuum-dried aliquot was dissolved in 550 µL of UPLC/MS grade water for ion analysis. Free anions and cations were measured by Ion Chromatography System (Dionex ICS-3000) using suppressed conductivity detection method according to the manufacturer’s protocol (Dionex).
Statistical analysis
Data of experiment 1 was analyzed as a factorial with P level and genotype groups as treatment variables using the software statistix (version 10). Means separations were done using ANOVA-guided LSDs. For most traits unequal error variances existed due to the much higher means in the high-P treatment. Within treatment separation of between genotype group means was therefore done based on a separate treatment-specific ANOVA. Grouping of genotypes into a low-PUE group (IR64, Taichung) and a high-PUE group (Yodanya, Mudgo) was done in order to identify effects that consistently separate contrasting types, rather than identifying genotype-specific effects not related to PUE.
Samples for metabolite analysis comprised data of four plant lines, with three different leaf-stages and with three replicates, with data obtained for 89 compounds (metabolites/ions/lipids). In total, under low-P/high-P conditions, 36/35 samples were available for analysis, respectively. Requiring missing data not to exceed 50% of all samples  left 87 compounds under high-P and low-P supply conditions for analysis, respectively, while for the combined set (high and low-P supply, 88 compounds had more than 50% non-NA values. Remaining missing values were essentially interpreted as zero-level plus some noise to avoid artificial data homogeneity and zero-variance for later analyses, and were replaced by a small non-negative value randomly sampled from a normal distribution with mean=SD/10 and standard deviation=SD/10, where SD is the standard deviation of the compound with partially missing data. Data were normalized according to (Lisec et al. 2006) and log-transformed (base=2) to obtain normal-distributed data. Statistical computations were performed using R (version 3.5.1). In addition to standard-distribution R functionality, the packages Limma (Ritchie et al. 2015) and glmnet (Friedman et al. 2010) were used to perform the Limma- and logistic ridge-regression analysis, respectively.
Identification of metabolites/compounds associated with high/low PUE

To determine metabolites/compounds associated with contrasting PUE, metabolite data were tested for significant differences in the two high PUE lines relative to their levels in the two low-PUE lines. Two descriptive analyses were performed: ANOVA and LIMMA. In the ANOVA, level data were tested across the two PUE-types with probing for possible interactions to leaf stage (two-way ANOVA). Those compounds that do show a significant interaction effect (p<0.05) were removed as we wished to identify leaf-stage-independent marker compounds. The LIMMA analysis was performed to take advantage of the better estimate of variance implemented in this approach (moderated t-statistic). Here, the comparison (contrast matrix) was performed between the two PUE-groups (high/low). All p-values were corrected for multiple testing based on the Benjamini-Hochberg method yielding a false discovery rate (FDR) (Benjamini and Hochberg 1995).

The descriptive analyses were augmented by a prediction approach. A logistic Ridge regression model was trained in a cross-validation setting (remove one line, train the model on the remaining three and predict the PUE of the line not used in training. This procedure was repeated all four possible splits). In logistic ridge regression (as implemented in the R-package glmnet), binary endpoints are predicted as a logistic function with values approaching one signifying high PUE, while values near zero predict low PUE. In the model, every original predictor variable (compound) is assigned a regression coefficient. Compounds with large absolute average (across all four cross-validation runs) coefficients can be considered predictive. As a threshold, t, for reporting significant predictor variables, we set t=sd (all coefficients), where sd is the standard deviation. Ridge regression constitutes a regularized regression approach, i.e. coefficients are “shrunken” to avoid overfitting. 

As a further and independent test of predictability of PUE based on metabolite levels, we applied the logistic Ridge regression model built based on the data obtained in experiment 2, to the metabolite profiled data obtained in experiment 3, i.e. tested on new (unseen in training) lines and measured as part of a different experimental series. Data pre-processing (including log-2 transformation) was applied as before. As reference compounds (internal standards) and experimental normalization details were different between the experiments, we used the obtained difference of the median metabolite levels measured in line Yodanya (which was measured in both experimental series) to determine a shift applied to all metabolites and lines such that the Yodanya median value of the third experiment matched that of the previous experiment. Note: Yodanya was not considered when testing the performance of the prediction on the new set of lines. The Ridge regression model was built on the previous experiment using all lines and considering as potential predictor metabolites the set of 14 compounds detected significantly different between high vs. low PUE obtained from ANOVA and LIMMA (intersection of both sets, and present in both experiments, Ribitol was used as the internal standard in the third experiment and hence not used as a predictor compound.). The prediction model was then applied to the new dataset (experiment 3) without re-training the parameters of the model.  

