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1 Introduction

In this paper, we consider the following multi-dimensional hyperviscous magnetohy-
drodynamic(MHD) equations:

(

Opu+ (—A)u+ (u-Viu— (b-V)b+V(p+ L) = @), (2,t) € D x (0,T),
ob+ (—A)*+ (u-V)b—(b-V)u=g(z), (x,t)e D x(0,T),

V-u=0, V-b=0, (z,t)eDx(0,7),

ulpp = blap = 0,

uli=0 = ug, b= = bo.

(1.1)
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Where D C R” is a bounded domain with the boundary D and n > 3. u, b are the fluid
velocity and magnetic fields, respectively. f(x), g(z) are the external body force. p is the
pressure. « > 0 and the fractional Laplacian operator (—A)® is given by via the Fourier

transform

(CA)f(€) = €2 f(©),

here, f represents the Fourier transform of f. For simplicity, we set a = % +7% andn > 3.

The magnetohydrodynamics system govern the dynamics of the velocity field and
magnetic field in electrically conducting fluids. In recent years, generalized magnetohy-
drodynamics equations were investigated by many authors in [14,18,19]. In [18], global
smooth solution for the system (1.1) was proved for the initial conditions in H g, n = 3 and
o > %. Regularity criteria for the three dimensional magnetohydrodynamics equations
were established (see [3,7,8]).

Attractors of the dissipative partial differential equations were proved in [2,12,13,17,
20]. In [15,16], Song etc. have proved the global attractor and uniform attractor for the
three-dimensional Navier-Stokes equations with damping. In [10,11], Liu etc. have proved
global attractor and uniform attractor for the three-dimensional magnetohydrodynamics
equations with damping. Based on the existence of global attractor, the existence of
inertial manifolds for the hyperviscous Navier-Stokes equations was proved by using the
the spatial averaging method for a > % in [6]. Meanwhile, Li and Sun have proved the
the existence of inertial manifolds for the hyperviscous Navier-Stokes equations by using
the extend slightly spatial averaging method for o > % in [9].

The long time behaviours of the multi-dimensional hyperviscous magnetohydrody-
namics equation can be described by the called global attractors. Sobolev regularity and
Gevrey regularity of the global attractor for the three dimensional magnetohydrodynamic-
a model were proved in [1]. Global existence and finite dimensional global attractor for
the three dimensional viscous magnetohydrodynamic-a model were proved in [4,5].

To obtain the existence of global attractors for the multi-dimensional hyperviscous
magnetohydrodynamics equations, we overcome the main difficulty lies in dealing with
the nonlinear term (u-V)u, (u-V)b, (b-V)u, (b-V)b. In order to get the global attractor in
Hiti x H3t% and HYWS x H 143 we overcome the main difficulty lies in the estimation
of AV Fu(t)l, 114 Eb)l el g bl a3 and 1R

This paper is organized as follows. In section 2, we give some preliminaries and
Theorem 2.1-Theorem 2.3, and get the well-posedness for the system (2.3). In section 3,
the existence of uniform estimate is proved. In section 4, existence of global attractor for
the system (2.3) is proved in H2t% x H3t% and H'WS x H''S.



2 Preliminaries

In this paper, the inner products and norms are given by
(u,v) = / w-vdr, Yu,ve L? ((u,v))= / Vu - Vodz, Yu,v € H},
D D

and ||| = (-,-), |[V-]|* = ((-,-)). Let P: L?(D) — H be the Helmhdtz-Leray orthogonal
projection operator. Let A = —PA denote the stokes operators such that Au = —PAu =
—Au, Ab = —PAb = —Ab, for all u,b € D(A). Let D(A) = HY5 N H2t% and
D(A) = H>N H}. Let H® = D(A2), s > 0 and the norm is defined by || - ||, = ||A2 - ||,
and the Sobolev space H® is given by

H =fueH:lulffp = S [Pyl < o). (2.1)
JEZ3\{0}

The space H is defined by

V={ue Cy(D,R") : divu = 0},
H = the closure of V in L*(D).

Let the bilinear form is defined by
B(wy,wz) = P((wy - V)ws), for wi,wy € H. (2.2)

Then the system (1.1) is rewritten as the following forms

{ m +A%+%u+B(u,u) — B(b,b) = f, u|t=0 = uo, (2.3)

by + Astip+ B(u,b) — B(b,u) =g, bl=0 = bo.

n

Theorem 2.1. Assume that f,g € H—: 4. For any uo € H and by € H, the system
(2.3) has a unique weak solutions such that u € L>(0,7; H) N L?(0,T; H%‘%) and b €
L0, T; H) N L2(0,T; H2*4) with u, € L2(0,T; H™2~ %) and b, € L2(0, T; H™ 2~ 1), for
any 1" > 0.

