REFERENCES
Das D, Sarkar S, Bordoloi J, Wann S B, Kalita J, Manna P. Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors. 2018; 44(5):407-417.
Dow C, Mancini F, Rajaobelina K, Boutron-Ruault M C, Balkau B, Bonnet F, Fagherazzi G. Diet and risk of diabetic retinopathy: a systematic review. Eur J Epidemiol. 2018; 33(2):141-156.
Gao X, Li Y, Wang H, Li C, Ding J. Inhibition of HIF-1alpha decreases expression of pro-inflammatory IL-6 and TNF-alpha in diabetic retinopathy. Acta Ophthalmol. 2017; 95(8):e746-e750.
Glisic M, Kastrati N, et al. Associations between Phytoestrogens, Glucose Homeostasis, and Risk of Diabetes in Women: A Systematic Review and Meta-Analysis. Adv Nutr. 2018; 9(6):726-740.
Jeon H Y, Seo D B, Shin H J, Lee S J. Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity. J Agric Food Chem. 2012; 60(11):2807-14.
Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic retinopathy. Biomed Pharmacother. 2018; 97(190-194.
Kim D I, Park M J, et al. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners. Oxid Med Cell Longev. 2015; 2015(617919.
Kowluru R A, Santos J M, Qing Z J I O, Science V. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy.2014a; 55(9):5661.
Kowluru R A, Santos J M, Zhong Q. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014b; 55(9):5653-60.
Li M, Zhang D, Ge X, Zhu X, Zhou Y, Zhang Y, Peng X, Shen A. TRAF6-p38/JNK-ATF2 axis promotes microglial inflammatory activation. Exp Cell Res. 2019; 376(2):133-148.
Li Q, Kim Y R, Vikram A, Kumar S, Kassan M, Gabani M, Lee S K, Jacobs J S, Irani K J A T V B. P66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1. 2016; 36(12):ATVBAHA.116.308321.
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
Long S H, Yu Z Q, Shuai L, Guo Y L, Duan D L, Xu X Y, Li X D. The hypoglycemic effect of the kelp on diabetes mellitus model induced by alloxan in rats. Int J Mol Sci. 2012; 13(3):3354-65.
Luo D W, Zheng Z, Wang H, Fan Y, Chen F, Sun Y, Wang W J, Sun T, Xu X. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-kappaB inflammatory factor pathways. Curr Mol Med. 2015; 15(8):790-9.
Maghbooli Z, Emamgholipour S, Aliakbar S, Amini M, Gorgani-Firuzjaee S, Hossein-Nezhad A. Differential expressions of SIRT1, SIRT3, and SIRT4 in peripheral blood mononuclear cells from patients with type 2 diabetic retinopathy. Arch Physiol Biochem. 2018; 1-6.
Mehrabadi M E, Salemi Z, Babaie S, Panahi M. Effect of Biochanin A on Retina Levels of Vascular Endothelial Growth Factor, Tumor Necrosis Factor-Alpha and Interleukin-1Beta in Rats With Streptozotocin-Induced Diabetes. Can J Diabetes. 2018; 42(6):639-644.
Nawaz I M, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res. 2019;
Oza M J, Kulkarni Y A. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. Biomed Pharmacother. 2018; 107(1119-1127.
Pardue M T, Allen R S. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018; 65(50-76.
Pearsall E A, Cheng R, et al. Neuroprotective effects of PPARalpha in retinopathy of type 1 diabetes. PLoS One. 2019; 14(2):e0208399.
Rubsam A, Parikh S, Fort P E. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci. 2018; 19(4):
Sabanayagam C, Banu R, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol. 2019; 7(2):140-149.
Saferding V, Puchner A, et al. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun. 2017; 82(74-84.
Schmidt S, Michna H, Diel P. Combinatory effects of phytoestrogens and 17beta-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2005; 94(5):445-9.
Seida A, El-Hefnawy H, Abou-Hussein D, Mokhtar F A, Abdel-Naim A. Evaluation of Medicago sativa L. sprouts as antihyperlipidemic and antihyperglycemic agent. Pak J Pharm Sci. 2015; 28(6):2061-74.
Seo D B, Jeong H W, Lee S J, Lee S J. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells.J Agric Food Chem. 2014; 62(19):4298-305.
Sharma S, Purohit S, Sharma A, Hopkins D, Steed L, Bode B, Anderson S W, Caldwell R, She J X. Elevated Serum Levels of Soluble TNF Receptors and Adhesion Molecules Are Associated with Diabetic Retinopathy in Patients with Type-1 Diabetes. Mediators Inflamm. 2015; 2015(279393.
Shi Y N, Zhang X Q, Hu Z Y, Zhang C J, Liao D F, Huang H L, Qin L. Genistein Protects H9c2 Cardiomyocytes against Chemical Hypoxia-Induced Injury via Inhibition of Apoptosis. Pharmacology. 2019; 103(5-6):282-290.
Song P, Yu J, Chan K Y, Theodoratou E, Rudan I. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis. J Glob Health. 2018; 8(1):010803.
Stepuro, II, Chaikovskaya N A, Solodunov A A, Artsukevich A N. Generation of NO during oxidation of hemoglobin ferroforms by nitrite. Biochemistry (Mosc). 1997; 62(9):960-6.
Stitt A W, Curtis T M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016; 51(156-86.
Tong P, Peng Q H, Gu L M, Xie W W, Li W J. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol. 2019; 107(102-109.
Wang J H, Ling D, Tu L, van Wijngaarden P, Dusting G J, Liu G S. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther. 2017; 173(1-18.
Ye Z M, Yang S, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019; 10(2):138.
You J S, Cho I A, et al. Coumestrol Counteracts Interleukin-1beta-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes. Inflammation. 2017; 40(1):79-91.