Example spectra

Dennis

and 4 more

Covid virus 3d

Alberto Pepe

and 4 more

We're in a crisis We are in the midst of an unprecedented global crisis. Just weeks since its outbreak, the Coronavirus pandemic (COVID-19) has already affected, and will continue to affect, our daily lives, around the globe, for the foreseeable future. The answers and the solutions to this crisis will come from science. But the crisis affects science, too.It affects students, educators, and researchers; not just their day-to-day lives, social ties, and work routines, but also their ability to actively collaborate, convene in face-to-face meetings, attend academic conferences, teach and learn in an open university setting, pay a visit to the library, work overnight at the laboratory, and so on.But the thing is: science cannot stop. Scientific progress must go on. For each one of the challenges that scientists face in this time of crisis, there is, or there will be, a solution. We believe that the solution is not to be found in a single technological tool, product, framework, institution, funding agency, or company. It is the global cyber-infrastructure of scientific collaboration, built on scientific rigor, intellectual curiosity, and cooperation, that will enable science to advance in such difficult times. The power of scientific collaborationAs scientists, publishers, science communicators and technologists, we believe that: a. Science is the solution to the ongoing crisis. Now more than ever, reliance on the scientific method, rigor and clarity of scientific communication, transparency, reproducibility, and seamless sharing of all research data (including negative results), are fundamental to solving this health crisis and advancing human progress.b. Global collaboration and cooperation, beyond and above national and economic interests, is necessary not only at the scientific level, but also at the political and societal level. We're more interconnected and interdependent today than ever. And such interconnectedness extends to the ecological ecosystem in which we live. A crisis of such scale requires global solidarity, bipartisan political action, civic participation, and long-term thinking.

Authorea Help

and 3 more

WHAT IS LATEX? LaTeX is a programming language that can be used for writing and typesetting documents. It is especially useful to write mathematical notation such as equations and formulae. HOW TO USE LATEX TO WRITE MATHEMATICAL NOTATION There are three ways to enter “math mode” and present a mathematical expression in LaTeX: 1. _inline_ (in the middle of a text line) 2. as an _equation_, on a separate dedicated line 3. as a full-sized inline expression (_displaystyle_) _inline_ Inline expressions occur in the middle of a sentence. To produce an inline expression, place the math expression between dollar signs ($). For example, typing $E=mc^2$ yields E = mc². _equation_ Equations are mathematical expressions that are given their own line and are centered on the page. These are usually used for important equations that deserve to be showcased on their own line or for large equations that cannot fit inline. To produce an inline expression, place the mathematical expression between the symbols \[! and \verb!\]. Typing \[x=}{2a}\] yields \[x=}{2a}\] _displaystyle_ To get full-sized inline mathematical expressions use \displaystyle. Typing I want this $\displaystyle ^{\infty} {n}$, not this $^{\infty} {n}$. yields: I want this $\displaystyle ^{\infty}{n}$, not this $^{\infty}{n}.$ SYMBOLS (IN _MATH_ MODE) The basics As discussed above math mode in LaTeX happens inside the dollar signs ($...$), inside the square brackets \[...\] and inside equation and displaystyle environments. Here’s a cheatsheet showing what is possible in a math environment: -------------------------- ----------------- --------------- _description_ _command_ _output_ addition + + subtraction - − plus or minus \pm ± multiplication (times) \times × multiplication (dot) \cdot ⋅ division symbol \div ÷ division (slash) / / simple text text infinity \infty ∞ dots 1,2,3,\ldots 1, 2, 3, … dots 1+2+3+\cdots 1 + 2 + 3 + ⋯ fraction {b} ${b}$ square root $$ nth root \sqrt[n]{x} $\sqrt[n]{x}$ exponentiation a^b ab subscript a_b ab absolute value |x| |x| natural log \ln(x) ln(x) logarithms b logab exponential function e^x=\exp(x) ex = exp(x) deg \deg(f) deg(f) degree \degree $\degree$ arcmin ^\prime ′ arcsec ^{\prime\prime} ′′ circle plus \oplus ⊕ circle times \otimes ⊗ equal = = not equal \ne ≠ less than < < less than or equal to \le ≤ greater than or equal to \ge ≥ approximately equal to \approx ≈ -------------------------- ----------------- ---------------
Blog image