Proof. Multiplying the first equation of system (2.3) with u and the second equation
of system (2.3) with b, respectively. Integrating their results on D and adding up their

results, then we have

d 2 2 2 2 2 2
. b n b n < n n . 24
DUl 4+ 1) + iy 108 < DAy gl (20
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Then we deduce

1
2 2

[l + 111 < e (ol * + 1Bl ) + (IIf11Z1 _a + {921 _x)(1 = 7). (2.5)



Integrating (2.4) on [0, ], then we get

). (2.6)

t
/ (a3, o +116l17 , 2)ds < [Juol[* + ol > + (1 f112 1 +lgl* 1 _a
0 24 24 2 4 2 4
Applying the Sobolev imbedding, it yields
(B(u,u), @) < Cl[f] _an, |[Vul] | _ap, [[ul]
< Cll6llyalfully ol (2.7

It follows that ||B(u,u)||_1 n < C||u||1+n||u|| By inequalities (2.5) and (2.6), we get

B(u,u) is bounded in LQ(O,T,H 2 ~%). Similarly,
(B(1.5),6) < Cliglly 2 b1l 101 23)

It follows that ||B(b, b)H_,_,
B(b,b) is bounded in LQ(O, T; H_%_%). Similarly,

n < C’Hb|]%+%|]b|\. By inequalities (2.5) and (2.6), we get

(B(u,b),¢) = (B(b,w),9) < Cll@ll | an [[VOI] _an, |[ull + Cl@]] | _an [[Vul| _an, [[b]]

< qb n n||W|| + d) n n . .
—CH |’%+Z||b||%+1|‘ || CH ||%+Z||u||%+1 |b|| (2 9)

nally, we deduce u;, by are bounded in L2 (0, T, H_ﬁ_%). By using the standard Galerkin
method, priori estimates and compactness argument, we prove the existence of global

s < Cllblls oo llul] + Cllully ol bll. Fi-

weak solutions for system (2.3). Let (u1,b1) and (us2,b2) be two solutions for system
(2.3). Let @ = u; — ug and b = by — by. We get the following form.

. (2.10)

U + A2 0+ Buy, @) + B(a,us) — B(b1,b) — B(b,by) =
b+ A2 5b+ B(uy,b) + B(a, b)) — B(by, 0) — B(b, up) =

Multiplying the first equation of system (2.10) with @ and the second equation of system
(2.10) with b, respectively. Integrating their results on D and summing up their results,
then we have

1d
2dt(’

= / (—aVugti + by Vbt + bVbott — uVbaob + by Viib + bV ugb)dx
D

[al[* + [1B11%) + llall[3 o + I3, =

4

< Clall, an, V2l _sg ll + ClIb1 1| an, |IVBI] s, 1l + CUBI s [ VBl] s, ]3]
+ Ol |1V sy 18]+ CIBI o [[Vesa]] s 1B
< Clally s lluslls o 1]+ Cllbil|s o 1Bl 3 3]l + CUBlL o [bol] 1, o ]

4

4



e PP T TR P T P ]
1. _
< Sl o + 1Bl )
+ Cllluall} o + 11B1113 -+ 102113 )1l + 115)2) (2.11)

Moreover,

d o7 112 712
2 1™+ 118117) + Ny o + 10l
< Clfual} o +1101l3 o + 110213, ) (@l + 11B]]%).- (2.12)
2" 4 2 4 2 4
Applying the Gronwall inequality, it yields
(€ fy(llu 2”l+n+Hb1H1+n+||b2||1+n

|all* +[|b]]* < e (H (0)[1% + 1[6(0)][?)
C(Ilu1 ()12 [uz2 (O)| 241161 (O P+ [b2 (O 2 +Ce(If112 ;. , +llgl* ¢,
Ce 31

*?7)(!\@(0)\!2 +[[B(0)]).
(2.13)

If @(0) = u1(0) — u2(0) = 0 and b(0) = b1 (0) — b2(0) = 0, we deduce u(t) = b(t) = 0. This
finishes the proof of the Theorem 2.1.

