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ABSTRACT
This paper focuses on the cooperation mechanism between two retailers. To reduce the average
processing cost, the supplier usually sets a threshold for trade credit to stimulate retailers’ orders.
Retailers can enjoy permissible delay in payments only when their order quantities are more than or
equal to the given threshold. However, considering the diversity of retailers, the motivation effect of
the threshold may be limited. To resolve the problem, the supplier can additionally provide retailers
with a joint ordering policy under which two retailers can make delayed payments as long as their
total order quantity meets the required threshold. Thus, the two retailers should decide whether to
place a joint order or not and determine their respective order quantities simultaneously. We provide
a mutually acceptable order-allocation scheme for retailers, and determine the optimal payment
methods for them. In addition, an optimal threshold is identified for the supplier to maximize the
total order quantity of retailers. Based on this, some managerial insights are obtained. A numerical
experiment is performed to illustrate the validity of the model.

KEYWORDS
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order quantity; Joint ordering policy; Stackelberg game; Nash equilibrium; Tacit bargaining

1. Introduction

The permissible delay in payment is attractive to retailers because they can earn interest from
sales revenue during the trade credit period. A supplier can stimulate retailers’ orders by setting a
threshold for trade credit. Specifically, if the order quantity of a retailer is more than or equal to
the given threshold, the retailer can make a delayed payment for its order; otherwise, it must pay
the supplier immediately. Thus, trade credit linked to order quantity (conditional trade credit) can
effectively encourage retailers to place larger orders and, in turn, reduce the average processing cost
for the supplier. On the other hand, retailers can unite to enhance their negotiating power with the
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supplier on, for example, quantity discounts and trade credits. This paper relates two areas, namely
trade credit linked to order quantity, and cooperation mechanism between retailers.

As the main source of short-term financing, trade credit is crucial in supply chain management.
Goyal [1] developed a basic economic order quantity (EOQ) model under permissible delay in
payments. Aggarwal and Jaggi [2] generalized Goyal’s model in [1] to allow for deteriorating items.
Teng [3] extended Goyal’s model to distinguish the selling price from the purchasing price. Chung
[4] simplified the solution method for Goyal’s model. Jaber and Osman [5] and Arkan and Hejazi
[6] proposed joint decision policies between the supplier and the retailer. Esmaeili [7] and Teng et
al. [8] investigated the cooperative and non-cooperative relationships between the supplier and the
retailer. Zhou and Zhong [9] showed that trade credit increases each member’s profit and brings
more profits to the retailer than to the supplier. Many additional related studies can be found in
the articles by Liao et al. [10], Shin et al. [11], Banu and Mondal [12], Tiwari et al. [13], Wu et
al. [14], Srivastava et al. [15], Sarker et al. [16], and Chung et al. [17]. Recently, much research
attention has been supply chains with conditional trade credit. Chang et al. [18] and Chung and
Liao [19] developed inventory models for deteriorating items under conditional trade credit. Chun
et al. [20] determined the retailer’s optimal ordering strategy to minimize the total variable cost.
Huang [21] later added a partial trade credit to Chun et al.’s model in [20]. Ouyang et al. [22] and
Ting [23] generalized Chung and Liao’s model in [19] to consider a conditional and partial trade
credit. Zhong and Zhou [24] revealed that two-part conditional trade credit is superior to one-part
conditional trade credit. Studies that have examined inventory models with trade credit linked to
order quantity include, among many others, Wang et al. [25], Taleizadeh et al. [26], Vandana and
Sharma [27], and Rajan and Uthayakumar [28]. In the inventory models reviewed above, retailers
can only place orders with the supplier separately. Cooperation between retailers is quite common
in commercial activities, and should not be ignored.

It is reasonable for retailers to unite to enhance their negotiating power with the supplier. Anand
and Aron [29] provided a survey of the group buying consortia consisting of independent companies.
Chen et al. [30] compared the group buying auction with the fixed price mechanism in terms of
the seller’s pricing strategy. Chen [31] developed an inventory model in which retailers place a
joint order with the supplier to reduce their operating costs. Chen and Roma [32] revealed that
group buying is always beneficial to symmetric retailers and the inefficient one of two retailers.
Chen and Li [33] showed that when duopoly firms sell to a buyer group, their incentives to improve
quality may be affected. Hu et al. [34] uncovered that a joint purchase from the supplier hurts
the buyers when the information between them is asymmetric. Hsu et al. [35] developed a group
buying mechanism under which the retailer acting as the follower pays the retailer acting as the
leader a fixed price regardless of the wholesale price obtained from the manufacturer. Note that all
of the aforementioned inventory models consider only how retailers can form an alliance to obtain
quantity discounts from the supplier. However, few studies have considered how them can unite to
enjoy permissible delay in payments. This motivates us to fill this research gap.