Results
Experiment 1

Plant biomass data indicated plant growth was limited by P availability in the low-P treatment, which significantly reduced average root and shoot biomass by 14% and 56%, respectively (Table 1). The more pronounced decrease of shoot biomass led to an increase in the root to shoot ratio of 89% relative to the high-P treatments. Average total P content in the low-P treatment was 588.1 µg P per plant, which corresponded to the 480 µg P applied plus an additional average of 88.2 µg P from seed-P reserves. Seed P content of genotypes ranged from 80.6 (Taichung) to 96.0 (Mudgo) µg P per seed with genotype groups not differing significantly (data not shown). In the high-P treatment P uptake was almost 8-times higher compared to the low-P treatment since P was supplied and taken up in excess of demand (Table 1) and as a result the internal PUE was far lower. Since luxury P consumption is contradictory to the concept of P utilization efficiency, PUE shall mainly be reported and discussed for the low-P treatment.
Differences between the high and low-PUE groups were significant for total biomass under both P treatments (Figure 1a and 1c) but total P content did not differ significantly (Figure 1b and 1d). Under low P supply the higher biomass in the high-PUE group was due to significantly higher biomass of the three youngest leaves and of roots, whereas stem and old leaf biomass was similar between groups (Figure 1a). P distribution between plant tissues also differed between genotype groups (Figure 1b) as the high-PUE group had allocated relatively more P to roots and less to stems (including old leaves). In addition to allocating 28% more P to roots, root biomass was further produced with higher efficiency (17% higher root PUE). 
Effects of P deficiency on leaf P and CO2 assimilation

Photosynthetic parameters were measured on the top three leaves, leaf 1 being the youngest fully expanded leaf. Regardless of P treatment the high-PUE group had higher individual leaf biomass (Figure 1) and leaf area (Figure 2a and suppl. Fig. S1). At the same time leaf development was significantly faster in the low-PUE group which at 50 DAS had developed 8.8 leaves in the low-P treatment compared to 7.8 leaves in the high-PUE group (suppl. Table 1). This difference was less pronounced under high P supply with 9.7 compared to 9.1 leaves (efficient group), respectively. Significant differences in leaf P content were not detected despite the larger leaf weight of the high-PUE group (Figure 1). The youngest leaf had the highest P content, which subsequently decreased with leaf age in all genotypes. Leaf P concentrations were lower in the high-PUE group with the biggest difference of 30% observed in the youngest leaf of the low-P treatment (Figure 2b). Since PUE is the inverse of P concentrations, this confirms higher PUE in all three leaves for the high-PUE group. Despite such differences in utilization efficiency, the P content per leaf area was remarkably stable across genotypes and leaf stages (Figure 2c). The exception being a reduced P content per leaf area in the older leaf (leaf 3) of the high-PUE group, which possibly indicated the onset of P-deficiency-induced leaf senescence in this group of genotypes. Beginning leaf discoloration of leaf 3 was observed in the high-PUE group but not in the low-PUE group which showed senescence in the 4th leaf from the top (suppl. Table 1). 
Total CO2 assimilation as estimated from measured assimilation rates multiplied times the leaf area indicated a strong negative effect of P deficiency (about 50% reduction) and this was mainly due to reduced CO2 assimilation rates per area, which decreased from around 18 µmol m-2 s-1 under optimum P supply to 11-13 µmol m-2 s-1 under P deficiency (Table 2). Assimilation rates were lower in leaf 3 and decreased more sharply under P deficiency in the high-PUE group, possibly confirming a leaf senescence effect as mentioned above. Within the low-P treatment, assimilation rates were similar between genotype groups in leaves 1 and 2 (Table 2) and the higher total assimilation in the high-PUE group was entirely due to their larger leaf area (Figure 2a). To further test for possible differences in photosynthetic efficiencies between both groups two additional parameters were derived, the CO2 assimilation rate per unit leaf P invested and the CO2 assimilation rate per leaf mass. Under P deficiency about 50-100% more CO2 was assimilated per unit leaf P (Table 2). In contrast, P deficiency led to a reduction of the CO2 assimilation per unit leaf mass. Contrasting genotype groups behaved very similarly in these aspects and the only significant genotype effect detected was detected in the older leaf presumably having started to senesce.
Experiment 2: Leaf metabolite determination