Theorem 2.2. Assume that f,g € L?. For any uy € H3+% and by € H%Jr%, the
system (2.3) has a strong solutions such that v € L*>°(0,T} H%*'%) N L2(0,T; H'*2) and
be L0, T; H2H5) N L2(0,T; H' %) for any T > 0.

Proof. Multiplying the first equation of system (2.3) by —Aw and the second equation of
system (2.3) by —Ab, integrating their results on D, respectively. Adding up their results,
then we have

1d
2dt(’

< |/(u-V)uAud:c|—|—|/(b-V)bAud:v|+|/(u-V)bAbdx|
D D D

[Vl + VI + ulls o + 118115 o

+I/D(b-V)uAbdx|+|(f,Au)|+|(g,Ab)|

< COllull an, [[Vull[[|Aul| _an, +C|[b]]_an, [IVOI|[|Aul] | 0, + Cllul| _an, [[VOI[[|AD]] sz,

LA+2

+ Ol _an, [VUll[|Ab]] | an, + ClIFIl | jan, [|Aul] _ap, + Cllgll | jan, [[AD]] _an,

< Cllullsyal[Vulllfulls  n + Cloll1 2 |[VO[[[ulls} 2 + Cllul1, n||Vb||Hb||g n

,p

+ Iyl IVulllBlls s n + ClUAL an, lullsea +Cllgll an [bll3 2

1
< Sl + 10115, ) + Clull o + 1B, ) (VU] + [ VB])
2 2
+ O jan, +CllgII Jan - (2.14)




Then it yields

d
IVl + [V0]P) + [[ulls o + 118113,

<C(HU|I2 o DI )(IIVUI|2+||VbII )+ CUAAR n, +CllgI an, (2.15)

By the Gronwall inequality, we have
t
[Vl + 1|V [? +/ (lull, » + I3, 2)ds < C. (2.16)
0 24 24

Multiplying the first equation of system (2.3) by A2T%y and the second equation of
system (2.3) by A%"'%b, integrating their results on D, respectively. Adding up their
results and (2.16), then we have
1d
2dt

< y/(u-V)uAmudxm/(b-V)bA%+2uda;\+y/(u-v>bA%+’Zbdxy
D D D

S (lull3 o 1B ) + il + (I

+|j/<b-vvuAé+2bdx|+w<f~4%+2un—+ugyA%+2bn

D
1, n 1, n 1, n

< Clul| = Vulll A3 T ul] + ClPbll = VBIII|AS*  ull + C|lullz=|[VB][| A3+ 5 b)
1, n 1, n 1, n

- Clbl oo [Vl | AB 58] + ClF AR S ul] + Cllglll| A+ 0|

1
< 10l + 1Bl ) + Cllull3 9?4+ ol VB + Ol 9
+ Ol 7l + TP + ol

2n —

1 n n n n
< *(HuHLmLHbHﬂ )+ Cllully “ HUHHQ + Ol *2 HbH L ClfIR+ Cligl?

+3 14+2
< (HUHH-” + bl 2) + Cllulfi, . +CIBI[E, . + CHJ”H2 +Cllgll*. (2.17)
2 4 2 4
Then, we have
d
(12T ey 1 e ] e
< Clulli,n + ClIIL, o + CIIIP + Cligl*. (2.18)
Integrating (2.18) on [0, ¢], it yields
2 2 ! 2 2
il g + 108 g + [ (il + DB s < € (219)

Now, we introduce the main result as follows.
Theorem 2.3. Assume that f,g € L? and (ug,bg) € H2 i x Hat
{S(t)}t>0 of system (2.3) satisfies

S(8)(uo, bo) = (u(t), b(t))-

[NIES
w3

The operator



{S(t)}+>0 is defined in the space H2Ti x Hait%. The system (2.3) has a (H%Jr% X
H%Jr%, HY2 x H1+%)—global attractor satisfies the following

(i) The global attractor A is invariant and compact in H'*2 x H'*z2.

(ii) The global attractor A attracts bounded subset of H 2T x H27% in relation to
the norm topology of H'*2 x H'3 .

