References
Ahn S, Shenoy SK, Luttrell LM, & Lefkowitz RJ (2020). SnapShot:
beta-Arrestin Functions. Cell 182: 1362-1362 e1361.
Anderson A, Masuho I, Marron Fernandez de Velasco E, Nakano A,
Birnbaumer L, Martemyanov KA, et al. (2020). GPCR-dependent
biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial
nodal cells. Proc Natl Acad Sci U S A 117: 14522-14531.
Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Sharman
JL, et al. (2020). The IUPHAR/BPS Guide to PHARMACOLOGY in 2020:
extending immunopharmacology content and introducing the IUPHAR/MMV
Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res 48:D1006-D1021.
Avet C, Mancini A, Breton B, Le Gouill C, Hauser AS, Normand C, et
al. (2020). Selectivity Landscape of 100 Therapeutically Relevant GPCR
Profiled by an Effector Translocation-Based BRET Platform.
bioRxiv: 2020.2004.2020.052027.
Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, et
al. (2003). Beta-arrestin-mediated activation of MAPK by inverse
agonists reveals distinct active conformations for G protein-coupled
receptors. Proceedings of the National Academy of Sciences of the United
States of America 100: 11406-11411.
Baker JG, Hall IP, & Hill SJ (2003). Agonist and inverse agonist
actions of beta-blockers at the human beta 2-adrenoceptor provide
evidence for agonist-directed signaling. Molecular pharmacology
64: 1357-1369.
Barlow RB, Scott NC, & Stephenson RP (1967). The affinity and efficacy
of onium salts on the frog rectus abdominis. Br J Pharmacol Chemother
31: 188-196.
Black JW, & Leff P (1983). Operational models of pharmacological
agonism. Proc R Soc Lond B Biol Sci 220: 141-162.
Bockaert J, Fagni L, Dumuis A, & Marin P (2004). GPCR interacting
proteins (GIP). Pharmacology & therapeutics 103: 203-221.
Bouvier M, Leeb-Lundberg LM, Benovic JL, Caron MG, & Lefkowitz RJ
(1987). Regulation of adrenergic receptor function by phosphorylation.
II. Effects of agonist occupancy on phosphorylation of alpha 1- and beta
2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent
protein kinase. The Journal of biological chemistry 262:3106-3113.
Bradley SJ, & Tobin AB (2016). Design of Next-Generation G
Protein-Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo
Animal Models. Annu Rev Pharmacol Toxicol 56: 535-559.
Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner
PB, et al. (1999). Selective regulation of Galpha(q/11) by an RGS
domain in the G protein-coupled receptor kinase, GRK2. The Journal of
biological chemistry 274: 34483-34492.
Che T, Dwivedi-Agnihotri H, Shukla AK, & Roth BL (2021). Biased ligands
at opioid receptors: Current status and future directions. Science
signaling 14.
Chidiac P, Nouet S, & Bouvier M (1996). Agonist-induced modulation of
inverse agonist efficacy at the beta 2-adrenergic receptor. Molecular
pharmacology 50: 662-669.
Crilly SE, & Puthenveedu MA (2021). Compartmentalized GPCR Signaling
from Intracellular Membranes. J Membr Biol 254: 259-271.
De Lean A, Stadel JM, & Lefkowitz RJ (1980). A ternary complex model
explains the agonist-specific binding properties of the adenylate
cyclase-coupled beta-adrenergic receptor. The Journal of biological
chemistry 255: 7108-7117.
Dean T, Vilardaga JP, Potts JT, Jr., & Gardella TJ (2008). Altered
selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP)
for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol
22: 156-166.
DebBurman SK, Ptasienski J, Benovic JL, & Hosey MM (1996). G
protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme
that can be conditionally activated by G protein betagamma subunits. The
Journal of biological chemistry 271: 22552-22562.
Dorn GW, 2nd, Oswald KJ, McCluskey TS, Kuhel DG, & Liggett SB (1997).
Alpha 2A-adrenergic receptor stimulated calcium release is transduced by
Gi-associated G(beta gamma)-mediated activation of phospholipase C.