As part of the metabolite profiles, we measured the inorganic P (Pi) content in leaves and detected very strong effects of P supply: In the high-P treatment leaves had between 1-2 mg Pi per g leaf biomass and that dropped to below 0.1 mg g-1 under P deficiency (suppl. Fig. S2). While leaf age had only small effects on Pi concentrations under high P supply, very pronounced differences existed under low P supply. Each subsequent leaf age class had significantly lower Pi concentrations compared to the next youngest leaf, with leaf 3 reaching Pi concentrations almost a thousand-fold lower compared to high-P supply. As a result of such low Pi concentrations, the proportion of total leaf P present as Pi was in the range of 4-5% for leaf 1 and 1-2 % for leaves 2 and 3, respectively (suppl. Fig. S2). Corresponding proportions of Pi in the high-P treatment were 30-50% of total leaf P. Differences between the high and low PUE groups for Pi concentrations and proportions of total P were generally not significant.

Leaf phospholipid and lipid contents

In the +P treatment levels of all lipids were rather stable across leaf stages with a small decrease in the oldest leaf 3. Under P deficiency phospholipids decreased by between 84% in leaf 1 to 97% in leaf 3 compared to the high-P treatment (Figure 3) and this occurred to a similar level in both PUE groups. Changes in sulfolipids and galactolipids were less pronounced. In leaf one both lipids were present in similar quantities compared to +P leaves, however, in older leaves both lipids also decreased in the low-P treatment but retained higher levels than phospholipids. Triacylglycerols showed higher levels in older leaves of P starved plants (suppl. Fig. S3).  
Sugar phosphates and photosynthesis
The photosynthetic Calvin-Benson-Bassham cycle sugar phosphates glycerol-3 phosphate, ribulose-5-P, fructose-6-P as well as the starch precursor glucose-6-P were commonly reduced in response to P deprivation in all tissues and with no difference between high and low PUE lines (suppl. Fig. S3), corroborating the negative effect of Pi deprivation on photosynthesis (Table 2). Glucose-1-P as part of cytosolic sucrose synthesis remained relatively high under all conditions and sucrose levels were hardly affected under Pi deprivation. Maltose, as a starch degradation product, showed low levels under P sufficient conditions but a tendency to accumulate under P deprived conditions, especially in younger leaves. 
Metabolome signature of high vs. low PUE

In order to identify metabolites significantly correlated to high PUE rather than to the general Pi deprivation condition we performed a multistep bioinformatic analysis. The a priori classification of genotypes into high vs. low PUE groups was confirmed with their respective PUE in the low-P treatment (g leaf biomass produced per mg leaf P, which is the inverse of leaf P concentrations) being significantly higher at 1.18 g mg-1 in the high-PUE group compared to 0.81 g mg-1 in the low-PUE group (suppl Figure S4a). Values for the high-P treatment were 0.28 and 0.25 g mg-1, respectively. The difference between groups was significant under low-P (p=0.002), but not under high-P supply (p=0.072). Probing the dependence of PUE on leaf-stage revealed a systematic relationship, with older leaves showing lower PUE under low P-supply (suppl Figure S4b). By contrast, under high P-supply, no coherent picture emerged.
Upon performing a principal component analysis (PCA) on the compound data across all samples, i. e. over all lines, P-treatments, and leaf stages, clear data set separations were identified. Firstly, a strong P-treatment effect became evident, which is captured by principal component (PC) 1 (Figure 4a). Secondly, leaf-stage (associated with PC-2) also leads to a systematic segregation of samples, especially under low-P conditions. When performed separately for the low-P and high-P data sets the PCA again showed a separation. PC1 is correlated to leaf stage and PC-2 reveals a very strong separation of samples associated with high vs. low PUE (Figure 4b and 4c), especially under low P conditions. Thus, the metabolic makeup of samples is very different for the two PUE classes and generally clearer under P deficiency. 

Focusing first on the low-P supply samples, and on leaf 1 and 2, for which group differences were most pronounced (Figure 4b), the performed ANOVA returned four metabolites (ethanolamine, salicylate, tryptophan, tyrosine) with significant dependence on leaf-stage (interaction effect), which were removed from the analysis. Among the remaining metabolites, the LIMMA analysis identified 15 compounds as significantly different (FDR<0.05) between high and low PUE lines, with all 15 metabolites showing elevated levels in high PUE-lines relative to low PUE-lines (Table 3).