In this paper, we develop an inventory model that consists of one upstream supplier and two
downstream retailers. The supplier first sets a threshold for trade credit and provides a joint ordering
policy for retailers. In previous studies, retailers must pay the supplier immediately if their order
quantities are less than the given threshold. However, under the joint ordering policy, as long as
their total order quantity meets the required threshold, each of them can make a delayed payment.
Under this agreement, the two retailers should decide whether to place a total order with the
supplier or to place orders separately. Cooperation between them is crucial. However, in reality,
each retailer would like the other to take on more responsibility, so that it, as a free rider, can
enjoy a permissible delay in payment by placing a smaller order. Competition between retailers is
therefore inevitable, and the game between them constitutes a static game. We discuss when the
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two retailers should place a joint order and when they should place orders separately. A mutually
acceptable order-allocation scheme is provided for retailers for each given threshold, and an optimal
threshold is identified for the supplier to maximize the total order quantity of retailers. We find
that the joint ordering policy can substantially reduce the barriers to retailers benefiting from trade
credits, and the two retailers unanimously give priority to placing a total order with the supplier.
Moreover, we uncover that a sufficiently high threshold cannot motivate retailers, while a lower
threshold may not effectively stimulate retailers facing identical demands or the retailer facing the
smaller demand. Occasionally, for a relatively high threshold, the retailer facing the larger demand
would rather place a larger order to meet the threshold than cooperate with the retailer facing the
smaller demand.

2. Notation and assumptions

2.1. Notation

The following notation is used to model the problem.

Parameter Description
di the annual market demand faced by Retailer i, with i = 1, 2
p the unit recommended retail price
c the unit purchasing cost/price
co the unit production cost
h the unit inventory holding cost per year
Ai the ordering cost of Retailer i per order
As the processing cost of the supplier per order
Mi the possible trade credit period of Retailer i
α the fixed proportion of possible trade credit period to replenishment period
Ie the interest earned from sales revenue per $ per year
Ip the interest charged to retailers for the stock in-hand per $ per year
Decision variables
Q0 the threshold set for trade credit
ti the replenishment period of Retailer i
qi the order quantity of Retailer i, qi = diti
∗ an optimal value

2.2. Assumptions

The proposed model is based on the following assumptions:
(1) The model consists of one upstream supplier and two downstream retailers.
(2) As retail agents of the same product, retailers sell products at recommended retail price p1.
(3) If Retailer i’s order quantity qi, (i = 1, 2), is more than or equal to a given threshold Q0, it

is offered a credit period Mi, which is in proportion α to its replenishment period ti, i.e., Mi = αti;
otherwise, Retailer i must pay the supplier immediately.

1The price at which the supplier suggests a product should be sold in the retail market, though this may be reduced by the
retailer.
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(4) The two retailers can unite to place a total order. If the total order quantity (i.e., t1d1+ t2d2)
of them meets the required threshold, each retailer can enjoy a permissible delay in payment.

(5) When the two payment methods bring the same profit to a retailer, it will select the delayed
payment for the consideration of capital turnover.

(6) The two retailers are rational and of equal status; they determine their order quantities and
payment methods simultaneously.

(7) Shortages are not allowed, and replenishment is instantaneous.
The supplier usually offers retailers a fixed credit period M to stimulate their orders. However,

considering the diversity of retailers, the fixed credit period may be inefficient. For example, if a
retailer’s replenishment period is much longer than M , its motivation to pursue the credit period
is usually limited. In contrast, if the replenishment period is much shorter than M , the supplier
will bear a higher opportunity cost for offering the credit period. Therefore, we adopt in our model
a dynamic credit period linked to each retailer’s replenishment period. In addition, without loss of
generality, we may assume that A1 6 A2 for convenience.

3. Model formulation

This paper considers a two-echelon supply chain consisting of one supplier and two retailers. The
supplier, as the Stackelberg leader, sets a threshold Q0 for trade credit and additionally offers a
joint ordering policy to retailers. Under the joint ordering policy, retailers can enjoy permissible
delay in payments as long as they unite to place a total order, and their total order quantity meets
the required threshold. Hence, the two retailers, as followers, should decide whether to place a total
order or to place orders separately. Moreover, their payment methods and respective order quantities
should be determined simultaneously. This paper seeks to determine the optimal payment methods
for retailers and provide a mutually acceptable order-allocation scheme for them. In addition, an
optimal threshold Q∗0 will be identified for the supplier to maximize the total order quantity of
retailers. To better illustrate this model, we consider a two-echelon supply chain in which Coca-
Cola acts as the supplier; Costo and Wal-Mark are the two retail agents. The product is cola, which
is produced by Coca-Cola and offered to Costco and Wal-Mark simultaneously. Note that after
years of competition with Pepsi, the retail price of coke has tended to be stable.

3.1. Retailers’ best responses

For given threshold Q0 and Retailer j’s order quantity qj , Retailer i always gives priority to coop-
erating with Retailer j to place a total order because if Retailer i can enjoy a permissible delay in
payment by placing an order separately, it can still enjoy the same credit period by cooperating
with Retailer j, but not vice versa. Hence, for a given Q0, we need determine Retailer i’s best
response to Retailer j’s order decision tj .

We first compute Retailer i’s mean profit in each replenishment cycle, which consists of the sales
revenue, the purchasing cost, the constant ordering cost, the inventory holding cost, the interest
earned from sales revenue, and the interest charged for the stock in-hand.