3 Uniform estimate

Firstly, we will show the uniform estimates of strong solutions for the system (2.3) as
t — oco. In order to get the existence of attractors, we will prove the following estimates.
Lemma 3.1. Let (ug,bo) € Hiti x H2+i and f,g € L?. There exists a constant tg
such that

[lu@)II* +1Ib@)I* < C, (3.1)

t+1
(lul} o + B3, 2)ds < C. (3.2)
t 2+4 2+4

Proof. Multiplying the first equation of system (2.3) by u and the second equation of
system (2.3) by b, integrating their results on D, respectively. Adding up their results,
then we have

d 2 2 2 2 2 2
Sl + 1Bl + 1l + IR 0 SIAR y + 10y (33)

2 4

Applying the Poincaré and Gronwall’s inequalities, then there exists a positive constant

~ such that

[[u@)I1* + 1O < e ([u(0)][* + [[bO)|) + i(llf!li;_z HlglZs_w)- (34)

=3

For (3.4), it is easy to get

(A + 19l

1
S - ). (3.5)

=3

tim sup(|[u(t)||* + |[b(t)]*) <
t—+o00
Then there exists a tg = to(||w(0)||, ||b(0)||) such that

[lu®I + @* < Z(1F12:_0 +lgl2:_a) < C. (3.6)

2
’y 2 4 2
Integrating (3.3) on [¢,t 4 1] and (3.5), it yields

t+1 ) 9
n b1, n)ds < C.
|l + 1B s <



Lemma 3.2. Let (ug,by) € H2T% x H2+i and f,g € L% There exists a constant t;
such that

IVu@®)|* +[[Ve@)|* < C. (3.7)

Proof. By the above Theorem 2.2 and (3.2), then there exists a positive constant ¢; = to+1
such that

IVu@®)|* + [[VB)|* < C.

Lemma 3.3. Let (up,by) € H2T% x H2+i and f,g € L% There exists a constant ¢;
such that

t+1
| Gl + 113, s < C. (33)

n
4

Proof. By the inequality (2.15), then we deduce

d 2 2 2 2
SVl +11V02) + el + 11

2 2 2 2 2 2
< CQlll o + 101, UV + ITHED) + AP o)+l ) (39)
Applying the Gronwall inequality and the Theorem 2.2, we get
¢
IVl + [1V0[2 + | (a3 +[1BI[3, )ds < C. (3.10)
0 211 R

Finally, then there exists a positive constant ¢; such that

t+1
[ UGB+ I, s < C.
t 2 4 2 4
Lemma 3.4. Let (ug,bg) € Hit% x H2+i and f,g € L?. There exists a constant to
such that

+p@IE, - <C. (3.11)

Proof. By using the above Theorem 2.2, we get (3.11).
Lemma 3.5. Let (ug,bg) € Hit% x H2+ and f,g € L?. There exists a constant t3
such that

[ug ()| + ||bs(s)||> < C, Vs > ts. (3.12)

Proof. We multiply the first equation of system (2.3) by u; and the second equation of
system (2.3) by by, integrate their results on D, respectively. Adding up their results, it
yields

1d
2 2 2 2
b a n b n



:—/(uVu)utdx—i—/(be)utda:+/ futd:v—/(qu)btdx+/(qu)btd:c+/ gbidz
D D D D D D
1
< §(||ut||2 +116el[?) + CUIF11? + 1lgl1?) + C[[uNVul? +[[6Vb][ + |[uVb| > + [[bVul?)
1 2 2 2 2 2 2 2 2
< Sl + 1)+ COUSIP + lglP) + Cllal? g 110l g, + CUBE o 1B
+ Cllu|? an [|[VO]* sn + ClBI? s [|[Vul® sn
Ln—2 Ln+2 Ln=2 Ln+2
1
< 5(HutHz +116:1P) + CUIFZ + 119l + Cllullallull?
2 4 2 4
2 2 2 2
IR B + Cllull g 15 o
1
< §(HutHz + [o:11%) + C (I £ 11 + 11gl?)
2 2 2 2
O+ 1813 )l o + NI ). (3.13)
Then we get
el 2+ 1eul12 + (a3 + 1011 )
! Mg T g 3+
< C(l[ul3 w + 1013, ) (lulld o +1BIE o)+ CUFP + llgl?)- (3.14)
2 4 2 4 2 4 2 4

Integrating (3.14) on [¢,t + 1], it yields

t+1
/t (lue()]? + [1be(s)|[P)ds < C. (3.15)

Applying 0; to the first equation of system (2.3) and multiplying the Ly—inner product
by wu. Similarly, we apply 0; to the second equation of system (2.3) and multiply the
Lo—inner product by b;. Then we get