Following the descriptive statistical testing, we performed logistic Ridge regression to test the potential to predict the PUE (binary classification as high or low) of a line based on metabolite data. PUE proved predictable with logistic regression values being significantly larger for high-PUE than for low-PUE lines (p<0.001). The intersection of the 20 metabolites with large absolute regression coefficients (suppl. Figure S5) with the 15 LIMMA-metabolites obtained above yielded a subset of seven metabolites found in both sets: benzoate, glucuronate, ribitol, sinapate, threitol, threonine, and sulfate (Table 3). Thus, their potential association with PUE has been confirmed in a prediction setting as well. We deem these metabolites to be markers for a high PUE trait.
Repeating the analyses for high-P-supply data yielded nine significant LIMMA-test-based metabolites with PUE-associated differential levels: down in high-PUE relative to low-PUE: allantoin, glutamate, nitrate, and up in high-PUE: Mg2+, dehydroascorbate dimer, citrate, isocitrate, sulfate, and tryptophan (suppl. Table 2). Of the nine, only sulfate and dehydroascorbate dimer had been also identified under low P-supply conditions. Unlike under low-P condition, PUE was not predictable using logistic Ridge regression in the high-P treatment regime (p=0.15). The lack of a significant prediction notwithstanding, when intersecting the variables with large relative Ridge regression coefficients with the nine LIMMA-candidates from above, four compounds were identified as relevant in both analyses under high Pi supply: citrate, sulfate, Mg2+ (up in high-PUE relative to low-PUE), and glutamate (down in high PUE).

As a further and independent test of predictability of PUE based on metabolite levels, we applied the logistic Ridge regression model, built on all lines profiled in experiment 2, and applied it to a set of seven new lines of experiment 3 - four classified as high, and three classified as low PUE efficiency with classification preformed independently and prior of prediction. Classifications were based on the total biomass produced in the P deficient treatments LP1 and LP2 (suppl. Figure S6). As predictor metabolites to enter the Ridge regression model, we used the set of 14 compounds detected as significantly different between high and low PUE in the previous experiment based on ANOVA and LIMMA (intersection of both sets) and present in both experiments: Arginine, Benzoate, beta-Alanine, Dehydroxyascorbate-dimer, Galacturonate, Glucuronate, Glutamine, Histidine, Lysine, Methionine, Sinapate, Threitol, Threonine, and Sulfate. 
This independent test confirmed the predictability of PUE based on metabolites levels. A significant difference of the logistic prediction value of high vs. low PUE-lines not used during model training and profiled in a separate experiment was obtained (mean/median low=0.65/0.72, high=0.84/0.97, pt-test/Wilcox=2.1E-3/2.3E-4, Figure ???). Considering the ideal classification threshold value of 0.5 for a binary PUE call yielded an accuracy of 66% (p=0.04 based on Fisher’s exact test on the 2x2 confusion table), hence, significance was achieved as well. Significance of difference of prediction values was obtained also when both applied low-P treatment protocols were considered separately (LP1: pt-test/Wilcox=0.005/0.015, LP2: 0.07/0.01).
Discussion

PUE and CO2 assimilation

Rice gene bank accessions Mudgo and Yodanya had been identified as being highly efficient in producing total plant biomass with limited amounts of P (Wissuwa et al. 2015). Their superior PUE was confirmed here on a whole plant basis and additionally for the individual tissue roots, stems and younger leaves. Compared to inefficient accessions IR64 and Taichung, they allocated a higher proportion of P to roots while reducing allocation to stems but not to young leaves. Nevertheless, the three youngest leaves studied in detail here had sub-optimal P concentrations (1.12 - 1.14 mg P g-1 in inefficient and 0.86 - 0.94 mg P g-1 in efficient types) and this reduced CO2 assimilation rates from around 18 µmol CO2 m-2 s-1 at high P supply to 11-13 µmol CO2 m-2 s-1 under P deficient conditions in the two youngest leaves. However, despite about 20% lower leaf P concentrations in the high-PUE group, CO2 assimilation rates were equal in both groups. 
Does this suggest that the high-PUE group can be regarded as being physiologically more P efficient? Evidence to this effect could be provided by comparing CO2 assimilation rates per ng P invested (Table2). While a consistent trend showed 10 to 18% higher efficiency in the high-PUE group for leaves 1 and 2, respectively, means were not significantly different between groups (P<0.08). It appears that the overall higher PUE may be due to a combination of being able to produce more leaf biomass and leaf area per limited P and being able to maintain similar carbon assimilation rates. That may have been due to minor improvements in true photosynthetic P efficiency in the high-PUE group but could have also been caused by maintaining a similar level of P in photosynthetically active tissues in both groups rather than across the entire leaf. This has recently been identified as a key efficiency mechanism in species of Proteacea and other dicot families adapted to low-P habitats 
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(Hayes et al. 2018; Pereira et al. 2019)
. 
Metabolic patterns related to CO2 assimilation