For a given Q0, if t1d1 + t2d2 < Q0, Retailer i, (i = 1, 2), must pay the supplier immediately for
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the items purchased and the stock in-hand, in which case, the mean profit is

fi1(ti) =
1

ti

(
(p− c)qi −Ai −

1

2
(h+ cIp)dit

2
i

)
= (p− c)di −

(Ai

ti
+

(h+ cIp)diti
2

)
;

(1)

if t1d1 + t2d2 > Q0, Retailer i can earn interest from sales revenue during the credit period [0,Mi]
and postpone paying the supplier until time Mi (see Figure 1), and the mean profit is

fi2(ti) =
1

ti

(
(p− c)qi −Ai −

1

2
hdit

2
i −

1

2
cIpdi(ti −Mi)

2 +
1

2
pIediM

2
i

)
=(p− c)di −

(Ai

ti
+
Hditi
2

)
,

(2)

where H = h+ cIp(1− α)2 − pIeα2.
If H 6 0, fi2(ti) is strictly increasing on (0,∞). Then, retailers will selfishly order as much as

possible to maximize their profits. As a result, their credit periods are extended indefinitely and
the supplier will not receive any payment from retailers. It is quite unrealistic. Alternatively, if
H > h + cIp, then fi2(ti) 6 fi1(ti) for any ti > 0; that is, trade credit cannot interest retailers in
the slightest. Hence, it does make sense to have the value of α, with which the constant H satisfies
0 < H < h+ cIp; see Figure 2.

From Eqs. (1) and (2), for given Q0 and tj , Retailer i’s mean profit function is given by

fi(ti) =

{
fi1(ti), if 0 < ti < (Q0 − tjdj)/di,
fi2(ti), if ti > (Q0 − tjdj)/di,

(3)

where j 6= i. Note that ti = (Q0− tjdj)/di acts as a “boundary” line between the two sub-functions
fi1(ti) and fi2(ti).

Property 1 shows the structural properties of fi1(ti) and fi2(ti). Note that t∗i1, t
∗
i2, tai, and t′ai

are fixed constants defined in Table 1.

Property 1. (1) fi1(ti) < fi2(ti), for any ti > 0.
(2) fi1(ti) and fi2(ti) are strictly concave in (0,∞), and their respective maximizers are t∗i1 and

t∗i2.
(3) fi1(t∗i1) = fi2(t

′
ai) = fi2(tai) < fi2(t

∗
i2) and t

′
ai < t∗i1 < t∗i2 < tai.

Proof. From H < h+ cIp, the result is obtained by a straightforward computation.

Next, we consider the best response of Retailer i, (i = 1, 2), to the order decision tj of Retailer
j, (j 6= i). For a given Q0, let t̃i(tj), or t̃i for short, be Retailer i’s best response to tj . In fact, for
given Q0 and tj , t̃i maximizes the mean profit function fi(ti). The discussion is divided into four
cases, based on the relationship between Q0 and tj ; see Figure 3.
Case 1 tjdj + t∗i2di > Q0. Let t̃i = t∗i2; then t̃i maximizes fi(ti), and Retailer i can enjoy a

permissible delay in payment; see Figure 3. (a).
Case 2 tjdj + t∗i2di < Q0 < tjdj + taidi. Let t̃i = (Q0 − tjdj)/di; Retailer i can make a delayed

payment for its order; see Figure 3. (b).
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Case 3 tjdj + taidi = Q0. From fi2(tai) = fi1(t
∗
i1), each payment method brings the same profit

to Retailer i. According to the assumptions, Retailer i will identify t̃i = tai with its best response
and make a delayed payment accordingly; see Figure 3. (c).
Case 4 tjdj + taidi < Q0. In this case, Retailer i will identify t̃i = t∗i1 with its best response and

pay the supplier immediately; see Figure 3. (d).
In summary, for a given Q0, the best response of Retailer i to tj is given by

t̃i(tj) =


t∗i2, if tjdj + t∗i2di > Q0,

(Q0 − tjdj)/di, if tjdj + t∗i2di < Q0 6 tjdj + taidi,

t∗i1, if tjdj + taidi < Q0,

(4)

from which we see that Retailer i can enjoy a permissible delay in payment only when tj > (Q0 −
taidi)/dj ; see Figure 4.

We assume that retailers will place orders separately when they cannot reach a consensus on re-
spective order quantities. Then, the optimal decision t∗i of Retailer i can be determined by replacing
Retailer j’s order decision tj with zero in Eq. (4). That is,

t∗i =


t∗i2, if t∗i2di > Q0,

Q0/di, if t∗i2di < Q0 6 taidi,

t∗i1, if taidi < Q0.

(5)

3.2. Retailers’ optimal order decisions

For a given Q0, each retailer can determine its best response to the competing retailer’s order
decision. However, no retailer would like to expose its decision to the other retailer. Before revealing
their decisions, each retailer always tries to speculate about the other’s order decision. Thus, the
game between them constitutes a static game.

For the static game, if there is a unique Nash equilibrium, retailers will unanimously accept it
because neither one can benefit by altering its own decision when the other leaves its own decision
unchanged; if there is no equilibrium point, retailers will separately place orders with the supplier.
However, when the static game has multiple equilibrium points, retailers may be confused about
them; further discussion is required.

To determine the Nash equilibrium in the static game, we need to find all intersections of the
images of

t1 = t̃1(t2),

t2 = t̃2(t1).
(6)

From Figure 4, the image of t̃i, (i = 1, 2), consists of two parts (denoted by t̃i1 and t̃i2), each of
which corresponds to a payment method. Without loss of generality, we may assume that t̃i1 and
t̃i2 correspond to the immediate payment and the delayed payment, respectively. Lemma 1 shows
the intersection of t̃1 and t̃2 to a certain extent.