Ld

2dt

:—/(utVu)utd:U—i—/(tib)utdx—/(utVb)btda:—F/(tiu)btdx
D D D D

< Cllal] sny 1Vul] s [l + CIl] o V511,

n+2 n+2

2 2 2 2
b n + b n
(el 2+ 110]12) + e, + el

4 Clluallsn 11981 10l + ClIll s, 7] s 1]
SC’|“t”%+%”“”%+%”ut||+CHth%+%Hb”%+%||UtH
+CHUtH%+gHbH%+%Hth+C’|bt||%+%||uf|%+g”bt||

1 2 2 2 2 2 2
< Ll + ) + ORI + 1B ) (el + D). (3.16)

Then we have

d
Ul 110l + [l 3+ 1011

9



< Oulf} g+ 115170l + (1], (317)
Integrating (3.17) on [s,t + 1] for t < s <t + 1, we get
et + DI + [[be(t + 1)
2 2 i 2 2
< lur()[17 + 1]be ()17 + C/ (e (D)7 + 116 (7)) d- (3.18)
Integrating (3.18) on [t,t + 1] with respect to s and (3.15), it yields
t+1
[lue(t + DI+ [[be(t + 1)[]* < C/ (lue()I* + 1be(s)|*)ds < C, for t > ta. (3.19)
t

Let t3 =ty + 1, (3.12) is proved.
Lemma 3.6. Let (ug,bg) € Hzt% x H2+ and f,g € L?. There exists a constant t3
such that

Az R u(t)]] + | AZHEb(1)]| < C. (3.20)
Proof. For system (2.3), then we get

1, n 1, n

A5 u()|| + ||AZ 5 b(1)]]

< [fug|| + [1bell + 1|1 BCu, w)|| + [ B, B)|| + || B(u, b)|| + [ B, w)|| + |I£]] + llgl|

< fuel |+ 1foell + 11+ lgll + Cllullan, (Vull an, + ClBII an, (V5] _sn,

+ Cllull_an, VBl p, + ClIbll s ||Vl s,

< el + el + 111+ gl + Cllall3 o + CHBIE o + Cllall s o bl]30

< el + 3ell + 11+ Nlgll + Cllall3 o + CIBIE - (3.21)
By (3.11) and (3.12), we get

Az 5 u()|| + ||AZ 5 b(1)]| < C.

Lemma 3.7. Let (uo,by) € H2Ti x H2+i and f,g € L% There exists a constant t4
such that

t+1
(lue($)|[3, n + [1be(8)|[3 0 )ds < C, for Vit > ts, (3.22)
¢ 21 211
[[Vug| |2+ ||[Vbe||?> < C, for t > ty. (3.23)

Proof. Integrating (3.17) on [t,t + 1], using the Lemma 3.4 and Lemma 3.5, then there
exists a constant 3



t+1
< g ()P + [[be(8)]1* + C/ (Nl w4 1813 o ) (uel[? + 1[b][*)ds
t 2 4 2 4
<C, for Vt>ts. (3.24)

Applying 0; to the first equation of system (2.3) and multiplying the Ly—inner product
by —Auw,. Similarly, we apply 0; to the second equation of system (2.3) and multiply the
Lo—inner product by —Ab;. Then we have
1d
2dt

< / (1 V) Augdz] + | / (uVug) Augdz] + | / (b:Vb) Ausda| + | / (bVb) Ausdz|
D D D D

IVl 2+ V0 %) + Nluel[5 4 + (1Bl [5

+|/D(utVb)Abtdx|+|/D(qut)Abtdx|+|/D(tiu)Abtda:|+|/D(qut)Abtdx|
< Cllul[[[Vull | an, [[Augl| | an, + Cllul] _an, |[Vuu][|| Ave]]  _an,
+ ClBIIVOI 18wl + CUBI o, VBl 1],
Ol IVH] an 1B an, + Cllul] s [FII1AB] s,
+ Clo [Vl an |Ab] s, + OBl s [[Ve][[[Aby]] s,
< Cl[Vu[l[ulls g nlluells 1 + Cllul[L o |[Vu][[[ul]s 4 n
+ ClIVOi[[[bl] s o [[urlls 4 n 4 ClIbl[ 14 a [[Ve][[|ue][3  n
+C||Vut|||]b||%+%||bt||%+% +C||u|]%+%||Vbt]||\bt||%+%
+ ClIVor[[[ulls  allbells 4 o 4 ClIbl[ 14 a [[Vae][|]be][ 1 n
< o Uhulld o + N3, )
+ CUIVul* + (Vo ) (lell3 o + 1B, o + [lull3 o + DI, )- (3.25)
Then it is easy to get
STl + 1951P)
< OOl + IVBIPY Ul + 13+ el + 0B ) (3:26)
Using the uniform Gronwall lemma, we have
[Vue(t + D)7+ [[Voi(t + 1)
yastl