Josh Nicholson

and 3 more

When you think of blogging you might think of a blog for cuddly cats, party parrots, the '90s, or celebrity gossip (we will not link to any of those, except cuddly cats). You probably do not think of ground breaking research, original ideas, and a powerful mechanism for research communication. And while you may be largely right, there is a world of blogging that is extremely important, a community that we wish to empower and serve with our latest feature release at Authorea, scientific blogging. In this post we wish to highlight how blogging can improve research, improve researchers career prospects, and why researchers should use a system designed for research blogging, like Authorea.Blogging as a place for correcting the scientific recordBlogging has proven to be integral towards maintaining and correcting the scientific literature. In fact, in many cases it is blogs and other forums where scientific fraud as well as common errors are first highlighted and ultimately corrected \cite{Yeo_2016}.  Blogging as a place for publishing "grey literature"Blogging allows researchers to post different types of content, ranging from journal clubs, peer reviews, single-figure observations, class essays, opinions, etc. There is a huge value to the research community to share "different" types of content, blogging allows researchers to easily do that. Blogging as a place of public outreachNearly all original peer-review publications are paywalled. Meaning it is difficult, if not impossible, for the majority of the world to legally access scientific research. Blogs, however, are nearly all completely open and accessible. More than that, they are also often times accessible in language. The discoveries and recommendations for which society invests substantial economic and human capital, should be directly disseminated by the people who really understand them, and not by the media and the political class, who often over-hype and in some case even distort the results. Blogging can be the long sought bridge between academia and the general public, something increasingly becoming required by grant agencies.Blogging as a way to advance your careerBlogs are by and large thought of as a distraction from communicating scientific ideas in a way that "counts." However, blogs can in many cases have a much larger impact on your career by providing you a forum to communicate with the world. Not all careers and hirers have such a limited way of thinking as tenure committees. Want to start blogging today? Create a group with us for free here. Want a custom design? Email us at hi@authorea.com 
Pfos
PREVIOUS “A “MODERN SCIENTIST” MANIFESTO” In the 21st century science is growing more technical and complex, as we gaze further and further while standing on the shoulders of many generations of giants. The public has often a hard time understanding research and its relevance to society. One of the reasons for this is that scientists do not spend enough time communicating their findings outside their own scientific community. Obviously there are some exceptions, but THE RULE IS THAT SCIENTISTS WRITE CONTENT FOR SCIENTISTS. Academia is often perceived as an ivory tower, and when new findings are shared with the outside world, this is not done by scientists, but by the media or even the political class. The problem is that these external agents do not have the necessary background to digest and properly communicate this knowledge with the rest of society. They often misunderstand, over-hype and in some case even distort the results and views of the scientific community. IT’S IRONIC AND SOMEWHAT FRIGHTENING THAT THE DISCOVERIES AND RECOMMENDATIONS FOR WHICH SOCIETY INVESTS SUBSTANTIAL ECONOMIC AND HUMAN CAPITAL, ARE NOT DIRECTLY DISSEMINATED BY THE PEOPLE WHO REALLY UNDERSTAND THEM. At the same time transparency and reproducibility are at stake in the increasingly complex world of research, which is still using old-fashioned tools when packaging and sharing content. This is not only a big problem for research itself, but can give science a bad name in front of the public opinion, which increasingly does not understand and trust the work of scientists. To the average tax-payer science is often cryptic, with most recently published papers behind a pay-wall and the majority of research virtually inscrutable. In this scenario it is hard for the public to access and capture the relevance of scientists’ work. I strongly believe that a society that does not trust its scientists is set on a dangerous course. ACTION ITEMS. To improve the situation 21st century scientists need to: 1. Learn to efficiently share and communicate their research with the public at large. 2. Make their research more transparent and reproducible, so that it can be trusted and better understood by their peers and the public at large. 21st century scientists need to produce “PUBLIC-FRIENDLY OPEN SCIENCE” (PFOS).