Lemma 1. (1) t̃11 and t̃22 (t̃21 and t̃12) have no intersection.
(2) t̃11 and t̃21 have a unique intersection, i.e., (t∗11, t

∗
21), if and only if t∗11d1 + ta2d2 < Q0 and

t∗21d2 + ta1d1 < Q0.
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Proof. The result will be proven by using reduction to absurdity. Suppose that t̃11 and t̃22 have
an intersection (t∗11, t̃2(t

∗
11)). From Eq. (4),

t̃2(t
∗
11) =

{
t∗22, if t∗11d1 + t∗22d2 > Q0,

(Q0 − t∗11d1)/d2, if t∗11d1 + t∗22d2 < Q0 6 t∗11d1 + ta2d2.
(7)

Note that the intersection (t∗11, t̃2(t
∗
11)) satisfies t̃2(t

∗
11) 6 (Q0−ta1d1)/d2; see Figure 5. If t̃2(t∗11) =

(Q0 − t∗11d1)/d2, from (Q0 − t∗11d1)/d2 6 (Q0 − ta1d1)/d2, t∗11d1 > ta1d1. This contradicts with
t∗11 < ta1. Alternatively, if t̃2(t∗11) = t∗22, then t

∗
22 6 (Q0− ta1d1)/d2 and t∗11 > (Q0− t∗22d2)/d1. This

implies ta1d1 + t∗22d2 6 t∗11d1 + t∗22d2, which contradicts with ta1 > t∗11. Hence, t̃11 and t̃22 have no
intersection. Similarly, there is no intersection between t̃21 and t̃12.

In terms of the intersections of t̃11 and t̃21, the result follows directly from Figure 6.

In the remainder part of this subsection, we need to further discuss the intersection of t̃12 and
t̃22. However, the situation becomes more complex.

3.2.1. Optimal decisions for different market sizes

We will derive the optimal decisions for retailers when their own markets have different sizes, i.e.,
d1 6= d2. The discussion will be divided into two cases based on the relationship between d1 and d2.
Case 1 d1 > d2. We will further divide the discussion into two subcases according to the rela-

tionship between Q0 and t∗12d1 + ta2d2; see Figure 7.
Subcase 1.1 t∗12 < (Q0 − ta2d2)/d1. In this subcase, t̃12 and t̃22 have no intersection; see Figure

7. (a). In addition, from t∗11 < t∗12 < (Q0− ta2d2)/d1 and Lemma 1, t̃11 and t̃21 have an intersection
(t∗11, t

∗
21) if and only if t∗21d2 + ta1d1 < Q0. Hence, the static game has no equilibrium (respectively,

a unique equilibrium (t∗11, t
∗
21)) if and only if t∗12d1 + ta2d2 < Q0 6 t∗21d2 + ta1d1 (respectively,

Q0 > t∗12d1 + ta2d2 and Q0 > t∗21d2 + ta1d1).
Subcase 1.2 t∗12 > (Q0 − ta2d2)/d1. The images of t̃12 and t̃22 have a unique intersection

(t∗12, t̃2(t
∗
12)); see Figure 7. (b)-(c). Specifically, using Eq. (4),

t̃2(t
∗
12) =

{
(Q0 − t∗12d1)/d2, if t∗12d1 + t∗22d2 < Q0 6 t∗12d1 + ta2d2,

t∗22, if t∗12d1 + t∗22d2 > Q0.
(8)

Since t̃2(t∗12) is the maximizer of f2(t2), then f2(t̃2(t
∗
12)) > f2(t

∗
21). Furthermore, from ta2d2 +

t∗12d1 > Q0 and Eq. (4), t̃1 = t∗12 and f1(t
∗
12) > f1(t

∗
11). Then, even if t̃11 and t̃21 have an intersection

(t∗11, t
∗
21), the two retailers’ profits at (t∗11, t

∗
21) is lower than those at (t∗12, t̃2(t

∗
12)). Hence, (t

∗
11, t

∗
21)

can be viewed as a noncredible threat in the static game [36]. We can conclude that the game has
a unique subgame perfect Nash equilibrium (t∗12, (Q0 − t∗12d1)/d2)) (respectively, (t∗12, t

∗
22)) if and

only if t∗12d1 + t∗22d2 < Q0 6 t∗12d1 + ta2d2 (respectively, Q0 6 t∗12d1 + ta2d2).
As above, retailers’ optimal decisions depend on the relationship among Q0, t∗21d2+ta1d1, t

∗
12d1+

ta2d2, and t∗12d1+ t
∗
22d2. Using t

∗
22 < ta2, t∗12d1+ t

∗
22d2 < t∗12d1+ ta2d2. To determine the relationship

between t∗21d2 + ta1d1 and t∗12d1 + ta2d2, we need only to compare (ta1 − t∗12)d1 and (ta2 − t∗21)d2.
From Table 1,

(ta1 − t∗12)d1 =

√
2A1d1
H

(√
h+ cIP +

√
α(2− α)cIp + α2pIe√
H

− 1

)
,

(ta2 − t∗21)d2 =

√
2A2d2
H

(√
h+ cIP +

√
α(2− α)cIp + α2pIe√
H

− 1

)
.

(9)
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Using Eq. (9), t∗21d2+ta1d1 > t∗12d1+ta2d2 if and only if (ta1−t∗12)d1 > (ta2−t∗21)d2, which occurs
of and only if A1d1 > A2d2. If A1d1 > A2d2, we have that t∗12d1+t

∗
22d2 < t∗12d1+ta2d2 < t∗21d2+ta1d1.