llall |, +11011% E+|IU|I1+n+|IbH2 )dr
2t1 2t1

t+1
< [ (Vul + |[Vb Pydresp” " o
t

Using the Gagliardo-Nirenberg inequality and Young inequality, we have

t+1 t+1 _8_
/ (Ve[ + [ V0| [*)dr < C/ (Il [ 177 e = +|Ibt!|"“ o] 52 )
¢

11



+||be|P)dr. (3.28)

i 2 2 2
< [ Ahulf e+l + [l

By the (3.22), (3.28) and Lemma 3.4-Lemma 3.5, we have
[[Vuel|> + [|Vbe]|> < C, for t >ty =t3+1. (3.29)

Lemma 3.8. Let (ug,bg) € Hit% x H2+i and f,g € L?. There exists a constant ts
such that

||ut|\2%+% + \|bt|y2%+% <C, for t>ts. (3.30)

Proof. Applying 0; to the first equation of system (2.3) and multiplying the Lo—inner
product by A%Jr%ut. Similarly, we apply 0 to the second equation of system (2.3) and
multiply the Lo—inner product by A3t b;. Then we have

1d
2dt

< |/(utvu)Az+4utd:¢|+|/(uvut)A%+Zutdx|+|/(tib)AHutdﬂ
D D D

(3o + 1Bl a) + Nl [Ty g + 1Bl
2 2

+ | / (bVby) A2 T T uydz| + | / (4 Vb) A2 T T bydz| + | / (uVb) Az T bydz]
D D D

+|/(btvu)A%ﬂbtdxyH/(bvut)A%ﬂbtd:q
<CHUtHLooHWHHA'Z*ZWII+CHUH an || V]|, Az |
+CHthLooHVbHHAmutl!+CHbHL%HVthwa"HAmutH

1, n 1, n
+ Ol oo [ VOI[[[A2 T30y [ + Cllull | sn, [[VOi]] | an [|AZT b

1, n 1, n
+CllbtlleIIVu||!|A2+4bt||+CIIbIIL%IIVutIIL%IIA'Z“thI

n—2
< CHUtH?fnHUtIIfﬁHVUHHUtIIHE + Cllully ]| 1y nflu]l1s g

+Cl\btllenHbtllfﬁ!lwll\lwllu + Clbl[ Lo (bl 14 n [[e]]14 3

n—

+CIIUtH"+2 HUtllfﬁHVblletllu + Cllul[L o [bel[1 nl[be] 112

+C||bt||”+2 Hbtll”“HVUIIHthH + Clbl[ L o ]| 1y 2 [[be]]142

142
2n— 2n—4
nt2 n 2 nt2 nt2
Z(HUtHHnHIthIH 2) + Clluelly * wlluell e+ Cllbd ] : LT e
+ Cll[uliyn + 103 )(\IU\\2+E+\151@+%)

1
< SOl + 10l Byg) + Clllaald Ly + B o)l + IR L, + 1) (331)
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Hence, we have

d 2 2 2 2
g lell3 o+ 10el[3 ) + (el [ + (1011
2 2 2 2
< O(lfuell1y o +11bel[1, ) (lully o + 10l 2 +1)
< C(fJuell3,n + 1103, ) 3.32
< Olfuel[1ya +11bel1 4 2) (3.32)

By using the Gronwall lemma, then we get
luel |3y +10el[1, 0 SC, for t>t5=ts+ 1.
2+4 2+4

Lemma 3.9. {S(t)}+>0 is Lipschitz continuous in Hot% x Hath

Proof. Let (u1,b1) and (us2,b2) be two solutions of the system (2.3) with initial values
(uo1,bo1) and (uo2,bo2). We set @ = u; — ug and b = by — by. We multiply the inner
product with A3+ and A%+%5, respectively. Adding up their results, then we get