Biochemistry 36: 6415-6423.
Ehlert FJ (2008). On the analysis of ligand-directed signaling at G
protein-coupled receptors. Naunyn-Schmiedeberg’s archives of
pharmacology 377: 549-577.
Ehlert FJ, Suga H, & Griffin MT (2011). Analysis of agonism and inverse
agonism in functional assays with constitutive activity: estimation of
orthosteric ligand affinity constants for active and inactive receptor
states. The Journal of pharmacology and experimental therapeutics
338: 671-686.
Eichel K, Jullie D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita
JB, et al. (2018). Catalytic activation of beta-arrestin by
GPCRs. Nature 557: 381-386.
Eichel K, Jullie D, & von Zastrow M (2016). beta-Arrestin drives MAP
kinase signalling from clathrin-coated structures after GPCR
dissociation. Nat Cell Biol 18: 303-310.
Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella
TJ, et al. (2011). Retromer terminates the generation of cAMP by
internalized PTH receptors. Nat Chem Biol 7: 278-284.
Furchott RF (1966). The use of beta-haloaklylamines in the
differentiation of the receptors and in the determination of
dissociation constants of receptor–agonist complexes. In Adv Drug Res.
ed Harper N.J.a.S., A.B. Academic Press, pp 21-55.
Galandrin S, Oligny-Longpre G, & Bouvier M (2007). The evasive nature
of drug efficacy: implications for drug discovery. Trends in
pharmacological sciences 28: 423-430.
Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski
T, et al. (2019). Conformational Sensors and Domain Swapping
Reveal Structural and Functional Differences between beta-Arrestin
Isoforms. Cell Rep 28: 3287-3299 e3286.
Gomes I, Sierra S, Lueptow L, Gupta A, Gouty S, Margolis EB, et
al. (2020). Biased signaling by endogenous opioid peptides. Proceedings
of the National Academy of Sciences of the United States of America
117: 11820-11828.
Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, et
al. (2018). Lack of beta-arrestin signaling in the absence of active G
proteins. Nat Commun 9: 341.
Gurevich EV, Tesmer JJ, Mushegian A, & Gurevich VV (2012). G
protein-coupled receptor kinases: more than just kinases and not only
for GPCRs. Pharmacology & therapeutics 133: 40-69.
Gurevich VV, & Benovic JL (1997). Mechanism of
phosphorylation-recognition by visual arrestin and the transition of
arrestin into a high affinity binding state. Molecular pharmacology
51: 161-169.
Gutkind JS, & Kostenis E (2018). Arrestins as rheostats of GPCR
signalling. Nat Rev Mol Cell Biol 19: 615-616.
Hasenhuetl PS, Bhat S, Freissmuth M, & Sandtner W (2019). Functional
Selectivity and Partial Efficacy at the Monoamine Transporters: A
Unified Model of Allosteric Modulation and Amphetamine-Induced Substrate
Release. Molecular pharmacology 95: 303-312.
Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, & Lefkowitz RJ
(1989). Phosphorylation sites on two domains of the beta 2-adrenergic
receptor are involved in distinct pathways of receptor desensitization.
The Journal of biological chemistry 264: 12657-12665.
Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, & Gloriam DE
(2017). Trends in GPCR drug discovery: new agents, targets and
indications. Nat Rev Drug Discov 16: 829-842.
Hay DL, Garelja ML, Poyner DR, & Walker CS (2018). Update on the
pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br
J Pharmacol 175: 3-17.
Hay DL, & Pioszak AA (2016). Receptor Activity-Modifying Proteins
(RAMPs): New Insights and Roles. Annu Rev Pharmacol Toxicol 56:469-487.
Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton
T, et al. (2019). Definition of functionally and structurally
distinct repressive states in the nuclear receptor PPARgamma. Nat Commun
10: 5825.
Hillenbrand M, Schori C, Schoppe J, & Plückthun A (2015). Comprehensive
analysis of heterotrimeric G-protein complex diversity and their
interactions with GPCRs in solution. Proceedings of the National Academy
of Sciences of the United States of America 112: E1181-1190.