Unfortunately, when t∗12d1+ta2d2 < Q0 6 t∗21d2+ta1d1, the static game has no Nash equilibrium and
retailers will separately place orders with the supplier. Specifically, from Eq. (5) and Q0 > ta2d2,
Retailer 2 will identify t∗2 = t∗21 with its optimal decision and pay the supplier immediately. In
terms of Retailer 1’s order decision, when t∗12d1 + ta2d2 < ta1d1, Retailer 1 will identify t∗1 = Q0/d1
(respectively, t∗1 = t∗11) with the optimal order decision if t∗12d1 + ta2d2 < Q0 6 ta1d1 (respectively,
ta1d1 < Q0 6 t∗21d2 + ta1d1); see Table 2. Alternatively, when t∗12d1 + ta2d2 > ta1d1, using Q0 >
t∗12d1 + ta2d2 > ta1d1 and Eq. (5), Retailer 1’s optimal decision is t∗1 = t∗11; see Table 3.

Alternatively, if A1d1 6 A2d2, we have t∗21d2 + ta1d1 6 t∗12d1 + ta2d2. Then, Q0 > t∗12d1 + ta2d2 if
and only if Q0 > t∗12d1 + ta2d2 and Q0 > t∗21d2 + ta1d1, which occurs if and only if the equilibrium
point (t∗11, t

∗
21) exists. From t∗12d1+ t

∗
22d2 < t∗12d1+ ta2d2 and the above discussion, we have Table 3.

Case 2 d1 < d2. Similarly to the above, we can derive the closed-form optimal order decisions
for the two retailers; see Tables 4 and 5. Note that A1d1 < A2d2 in our case.

Proposition 1 uncovers the corresponding core managerial insights.

Proposition 1. When retailers’ own markets have different sizes, we have the following:
(a) A sufficiently high threshold cannot interest retailers, while a lower threshold cannot effectively

stimulate the order of the retailer facing the smaller demand.
(b) When di > dj, (i 6= j), to maximize the total order quantity of retailers, the supplier should

identify Q∗0 = t∗i2di + tajdj with its optimal threshold; the corresponding order quantities of Retailer
i and Retailer j are t∗i2di and tajdj, respectively.

(c) Occasionally, the retailer facing the larger demand would rather place a larger order by itself
to meet a relatively high threshold than cooperate with the supplier facing the smaller demand.

Proof. When d1 > d2, we see from Tables 2 and 3 that the two retailers can place a joint order only
when Q0 6 t∗12d1 + ta2d2. Specifically, if Q0 6 t∗12d1 + t∗22d2, the total order quantity of retailers are
t∗12d1 + t∗22d2. Alternatively, if t

∗
12d1 + t∗22d2 < Q0 6 t∗12d1 + ta2d2, Retailer 1’s order is unchanged,

while Retailer 2’s order quantity increases to Q0 − t∗12d1. Then, their total order quantity increases
to Q0. When d1 < d2, we can obtain the similar result.

3.2.2. Optimal decisions for approximate market sizes

The closed-form optimal decisions will be derived for retailers when their market sizes are approx-
imately equal. For convenience, we may assume that d1 = d2 = d.

Lemma 2. t̃11 and t̃21 have a unique intersection, i.e., (t∗11, t
∗
21), if and only if (t∗11 + ta2)d < Q0.

Proof. The result will be proven by verifying the inequality t∗21 + ta1 6 t∗11 + ta2. Using A1 6 A2,
t∗11 < ta1, t∗21 =

√
A2/A1t

∗
11, and ta2 =

√
A2/A1ta1,

(t∗21 + ta1)− (t∗11 + ta2) = (1−
√
A2/A1)(ta1 − t∗11) 6 0. (10)

From Eq. (10), t∗21 + ta1 6 t∗11 + ta2. Then, (t∗11 + ta2)d < Q0 if and only if (t∗11 + ta2)d < Q0 and
(t∗21 + ta1)d < Q0. The result follows by Lemma 1.

In terms of the intersections of t̃12 and t̃22, since d1 = d2, t̃12 and t̃22 have intersections if and
only if Q0/d − ta1 6 ta2, i.e., (ta1 + ta2)d > Q0; see Figure 4. The discussion will be divided into
two cases based on the relationship between Q0 and [t∗12 + t∗22, ta1 + ta2]; see Figure 8.
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Case 1 Q0 6 (t∗12 + t∗22)d. In this case, t∗12 > Q0/d − t∗22. Then, the static game has a unique
equilibrium point (t∗12, t

∗
22); see Figure 8. (a).

Case 2 (t∗12+t
∗
22)d < Q0 6 (ta1+ta2)d. From t∗12 > Q0/d−t∗22, there are multiple Nash equilibria

(Q0/d− t, t), where t ∈ [a, b] and

a =max
{
t∗22, Q0/d− ta1

}
,

b =min
{
ta2, Q0/d− t∗12

}
;

(11)

see Figure 8. (b)-(d). In particular, Q0 = (ta1 + ta2)d if and only if a = b = ta2; the corresponding
equilibrium point is (ta1, ta2).

Based on Lemma 2 and the above discussion, the Nash equilibrium of the static game can be
determined according to the relationship among Q0 t

∗
12+t

∗
22, t

∗
11+ta2, and ta1+ta2. Using t

∗
11 < ta1,

t∗11 + ta2 < ta1 + ta2. From H < h+ cIp and t∗12 =
√

2A1/d,

ta1 + t′a1
2

=

√
2A1(h+ cIp)√

dH
>

√
2A1H√
dH

= t∗12. (12)

Using Eq. (12), t∗12 − t′a1 < ta1 − t∗12. From t′a1 < t∗11 and A1 6 A2,

t∗12 − t∗11 < t∗12 − t′a1 < ta1 − t∗12 6
√
A2/A1(ta1 − t∗12) = ta2 − t∗22. (13)

From Eq. (13), t∗12 + t∗22 < t∗11 + ta2 < ta1 + ta2. Table 6 summarizes all Nash equilibria in the
static game.