l1d —112 7112 —112 7112

gl e + 1B o) + Nl n + DI

g/ |avu1A§+Za|dx+/ |U2V11A§+Za|dx+/ bVby A2 G| dw
D D D

+/ |bQVbAé+Zu|dx+/ |u1VbAé+Zb|dx+/ @Vby A2 T1b|dw
D D D

8
+/ \bvu1A5+Zb\dx+/ Va2t iblde = 3 L. (3.33)
D D

i=1

For L, using the Gagliardo-Nirenberg inequality, it yields

Ly < Cllal| an |[AZ+540]|||Vur]| s,
[ n—2 L n+2

< Olfalls alhnlls ol

1 —112 2
< Sl g + Cllull,

)
||u||%+%. (3.34)
For Ly, using the Gagliardo-Nirenberg inequality, we have

Ly < C||Val| an |[A2F5a|||uz|| an
L7tz Ln—2

< Clfaly s llually s llalleg

L 2 2 =112
< gllalfipy + Cllually 1@l .- (3.35)

n n
4 4

For L3 — L4, similarly, it is easy to get

_ 1, n - 1, n _
L+ Lo < OYbl| an, [IV0ul]so, [|A¥ ]| + Cllbal] an [IVBI] s 143 ¥ 2]

13



< Ollblls 2 1]l gl + ClBlLs o 12l o [l 2
Lo 2 7112 2 7112
< By + ClR o BBy + ClIEal o[BI (3.36)
For Ls — Lg, we also have
8 - 1 - 1 -
5L < Cllll, gy 170, g, 1A 30+ 11l gy 1], gy 14750
1=
T 1, n+ _ 1, n+
B oy 1l gy IAZ 5B+ [1bal] an |1V g, (|43 58]
< Oy nllualls a1 + Cllly o[l s o Bl
+ ClBlly g llnlly g Bl + Cllally el Bl
Loz2 2 7112 2 _112
< Sl g + Cllnl3 o I3, + Clital B o 10l (3:37)
Putting (3.34)-(3.37) into (3.33), it yields
1(Hﬂll% +1l13, n) + lallF e +[10]F 2
dt 2t 2T% I+3 I+

< Ol + el

w1112 L .+ B2l? W) (a2 blI2 ). 3.38
§+Z+H 1II%+Z+|I 2II%+Z)(|IUH% + 1 ||5 Z) (3.38)

Applying the Gronwall’s inequality, we have
@)l

t
< O+ PO )ean(C [l s + el g+ Bl + 121 ).
(3.39)

[N ]

+ IR

4 +2

By Lemma 3.1 and Lemma 3.4, this completes the proof of the Lemma 3.9.

4 Global attractors

In order to get the existence of global attractor, we need to prove the following lemma.
Lemma 4.1. Assume that A is a (H%+% X H%“'%,H%Jr% X H%+%)—global attractor for
{S(t)}t>0. Ais a (H%“'% x Hat4 HW5 x H'*t2)—global attractor if and only if

(1) {S(¢)}+>0 is a bounded (H%“'% x Hat% {5 x H'*2)—absorbing set.

(ii) {S(t)}+>0 is (H%"’% X H%“'%,HH‘% x H'*2)—asymptotically compact.

Firstly, we will prove the operator {S(¢) };+>0 has a (H%+% xH2 i HetixH2 T )—global
attractor, then by using the above Lemma 4.1, we get the attractor is a (H%+% X
H2t% H'YS x H'*%)—global attractor. Let

Bi={ube H 5 :[lul} . + B3, < C}

L4
2+4
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and
By = {u,b € D(A') : [[ Az Hu(t)||? + || A2 Eb(t)|* < C}.

By the above Lemma 3.4, we deduce that B; is bounded absorbing set of {S(t)}:>0 in
the space (H%+% X H%+%,H%+% X H%Jr%). By the above Lemma 3.6, we get that Bo
is bounded absorbing set of {S(t)}+>0 in the space (H%J’% X H%"'%,HH% x H'*%). By
Lemma 3.6, the {S(¢)}+>0 is (H%+% x H3ti H3ti x H%Jr%)—asymptotically compact.
Inspired by [15-17], we get a (H%Jr% x H3 T4 , H3ti x H%Jr%)—global attractor A. Finally,
we will show {S(t)}+>0 is (H%Jr% x Ha i, H''S x H'%)-asymptotically compact. We
need the following Lemma.

Lemma 4.2. Let (ug, by) € H2 i xH2 7 and f,g € L?, the dynamical system {S(t)};+>0
is (H%+% X H%+%,H1+% X HH%)—asymptotically compact.