Ho MKC, & Wong YH (2001). Gz signaling: emerging divergence from Gi
signaling. Oncogene 20: 1615-1625.
Hoare SRJ, Pierre N, Moya AG, & Larson B (2018). Kinetic operational
models of agonism for G-protein-coupled receptors. J Theor Biol
446: 168-204.
Hollenberg MD, Mihara K, Polley D, Suen JY, Han A, Fairlie DP, et
al. (2014). Biased signalling and proteinase-activated receptors
(PARs): targeting inflammatory disease. Br J Pharmacol 171:1180-1194.
Hollinger S, & Hepler JR (2002). Cellular regulation of RGS proteins:
modulators and integrators of G protein signaling. Pharmacol Rev
54: 527-559.
Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E, et al.(2005). Beta-arrestin 2-dependent angiotensin II type 1A
receptor-mediated pathway of chemotaxis. Molecular pharmacology
67: 1229-1236.
Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, et
al. (2019). Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell
177: 1933-1947 e1925.
Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB, Conti M,
et al. (2017). Functional selectivity of GPCR-directed drug action
through location bias. Nat Chem Biol 13: 799-806.
Jain R, Watson U, Vasudevan L, & Saini DK (2018). Chapter Three - ERK
Activation Pathways Downstream of GPCRs. In Int Rev Cell Mol Biol. ed
Shukla A.K. Academic Press, pp 79-109.
Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, et
al. (2017). Neurokinin 1 receptor signaling in endosomes mediates
sustained nociception and is a viable therapeutic target for prolonged
pain relief. Sci Transl Med 9.
Jensen SB, Thodberg S, Parween S, Moses ME, Hansen CC, Thomsen J,
et al. (2021). Biased cytochrome P450-mediated metabolism via
small-molecule ligands binding P450 oxidoreductase. Nat Commun
12: 2260.
Jiang M, & Bajpayee NS (2009). Molecular mechanisms of go signaling.
Neurosignals 17: 23-41.
Jong YI, Harmon SK, & O’Malley KL (2019). Location and
Cell-Type-Specific Bias of Metabotropic Glutamate Receptor, mGlu5,
Negative Allosteric Modulators. ACS Chem Neurosci 10:4558-4570.
Karl K, Paul MD, Pasquale EB, & Hristova K (2020). Ligand bias in
receptor tyrosine kinase signaling. The Journal of biological chemistry
295: 18494-18507.
Kenakin T (1995). Agonist-receptor efficacy. II. Agonist trafficking of
receptor signals. Trends in pharmacological sciences 16:232-238.
Kenakin T (1997). Differences between natural and recombinant G
protein-coupled receptor systems with varying receptor/G protein
stoichiometry. Trends in pharmacological sciences 18: 456-464.
Kenakin T (2015). The Effective Application of Biased Signaling to New
Drug Discovery. Molecular pharmacology 88: 1055-1061.
Kenakin T (2019). Biased Receptor Signaling in Drug Discovery. Pharmacol
Rev 71: 267-315.
Kenakin T (2021). Biased signaling as allosteric probe dependence. Cell
Signal 79: 109844.
Kenakin TP, & Morgan PH (1989). Theoretical effects of single and
multiple transducer receptor coupling proteins on estimates of the
relative potency of agonists. Molecular pharmacology 35:214-222.
Klein Herenbrink C, Sykes DA, Donthamsetti P, Canals M, Coudrat T,
Shonberg J, et al. (2016). The role of kinetic context in
apparent biased agonism at GPCRs. Nat Commun 7: 10842.
Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, & Struthers RS
(2004). Differential desensitization, receptor phosphorylation,
beta-arrestin recruitment, and ERK1/2 activation by the two endogenous
ligands for the CC chemokine receptor 7. The Journal of biological
chemistry 279: 23214-23222.
Komolov KE, & Benovic JL (2018). G protein-coupled receptor kinases:
Past, present and future. Cell Signal 41: 17-24.