From Table 6, when (t∗12+ t
∗
22)d < Q0 6 (ta1+ ta2)d, the static game has multiple Nash equilibria

(Q0/d − t, t), with t ∈ [a, b]. In particular, when (ta2 + t∗11)d < Q0 6 (ta1 + ta2)d, there exists an
additional equilibrium point (t∗11, t

∗
21). Lemma 3 uncovers that (t∗11, t

∗
21) is not considered by rational

retailers.

Lemma 3. When (t∗12 + t∗22)d < Q0 6 (ta1 + ta2)d, we have the following:
(1) f12(Q0/d− t) and f22(t) are strictly increasing and decreasing on [a, b], respectively.
(2) The subgame perfect Nash equilibria of the static game are (Q0/d− t, t), with t ∈ [a, b].

Proof. Let t ∈ [a, b], from Eq. (11),

t∗12 6
Q0

d
− b 6Q0

d
− t 6 Q0

d
− a 6 ta1, (14)

t∗22 6a 6 t 6 b 6 ta2. (15)

According to Property 1, fi2(t), (i = 1, 2), is strictly decreasing on [t∗i2, tai]. Using Eqs. (14)
and (15), and the monotonicity of fi2(t) on [t∗i2, tai], f12(Q0/d − t) and f22(t) are increasing and
decreasing on [a, b], respectively. Then, for any t ∈ [a, b], we have

f11(t
∗
11) = f12(ta1) 6 f12(Q0/d− a) 6 f12(Q0/d− t) 6 f12(Q0/d− b) 6 f12(t

∗
12), (16)

f21(t
∗
21) = f22(ta2) 6 f22(a) 6 f22(t) 6 f22(b) 6 f22(t

∗
22). (17)

From Eqs. (16) and (17), f11(t∗11) 6 f12(Q0/d − t) and f21(t∗21) 6 f22(t) for any t ∈ [a, b]. This
implies that retailers’ mean profits at (t∗11, t

∗
21) are never higher than those at (Q0/d − t, t), with

t ∈ [a, b].

9



Joint ordering policy for a conditional trade credit model

Next, we will prove that the mean profits of retailers at (t∗11, t
∗
21) are equal to those at (Q0/d−

t0, t0) for some t0 ∈ [a, b] if and only if Q0 = (ta1 + ta2)d. If f11(t∗11) = f12(Q0/d − t0) and
f21(t

∗
21) = f22(t0) for some t0 ∈ [a, b], then f12(ta1) = f12(Q0/d − t0) and f22(ta2) = f22(t0). Since

f12(Q0/d − t) and f22(t) are respectively increasing and decreasing on [a, b], ta1 = Q0/d − t0 and
ta2 = t0. This implies Q0 = (ta1 + ta2)d. Conversely, if Q0 = (ta1 + ta2)d, let t0 = ta2; then
f12(ta1) = f12(Q0/d− t0) and f22(ta2) = f22(t0). Note that Q0 = (ta1 + ta2)d if and only if a = b.

Based on the above, when Q0 < (ta1+ ta2)d, a < b and at least one retailer’s profit at (t∗11, t
∗
21) is

lower than that at (Q0/d− t0, t0) for some t0 ∈ [a, b]. Thus, (t∗11, t
∗
21) can be seen as a noncredible

threat in the static game and will be excluded by rational retailers. Alternatively, when Q0 = (ta1+
ta2)d, using Table 6, there are exactly two equilibrium points (t∗11,t

∗
21) and (ta1,ta2) corresponding

to the immediate payment and the delayed payment, respectively. Since fi1(t∗i1) = fi2(tai), each
retailer can earn the same profit at each equilibrium point. According to the assumptions, Retailer
i will identify t∗i = tai with its optimal decisions. Hence, even if (t∗11, t

∗
21) is an equilibrium of the

game, it will be excluded by rational retailers.
In terms of equilibrium points (Q0/d − t, t), with t ∈ [a, b], following the monotonicity of

f12(Q0/d − t) and f22(t) on [a, b], an increase in one retailer’s profit will surely lead to a decrease
in the other’s profit. Thus, (Q0/d− t, t), with t ∈ [a, b], are all the subgame perfect Nash equilibria
of the static game.

From Lemma 3, when (t∗12 + t∗22)d < Q0 6 (ta1 + ta2)d, retailers are still confused about multiple
equilibria (Q0/d − t, t), with t ∈ [a, b]. Since private communication between the two retailers is
not allowed, they have to confront a tacit bargaining with divergent profits, and their overriding
interest is to coordinate their decisions. If a particular equilibrium point commands attentions as
the “focal" point, such an equilibrium is the only extant offer, and no counterproposal can be made.
The conflict is reconciled as a by-product of the dominant need for coordination [37].