Proof. Let (ugpn,bon) denote bounded in Hzt% x H2t% and t, — o0o. We will show

{S(tn)(ton, bon)} has a convergent subsequence in H'*2 x H'T2. Let

ouy, ob

(un(t),bn(t)) = S(t)(uon, bon),  (Un(tn), BN<tn)) = (W’t:tm aitnlt:tr)-

For the first equation and the second equation of system (2.3), we get

ATy (t0) = f = W (tn) = Blun(tn) i (tn)) + Blba(t). ba(t)).
A%Jr%bn(tn) =g —bu(tn) — B(un(tn),bn(tn)) + B(by(tn), wn(ts)).
By Lemma 3.6 and Lemma 3.8, then there exists a positive constant 7' > 0 such that for
any t > T,

Oun

IO 0 + I B0 <€ A w @)l + AT @l <0 @)

When ¢, — oo, there exists a N > 0 such that ¢, > T for every n > N. Applying (4.1),
we deduce for n > N,

_ 7 l+£ l+£
"un(tn)"%+% + HbN<tn)H%+% <O, (AT un ()| + [[AZT b, (t)]] < C. (4.2)

Applying the compactness of embedding H>+% < 12 and D(A) — H>+% and (4.2),
then there exist (a,b) € H2Ti x H3 4 and (i1,b) € D(A") x D(A’) such that

Up(tn) — 4 strongly in H%Jr%, (

bn(tn) — b strongly in H%‘F%, (

Up(ty) — u strongly in Lo, (

by(tn) — b strongly in Lo. (

15



Then, by Sobolev inequality, we have

[(un(tn) - V)un(tn) — (@- V)ﬁHz

< C(l|(un(tn) - V) (un(tn) = @)* + ||(un(tn) — @) - Val[?)

< CllfunEa)l? n, 11V (un(tn) = DI sy + llun(tn) = U w0 [V 1)
<(

nt2 Lits

tn (B3 () = 13 o+ [an(ta) = a3 o 1]y ) = 0,

n
4

as n — oo.

Similarly, we have

[1(batn) - V)ba(tn) — (b- V)0l

< O(I(baltn) - V) (baltn) = I + [|(bu(ta) — b) - VBI?)

< C([[bn(ta)l? an, IV (Ba(t )—b)ll2 an - [[ba(tn) — El\i%IIVBIIi%)
C(lbn <tn>||2+n||b (t) = BI3 o+ lbata) = BI3 o 1BIES, )

— 0, as n — oo,

[ (un(t) - V)ba(tn) — (@ V)|

< C(|[(un(tn) - V) (ba(tn) = B)I* + || (un(tn) — @) - VO||*)
< Cllinftn)lf IV 1) = DI g, + a(t) =81, IV )
< C(llun(t)I o 150(ta) = B o+ lun(ta) = a3 o BI )
—0, as n— o0
and
[(bn(tn) - V)un(tn) = (b- V)al|?
< C(|[(bu(tn) - V) (Un(tn) — W + [|(bn(tn) — b) - V| |*)
< C([|bn(tn )II2 n HV(un(tn)—U)HQﬁn + [1bn (tn)—bl\2 an HVUHinam )
scmbn(tnw o lun(tn) = Bl13 o+ 1Bata) = Bl o 13113, )

— 0, as n — oo.
The (4.7)-(4.10) imply that

—(un(tn) - Vup(tn) + (bn(tn) - V)bu(tn) — — (- V)i
—(un(tn) - V)bn(tn) + (bn(tn) - V)un(tn) = — (i - V)b

Applying (4.5), (4.6), (4.11) and (4.12), then we get
1
2

A5, (t,) — f —a— B(a,4) + B(b,b), strongly in Ly,

16

B-V)ﬁ strongly in Lo.

(4.7)

(4.9)

(4.10)

b-V)b strongly in Ly, (4.11)

(4.12)



as n — oo. We get {S(t)}+>0 is (H%Jr% x H

A+, (ty) — g —b— B(a,b) + B(b,@) strongly in Lo, (4.14)

N|=

+i,H" 2 x H1tz )-asymptotically compact.

Proof of Theorem 2.3 Applying Lemma 3.6, we get By = {u,b € D(4’): HA%+%UH2 +
||A%+%b|\2 < C} denotes a bounded (H%+% x Hat% HITE x H'*t%)—absorbing set.
Nextly, applying the Lemma 4.2, we obtain the {S(¢)}+>0 is (H%+% x Ha T, HYS x
HH%)—asymptotically compact. Finally, by Lemma 4.1, A is a (H%Jr% X H%Jr%, HYtS x
H'*%)—global attractor.
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