Lane JR, May LT, Parton RG, Sexton PM, & Christopoulos A (2017). A
kinetic view of GPCR allostery and biased agonism. Nat Chem Biol
13: 929-937.
Lefkowitz RJ, Mullikin D, & Caron MG (1976). Regulation of
beta-adrenergic receptors by guanyl-5’-yl imidodiphosphate and other
purine nucleotides. The Journal of biological chemistry 251:4686-4692.
Luttrell LM, Maudsley S, & Gesty-Palmer D (2018). Translating in vitro
ligand bias into in vivo efficacy. Cell Signal 41: 46-55.
Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce
KL, et al. (2001). Activation and targeting of extracellular
signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci
U S A 98: 2449-2454.
Maguire ME, Van Arsdale PM, & Gliman AG (1976). An Agonist-Specific
Effect of Guanine Nucleotides on Binding to the
<em>Beta</em> Adrenergic
Receptor. Mol Pharmacol 12: 335-339.
Masuho I, Skamangas NK, Muntean BS, & Martemyanov KA (2021). Diversity
of the Gbetagamma complexes defines spatial and temporal bias of GPCR
signaling. Cell Syst 12: 324-337 e325.
Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, &
Jockers R (2011). GPCR-interacting proteins, major players of GPCR
function. Adv Pharmacol 62: 349-380.
Milligan G, & Kostenis E (2006). Heterotrimeric G-proteins: a short
history. Br J Pharmacol 147 Suppl 1: S46-55.
Neubig RR, & Siderovski DP (2002). Regulators of G-protein signalling
as new central nervous system drug targets. Nat Rev Drug Discov
1: 187-197.
Oliver EE, Hughes EK, Puckett MK, Chen R, Lowther WT, & Howlett AC
(2020). Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in Health
and Disease. Biomolecules 10.
Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum
ST, et al. (2020). TRUPATH, an open-source biosensor platform for
interrogating the GPCR transducerome. Nat Chem Biol 16:841-849.
Onaran HO, Ambrosio C, Ugur O, Madaras Koncz E, Gro MC, Vezzi V,
et al. (2017). Systematic errors in detecting biased agonism: Analysis
of current methods and development of a new model-free approach.
Scientific reports 7: 44247.
Onaran HO, & Costa T (2021). Conceptual and experimental issues in
biased agonism. Cell Signal 82: 109955.
Ostermaier MK, Schertler GF, & Standfuss J (2014). Molecular mechanism
of phosphorylation-dependent arrestin activation. Current opinion in
structural biology 29: 143-151.
Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM, Dewire
SM, et al. (2011). Quantifying ligand bias at seven-transmembrane
receptors. Molecular pharmacology 80: 367-377.
Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, et al.(2010). Beta-arrestin- but not G protein-mediated signaling by the
”decoy” receptor CXCR7. Proc Natl Acad Sci U S A 107: 628-632.
Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo
M, et al. (2007). The G protein-coupled receptor kinase (GRK)
interactome: role of GRKs in GPCR regulation and signaling. Biochim
Biophys Acta 1768: 913-922.
Roth BL, & Chuang DM (1987). Multiple mechanisms of serotonergic signal
transduction. Life Sci 41: 1051-1064.
Sauliere A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, et
al. (2012). Deciphering biased-agonism complexity reveals a new active
AT1 receptor entity. Nat Chem Biol 8: 622-630.
Schmid CL, Raehal KM, & Bohn LM (2008). Agonist-directed signaling of
the serotonin 2A receptor depends on beta-arrestin-2 interactions in
vivo. Proceedings of the National Academy of Sciences of the United
States of America 105: 1079-1084.
Shubhi Pandey PK, Mithu Baidya, Ryoji Kise, Yubo Cao, Hemlata
Dwivedi-Agnihotri, Ramanuj Banerjee, Xaria X. Li, Cedric S. Cui, John D.
Lee, Kouki Kawakami, Madhu Chaturvedi, Ashutosh Ranjan, Stéphane A.
Laporte, Trent M. Woodruff, Asuka Inoue, Arun K. Shukla (2021).
Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane
receptors. bioRxiv.