CO2 assimilation rates decrease from around 18 µmol CO2 m-2 s-1 at high P supply to 11-13 µmol CO2 m-2 s-1 under P deficient conditions. The photosynthesis related Calvin-Benson-cycle sugar phosphates glycerol-3 phosphate, ribulose-5-P, fructose-6-P as well as the starch precursor glucose-6-P are reduced under P deficient conditions showing massive reduction in carbohydrate synthesis under these conditions as previously shown for rice (Xu et al. 2007). Insufficient CO2 assimilation might be caused here in rice in a mechanism similar to that observed in Hordeum vulgare, where Carstensen et al. (2018) showed that “under P deficiency, the enhanced electron flow through PSI increased the levels of NADPH, whereas ATP production remained restricted and, hence, reduced CO2 fixation”, probably through acidification of the stroma (Carstensen et al. 2018). Interestingly, glucose-1-P as part of the cytosolic sucrose synthesis remained relatively high under all conditions indicating a prevalence to invest phosphate into sucrose synthesis even under Pi deprived conditions resulting in sucrose levels being hardly affected under Pi deprivation. As triose-P export from the chloroplast is impaired under P deficiency (Hernandez and Munne-Bosch 2015) the finding that maltose, a starch degradation product, showed low levels under P sufficient conditions but a tendency to accumulate under P deprived conditions, especially in younger leaves, indicated degradation of photosynthetic starch reserves even during the day (Stitt and Zeeman 2012) to provide a carbon supply for the cytosol. Low and high PUE lines did not differ in this adaptive metabolic response to P starvation in rice.
Substitution of phospholipids under P deficiency

One adaptation of plants to P deficiency is the substitution of phospholipids with sulfo- or 
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(Frentzen 2004; Hartel et al. 2000)
. A very drastic reduction in phospholipids was observed, however, sulfo- and galactolipids did not increase in content in the expected compensatory fashion (Figure 3). The lack on an increase in sulfolipids is surprising given that sulfolipid synthesis genes like SQD-2 are strongly up-regulated in rice under P deficiency (Wissuwa et al. 2015). As a result of the decrease in phospholipids, galactolipids have now become the most abundant lipid form in P-deficient leaves. Whether this shift in proportions would indicate functional substitution occurred, or whether certain cellular components rich in phospholipids were reduced to a bare minimum level remains to be determined. However, since changes in lipid fractions were comparable between high and low PUE groups, we conclude that these were general responses to P depletion and not linked to genotypic differences in PUE.
Significant metabolite signatures correlated to categorical PUE under P insufficiency

The principal component analysis indicated that different levels of P supply had very strong effects on metabolite patterns and subsequent analyses showed that a) metabolites associated with high PUE did not overlap (with the exception of sulfate) between treatments; and b) that unlike under P deficiency, PUE was not predictable using logistic Ridge regression in the high-P treatment. This may indicate that compounds distinguishing between PUE groups under P deficiency were due to adaptive response to P insufficiency and not due to constitutive differences between genotype groups. Thus, our discussion will focus on the seven metabolites identified to differ between groups in the low-P treatment and being predictive in the Ridge regression analysis (Table 3). 