Let g(t) = f12(Q0/d − t) − f22(t); then, |g(t)| denotes the gap between the two retailers’ mean
profits at (Q0/d− t, t). Note that g(t) is strictly increasing on [a, b]. Let tg(Q0) lead to a minimum
value of |g(t)| on [a, b]; then, the particular equilibrium point (Q0/d − tg(Q0), tg(Q0)) attracts
significant attention for two reasons:

(1) tg(Q0) is unique and remarkable for the two retailers.
(2) tg(Q0) leads to the minimum gap between the mean profits of the two retailers, and contributes

to a long-term cooperative relationship between them.
Hence, the equilibrium point (Q0/d − tg(Q0), tg(Q0)) can be viewed as a “focal" point, and the

two retailers tacitly accept it simultaneously. Table 7 summarizes retailers’ optimal decisions for
each given threshold Q0.

The closed-form expression for tg(Q0) can be determined as follows. If Q0 = (ta1 + ta2)d, we
have a = b = ta2 and tg(Q0) = ta2. Alternatively, if Q0 < (ta1 + ta2)d, we have a < b. Since g(t) is
strictly increasing on [a, b], tg(Q0) = a if g(a) > 0, and tg(Q0) = b if g(b) 6 0. When g(a) < 0 and
g(b) > 0, using the well-known intermediate value theorem, there exists a unique tg(Q0) ∈ (a, b)
satisfying g(tg(Q0)) = 0. In fact, tg(Q0) is the unique solution of the following equation

t3 − 3Q0

2d
t2 +

(A1 +A2

Hd
+
Q2

0

2d2

)
t− A2Q0

Hd2
= 0, (18)

located in (a, b), which can be found algebraically using the Cardano formula [38].
We have Proposition 2, which summarizes the major managerial insights.

Proposition 2. When retailers’ market sizes have approximate sizes, we have the following:

10
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(a) A sufficiently high threshold cannot interest retailers, while a lower threshold may not effec-
tively encourage retailers to place larger orders.

(b) To maximize the total order quantity of retailers, the supplier should identify Q∗0 = (ta1+ta2)d
with the optimal threshold; the corresponding order quantities of Retailer 1 and Retailer 2 are ta1d
and ta2d, respectively.

Proof. From Table 7, retailers can place a total order only when Q0 6 (ta1 + ta2)d. When Q0 6
(t∗12 + t∗22)d, their total order quantity is (t∗12 + t∗22)d. Alternatively, when (t∗12 + t∗22)d < Q0 6
(ta1 + ta2)d, we have q∗1 = Q0 − tg(Q0)d, q∗2 = tg(Q0)d and q∗1 + q∗2 = Q0. Using t∗22 6 a 6 tg(Q0) 6
b 6 Q0/d− t∗12, q∗1 > t∗12 and q∗2 > t∗22.

3.3. Supplier’s optimal decision

As the Stackelberg leader, the supplier knows the optimal decisions of the two retailers for each
given Q0. Based on Tables 2, 3, 4, 5 and 7, the supplier can identify an optimal threshold Q∗0 to
maximize its own profit. For convenience, we ignore the inventory holding cost of the supplier and
the opportunity cost charged for offering trade credits.

For the supplier, if retailers place a joint order, the processing cost paying for each retailer’s order
can be seen as As/2, in which case, the mean profit is

F (Q0) =
d1
q∗1

(
(c− c0)q∗1 −

1

2
As

)
+
d2
q∗2

(
(c− c0)q∗2 −

1

2
As

)
=(c− c0)(d1 + d2)−

As

2

( 1

q∗1
+

1

q∗2

)
;

(19)

if retailers place orders separately, the supplier has to process their orders separately, and the mean
profit is

F (Q0) = (c− c0)(d1 + d2)−As

( 1

q∗1
+

1

q∗2

)
. (20)

From Tables 2, 3, 4, 5, and 7, q∗1 and q∗2 are fixed constants when either Q0 6 t∗12d1 + t∗22d2, or
Q0 > ta1d1 + ta2d2. Thus, we need only to solve the following optimization problem

max
t∗11d1 + t∗12d2 6 Q0 6 ta1d1 + ta2d2 + 1

F (Q0). (21)

3.4. Algorithm

Based on the previous discussion, the following algorithm is developed.

Algorithm 1 Optimal decisions of the supplier and the two retailers
1: Input parameters d1, d2, p, c, c0, h, α, A1, A2, As, Ie, and Ip.
2: Compute the constants H, t∗11, t

∗
12, t

∗
21, t

∗
22, ta1, and ta2.

3: Compute q∗1 and q∗2 for each Q0 ∈ [t∗12d1 + t∗22d2, ta1d1 + ta2d2 + 1].
4: Substitute q∗1 and q∗2 into Eqs. (19) and (20) to obtain F (Q0).
5: Solve optimization problem (21) to obtain Q∗0.
6: Based on Q∗0, determine the optimal order quantities and payment methods of the two retailers.

11
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4. Numerical experiments

In this section, a numerical experiment is presented to illustrate the validity of the proposed model.

Example 1. Consider the following parameters: d1 = 140, d2 = 80, p = 0.9, c = 0.7, c0 = 0.4,
h = 0.1, A1 = 3, A2 = 4, As = 12, Ie = 0.02, Ip = 0.03, and α = 0.3.

For this model, it holds that H = 0.10867, t∗11 = 0.59514, t∗12 = 0.628, t∗21 = 0.90909, t∗22 =
0.95928, ta1 = 0.8742, and ta2 = 1.0094. Since d1 > d2, A1d1 > A2d2, and t∗12d1 + ta2d2 > ta1d1,
using Table 3, we can derive the optimal decisions of the two retailers. The numerical results are
presented in Table 8, from which we see that the optimal threshold of the supplier is Q∗0 = 168.674.