Slosky LM, Caron MG, & Barak LS (2021). Biased Allosteric Modulators:
New Frontiers in GPCR Drug Discovery. Trends in pharmacological sciences
42: 283-299.
Smith JS, Lefkowitz RJ, & Rajagopal S (2018). Biased signalling: from
simple switches to allosteric microprocessors. Nat Rev Drug Discov
17: 243-260.
Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, et al.(2021). Noncanonical scaffolding of Galphai and beta-arrestin by G
protein-coupled receptors. Science 371.
Sommer ME, Selent J, Carlsson J, De Graaf C, Gloriam DE, Keseru
GM, et al. (2020). The European Research Network on Signal
Transduction (ERNEST): Toward a Multidimensional Holistic Understanding
of G Protein-Coupled Receptor Signaling. ACS Pharmacol Transl Sci
3: 361-370.
Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg
PH, et al. (1993). Differential signal transduction by five
splice variants of the PACAP receptor. Nature 365: 170-175.
Sriram K, & Insel PA (2018). G Protein-Coupled Receptors as Targets for
Approved Drugs: How Many Targets and How Many Drugs? Molecular
pharmacology 93: 251-258.
Srivastava A, Gupta B, Gupta C, & Shukla AK (2015). Emerging Functional
Divergence of beta-Arrestin Isoforms in GPCR Function. Trends Endocrinol
Metab 26: 628-642.
Stahl EL, Ehlert FJ, & Bohn LM (2019). Quantitating Ligand Bias Using
the Competitive Model of Ligand Activity. Methods Mol Biol
1957: 235-247.
Stahl EL, Zhou L, Ehlert FJ, & Bohn LM (2015). A novel method for
analyzing extremely biased agonism at G protein-coupled receptors.
Molecular pharmacology 87: 866-877.
Stallaert W, Christopoulos A, & Bouvier M (2011). Ligand functional
selectivity and quantitative pharmacology at G protein-coupled
receptors. Expert Opin Drug Discov 6: 811-825.
Stephenson RP (1956). A modification of receptor theory. Br J Pharmacol
Chemother 11: 379-393.
Strachan RT, Sciaky N, Cronan MR, Kroeze WK, & Roth BL (2010). Genetic
deletion of p90 ribosomal S6 kinase 2 alters patterns of
5-hydroxytryptamine 2A serotonin receptor functional selectivity.
Molecular pharmacology 77: 327-338.
Thomsen ARB, Plouffe B, Cahill TJ, 3rd, Shukla AK, Tarrasch JT, Dosey
AM, et al. (2016). GPCR-G Protein-beta-Arrestin Super-Complex
Mediates Sustained G Protein Signaling. Cell 166: 907-919.
Tobin AB, Totty NF, Sterlin AE, & Nahorski SR (1997).
Stimulus-dependent phosphorylation of G-protein-coupled receptors by
casein kinase 1alpha. The Journal of biological chemistry 272:20844-20849.
Tsvetanova NG, & von Zastrow M (2014). Spatial encoding of cyclic AMP
signaling specificity by GPCR endocytosis. Nat Chem Biol 10:1061-1065.
Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein
H, et al. (2007). Functional selectivity and classical concepts
of quantitative pharmacology. The Journal of pharmacology and
experimental therapeutics 320: 1-13.
Wacker D, Stevens RC, & Roth BL (2017). How Ligands Illuminate GPCR
Molecular Pharmacology. Cell 170: 414-427.
Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, & Vilardaga
JP (2013). Noncanonical GPCR signaling arising from a PTH
receptor-arrestin-Gbetagamma complex. Proceedings of the National
Academy of Sciences of the United States of America 110:1530-1535.
Whalen EJ, Rajagopal S, & Lefkowitz RJ (2011). Therapeutic potential of
beta-arrestin- and G protein-biased agonists. Trends in molecular
medicine 17: 126-139.
White KL, Scopton AP, Rives ML, Bikbulatov RV, Polepally PR, Brown
PJ, et al. (2014). Identification of novel functionally selective
kappa-opioid receptor scaffolds. Molecular pharmacology 85:83-90.