Stress response systems detoxifying ROS
P deprivation will lead to impairment of the photosynthetic system and hence CO2 assimilation (Carstensen et al. 2018). As a result, accumulation of ROS due to excess photon energy can be expected 
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(Xu et al. 2007; Hernandez and Munne-Bosch 2015)
 and our finding that three marker metabolites predictive of high PUE are linked to ROS defense highlight the potential importance of related defense mechanisms. The three metabolites are sinapate and benzoate of the phenylpropanoid metabolism (Tohge et al. 2013), and glucuronate as part of the myo-inositol / ascorbate metabolism.
Sinapate esters were shown to protect photosystems by acting like sunscreens 
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(Landry et al. 1995; Dean et al. 2014)
 and detoxifying damaging ROS as free radical scavengers (Wang et al. 2007). Sinapates also act as precursors of syringyl-type deference lignins fortifying cell walls against penetration of fungal hyphae, but lignins also act as ROS scavengers 
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(Demkura and Ballare 2012; Wang et al. 2007)
. Which induction system leads to sinapate accumulation under P deficiency is not known. UVR8, a UV-B receptor, triggers sinapate synthesis, but also WRKY89 has been described to be involved 
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(Demkura and Ballare 2012; Wang et al. 2007)
. Caldana et al. (2013) speculate that ‘target of rapamycin’ (TOR) is involved in the response to phosphate starvation. Sinapate concentrations are reduced in TOR knock-down mutants. TOR is generally discussed to link carbohydrate metabolism and nutrient ion metabolism (Caldana et al. 2013). A better control of the TOR system might be one reason for the improved PUE trait. The metabolic pattern of a TOR inhibition experiment (Caldana et al. 2013) is providing the opposite signature observed for high PUE lines (Figure 6), with e.g. sinapate, benzoate, threonine increased while being decreased in TOR knock-down lines. 
Similar to sinapate, benzoates may be associated with antioxidant defense, either having effects directly or through the link to the stress hormone salicylic acid (SA) and downstream secondary metabolites (Wildermuth 2006).
Glucuronate is part of the myo-inositol / ascorbate metabolism (Figure 6) and further metabolites of this pathway, galacturonate and dehydroascorbate-dimers, were detected as significant using ANOVA+LIMMA (Table 3), while both are just below the threshold of the cumulated ridge regression analysis. Glucuronate and galacturonate are precursors of an alternative biosynthetic pathway of vitamin C / ascorbate (Bulley and Laing 2016) and of secondary cell wall pectins (Ogden et al. 2018). Ascorbate is part of the ROS detoxification system in plants (Noctor and Foyer 1998). Production of ROS under P deficiency was shown to be accompanied to increased superoxide dismutase and ascorbate peroxidase activity (Xu et al. 2007). Thus, an effective ascorbate-glutathione (GSH) cycle seems to be one hallmark of the high PUE trait. 
Sugar alcohols, amino acids and sulfate

The remaining four marker metabolites associated with high PUE are the sugar alcohols ribitol and threitol, the amino acid threonine and the sulfate ion. Sulfate has a complex relation to phosphate as there are mutual interaction and cross-influences of one nutrient ion on the other (Williams and Salt 2009). Sulfate assumingly provides necessary metabolites as GSH, sulfolipids and at least for GSH a link to ROS detoxification processes discussed above exists. 
Sugar alcohols are possibly related to stress tolerance and/or senescence (Seki et al. 2007). A possibility is that sugar alcohols supplement the reduction of sugars under P deficiency (Figure 6) since ribitol can be oxidized to ribulose (Nosarzewski et al. 2012) or might act as long distance transport form in the phloem. However, little is known about the biosynthesis or function of threitol and ribitol as related to P nutrition in plants.
While only threonine passed the threshold of the cumulative Ridge-regression analysis, several other amino acids displayed a highly complex pattern in response to P depletion and between high and low PUE lines (Figure 5, suppl. Figure S3). Seven of the 15 compounds identified by the LIMMA analysis (Table 3) are amino acids. Among them are the N-rich amino acids Gln, Lys, Arg, and His. Methionine and threonine belong to the aspartate branch of amino acids and methionine as a sulfur containing amino acid relates to increased sulfate levels, together with GSH containing cysteine. Generally, high PUE lines under P depletion seem to accumulate higher amounts of amino acids than low PUE lines, indicating that this accumulation is not simply an effect of low growth rates under P deficiency. More rapid senescence in older leaves of high PUE genotypes may play a role. 
Predictability of PUE based on metabolite levels

Based on the metabolite profile data, we built a logistic Ridge regression model that proved predictive of PUE when tested on seven new genotypes and profiled as part of an independent experiment (Figure 5). Hence, our study demonstrates the potential of metabolite profiling with regard to marker-assisted breeding. Larger studies are required to fully establish and harness the power of metabolite profiling in the context of breeding efforts aimed at improving PUE.

Conclusions

Combining LIMMA and Ridge regression analyses identified a set of marker metabolites predictive of high P utilization efficiency in an efficient group of rice genotypes. Contrary to expectation these marker metabolites were not related to carbon, lipid or other aspects of P metabolism. Instead three marker metabolites were associated with more active ROS defense, ROS generation being an often-overlooked consequence of the reduced photosynthetic capacity under P deficiency. Two other marker metabolites were sugar alcohols ribitol and threitol that have so far not been associated with response to P deficiency. Our results suggest further studies on the possible of ribitol and threitol under nutrient deficiencies are warranted.
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Table 1 Biomass, P content and P utilization efficiency (PUE) as affected by P supply.
	
	root
	shoot
	total
	ratioa

	
	biomass (g plant-1)

	low-P
	0.29
	0.66
	0.95
	43.9

	high-P
	0.34
	1.48
	1.87
	26.3

	LSD
	**
	***
	***
	***

	
	P content (µg plant-1)

	low-P
	119.6
	468.5
	588.1
	25.5

	high-P
	541.0
	4054.5
	4595.5
	13.3

	LSD
	***
	***
	***
	***

	
	PUE (g mg-1)

	low-P
	2.46
	1.41
	1.64
	n.a.

	high-P
	0.63
	0.37
	0.40
	n.a.

	LSD
	***
	***
	***
	n.a.


a root to shoot ratio 

LSD, Least Significant Difference; n.a., not analyzed. *, **, *** indicate significant mean differences at p < 0.05, 0.01 and 0.001, respectively.
Table 2 Effect of P supply and genotype on CO2 assimilation rate and derived parameters measured in the top three leaves (leaf 1 = youngest fully expanded leaf) in 50-day-old plants grown in a growth chamber. 

	P supply
	group
	leaf 1
	leaf 2
	leaf 3
	3-leaf total

	
	
	CO2 assimilation per leaf (nmol s-1)

	low P
	l-PUE
	311.1
	202.7
	150.1
	664.0

	
	h-PUE
	379.0
	273.3
	109.2
	761.5

	
	LSD
	*
	**
	ns
	*

	high P
	l-PUE
	579.5
	558.4
	303.0
	1440.9

	
	h-PUE
	651.7
	723.7
	345.4
	1556.8

	
	LSD
	ns
	*
	ns
	ns

	
	
	CO2 assimilation rate (µmol m-2 s-1)

	low P
	l-PUE
	13.0
	11.2
	9.6
	

	
	h-PUE
	13.6
	12.3
	6.5
	

	
	LSD
	ns
	ns
	*
	

	high P
	l-PUE
	17.9
	17.5
	14.1
	

	
	h-PUE
	17.9
	18.7
	13.5
	

	
	LSD
	ns
	ns
	ns
	

	
	
	CO2 assimilation per leaf P (nmol s-1 ng-1)

	low P
	l-PUE
	0.34
	0.27
	0.26
	

	
	h-PUE
	0.37
	0.32
	0.22
	

	
	LSD
	ns
	ns
	ns
	

	high P
	l-PUE
	0.19
	0.16
	0.14
	

	
	h-PUE
	0.17
	0.18
	0.15
	

	
	LSD
	ns
	ns
	ns
	

	
	
	CO2 assimilation per leaf mass (nmol s-1 mg-1)

	low P
	l-PUE
	0.37
	0.31
	0.28
	

	
	h-PUE
	0.33
	0.33
	0.19
	

	
	LSD
	ns
	ns
	*
	

	high P
	l-PUE
	0.55
	0.51
	0.43
	

	
	h-PUE
	0.46
	0.49
	0.40
	

	 
	LSD
	ns
	ns
	ns
	 


All P treatment effects are significant at p < 0.01. LSD, Least Significant Difference; ns, not significant. * and ** indicate significant mean differences at p < 0.05 and 0.01, respectively. l-PUE, low-PUE; h-PUE, high-PUE.
Table 3. Metabolites/ions identified as significantly different (pFDR < 0.05) in high vs. low PUE lines and associated log2 fold change (FC) values and FDR-corrected p-values. (LIMMA analysis for low P-supply conditions). Metabolites highlighted in bold font overlapped with the set identified through Ridge regression.

	 
	log2FC
	pFDR

	Sinapate
	1.06
	0.002

	Glucuronate
	0.86
	0.003

	Glutamine
	1.17
	0.011

	Threonine
	0.85
	0.014

	Ribitol
	0.81
	0.014

	Threitol
	0.61
	0.015

	Lysine
	1.08
	0.016

	Benzoate
	0.71
	0.018

	Sulfate
	0.63
	0.018

	Methionine
	0.94
	0.034

	Arginine
	1.18
	0.034

	Histidine
	1.00
	0.049

	Galacturonate
	0.71
	0.049

	Dehydroascorbate dimer
	0.85
	0.049

	Beta-Alanine
	0.71
	0.049


Figure legends

Figure 1 Biomass and P content under low P supply (panels a and b) and high P supply (panels c and d) in different plant tissues. Leaf 1 represents the youngest fully expanded leaf with leaf 2 and 3 being the next youngest leaves. ***, **, * indicate significant differences at the 0.001, 0.01 and 0.05 levels (LSD) for the respective tissues between the high-PUE and low-PUE groups of genotypes (ns = not significant).

Figure 2 Leaf area, leaf P concentrations and P content per cm2 leaf area of the three youngest leaves under low P supply. ***, **, * indicate significant differences at the 0.001, 0.01 and 0.05 levels for the respective tissues between the high-PUE and low-PUE groups of genotypes (ns = not significant).

Figure 3 Changes in lipid composition in response to P deficiency in the three youngest leaves. Differences between the high-PUE and low-PUE groups were minor and not significant and therefore means across groups are shown. Letters above bars indicate significant differences at p < 0.05. Values on Y-axes indicate relative peak height (in thousands). Peak heights of the mass fragments were normalized based on the fresh weight of the sample and the value of internal standard.
Figure 4 Principal component analysis of metabolite data. Score plots under low and high P-supply conditions combined (a), and separately for low (b) and high P-supply (c), respectively. Symbol color denotes leaf (blue=1, cyan=2, red=3), label color high PUE (black) and low PUE (red) lines. Percentages given in the axes labels denote explained variance by the respective principal component (PC). All variables were scaled to zero mean and unit variance.

Figure 5. Performance of the logistic Ridge regression model developed on the dataset of experiment 2 and considering as predictor variables the 14 most significantly different metabolites and applied to seven new lines profiled as part of an independent experiment 3. Observed PUE refers to the independent classification of lines as high (=1) or low (=0) PUE lines. Predicted PUE values are the obtained continuous logistic prediction values ranging between 0 and 1. Points (with added jitter for better clarity) correspond to the seven profiled lines with associated repeats. Boxplot shows the usual quantiles (range, 25%, 50%, 75%) with the thick horizontal line denoting the median. LP2/1 correspond to the two different low-P treatment protocols (see Methods).

Figure 6 Difference in metabolite abundance between high PUE and low PUE lines. Fold change of the metabolite abundance in high PUE lines vs. low PUE lines was calculated. Log2 ratios of the fold changes are given by shades of red or blue colors according to the scale bar. Asterisk indicates a statistically significant difference between high PUE lines and low PUE lines (*, P < 0.05). Rib5p, ribulose-5-phosphate; Fru6p, fructose-6-phosphate; Glc6p, glucose-6-phosphate; Glc1p, glucose-1-phosphate; Asc, ascorbate; 3CGA, 3-chlorogenic acid; Orn, ornithine; GABA, gamma aminobutyric acid; OAS, O-acetylserine; PG, phosphatidylglycerol; PC, phosphatidylcholine; PI, phosphatidylinositol; PE, phosphatidylethanolamine; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; DAG, diacylglycerol; TAG, triacylglyceride.
Supporting Information

Suppl. Figure S1 Leaf area, leaf P concentrations and P content per cm2 leaf area of the three youngest leaves under high P supply. ***, **, * indicate significant differences at the 0.001, 0.01 and 0.05 levels for the respective tissues between the high-PUE and low-PUE groups of genotypes (ns = not significant).

Suppl. Figure S2 Inorganic P (Pi) concentration in the three youngest leaves as affected by P supply (a,c). The proportion of Pi in total leaf P (%) is shown in b and d.
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Suppl. Figure S3 Graphical overview of metabolic profiling data through hierarchical clustering. Log2 ratios of fold changes from the average of each metabolite in all the lines at all the three stages are given by shades of red or blue colors according to the scale bar. 
Suppl. Figure S4 Estimated PUE of lines as the inverse of leaf P concentrations (g leaf biomass produced per mg leaf P) under low and high P supply conditions a) averaged (left panel), and b) by line and leaf (right panel), displayed as boxplots and added actual data points with an applied x-coordinate jitter.
Suppl. Figure S5 Cumulative Ridge-regression coefficients obtained in four cross-validation runs (remove one line, predict its PUE based on a trained Ridge regression model using the remaining three lines). Metabolite/compound labels are centered on their respective coefficient value. Large absolute coefficients signify high predictive value. Horizontal lines denote the zero, +/- one standard deviation of all coefficients.

Suppl. Figure S6 Total plant biomass of groups of 4 P efficient and 3 inefficient genotypes grown under low or high P supply (experiment 3). Means and standard deviations, low P data is combined over two treatments (LP1 and LP2) (n = 28).

Supplementary Table 1. Leaf number (standard deviations) at the time of harvest as dependent on P supply. For leaves that had started to senesce the proportion of the leaf blade remaining green was scored. A value of 2.7 would indicate that the two uppermost leaves remained fully green while the 3rd leaf from the top was to 70% green and to 30% yellowish.

Supplementary Table 2. Metabolites/ions identified as significantly different (pFDR < 0.05) in high vs. low PUE lines and associated log2 fold change (FC) values and FDR-corrected p-values. (LIMMA analysis for high P-supply conditions). Metabolites highlighted in bold font overlapped with the set identified through Ridge regression.
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