From Figures 9, 10 and 11, a relatively lower threshold (i.e.,Q0 < 164.662) is favoured by retailers,
but is not earthly use for the supplier. Moreover, a relatively high threshold (i.e., 164.662 6 Q0 6
168.674) can increase the supplier’s profit, while reducing the profit of the retailer who faces the
smaller demand. However, a sufficiently high threshold (i.e., Q0 > 168.674) substantially reduce all
supply chain agents’s profits, which is useless for the supply chain.

5. Conclusions

Trade credit linked to order quantity is crucial in supply chain finance, but it is seldom designed
within the framework of the cooperation mechanism between retailers. In our model, two retailers
can enjoy permissible delay in payment as long as their total order quantity meets the given thresh-
old. Although cooperation can bring more profits to retailers, neither of them would like to take on
more responsibility. We provided a mutually acceptable order-allocation scheme for retailers and
identify an optimal threshold for the supplier to maximize retailers’ total order quantity. Based on
this, we find that two retailers unanimously give priority to placing a total order with the supplier.
In addition, we uncovered that a sufficiently high threshold cannot interest retailers, while a lower
threshold may not effectively stimulate retailers facing identical demands or the retailer facing the
smaller demand.

No research is perfect, the paper has a few limitations. For example, the two retailers, as retail
agents of the same product, are assumed to sell the product at the recommended retail price. In
reality, any product is fully or partially substitutable in the market and the market demand each
retailer faces is therefore price dependent [39, 40]. The Bertrand competition between retailers
within the framework of the EOQ model is left for the future study [41].
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Tables

Table 1. Definitions of the notations for Property 1.
Notations Definitions Notations Definitions

t∗i1

√
2Ai√

di(h+cIp)
tai

√
2Ai(
√
h+cIp+

√
α(2−α)cIp+α2pIe)√
diH

t∗i2

√
2Ai√
diH

t′ai

√
2Ai(
√
h+cIp−

√
α(2−α)cIp+α2pIe)√
diH

†: i = 1, 2.

Table 2. Optimal order decisions of retailers when d1 > d2, A1d1 > A2d2, and t∗12d1 + ta2d2 < ta1d1.
Range of Q0 q∗1 q∗2 Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > ta1d1 t∗11d1 t∗21d2 Immediate payment Immediate payment N
t∗12d1 + ta2d2 < Q0 6 ta1d1 Q0 t∗21d2 Delayed payment Immediate payment N
t∗12d1 + t∗22d2 < Q0 6 t∗12d1 + ta2d2 t∗12d1 Q0 − t∗12d1 Delayed payment Delayed payment Y
Q0 6 t∗12d1 + t∗22d2 t∗12d1 t∗22d2 Delayed payment Delayed payment Y

†: q∗1 = t∗1d1, q
∗
2 = t∗2d2, PM=Payment method, Y=Yes, N=No.

Table 3. Optimal order decisions of retailers when either d1 > d2, A1d1 > A2d2, and t∗12d1 + ta2d2 > ta1d1,
or d1 > d2 and A1d1 6 A2d2.
Range of Q0 q∗1 q∗2 Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > t∗12d1 + ta2d2 t∗11d1 t∗21d2 Immediate payment Immediate payment N
t∗12d1 + t∗22d2 < Q0 6 t∗12d1 + ta2d2 t∗12d1 Q0 − t∗12d1 Delayed payment Delayed payment Y
Q0 6 t∗12d1 + t∗22d2 t∗12d1 t∗22d2 Delayed payment Delayed payment Y

Table 4. Optimal order decisions of retailers when d1 < d2 and t∗22d2 + ta1d1 < ta2d2.
Range of Q0 q∗1 q∗2 Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > ta2d2 t∗11d1 t∗21d2 Immediate payment Immediate payment N
t∗22d2 + ta1d1 < Q0 6 ta2d2 t∗11d1 Q0 Immediate payment Delayed payment N
t∗22d2 + t∗12d1 < Q0 6 t∗22d2 + ta1d1 Q0 − t∗22d2 t∗22d2 Delayed payment Delayed payment Y
Q0 6 t∗22d2 + t∗12d1 t∗12d1 t∗22d2 Delayed payment Delayed payment Y

Table 5. Optimal order decisions of retailers when d1 < d2 and t∗22d2 + ta1d1 > ta2d2.
Range of Q0 q∗1 q∗2 Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > t∗22d2 + ta1d1 t∗11d1 t∗21d2 Immediate payment Immediate payment N
t∗22d2 + t∗12d1 < Q0 6 t∗22d2 + ta1d1 Q0 − t∗22d2 t∗22d2 Delayed payment Delayed payment Y
Q0 6 t∗22d2 + t∗12d1 t∗12d1 t∗22d2 Delayed payment Delayed payment Y

Table 6. Nash equilibria in the static game when d1 = d2 = d.
Range of Q0 Nash equilibria Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > (ta1 + ta2)d (t∗11, t
∗
21) Immediate payment Immediate payment N

Q0 = (ta1 + ta2)d (t∗11, t
∗
21) Immediate payment Immediate payment N

(ta1, ta2) Delayed payment Delayed payment Y
(ta2 + t∗11)d < Q0 < (ta1 + ta2)d (t∗11, t

∗
21) Immediate payment Immediate payment N

(Q0/d− t, t), with t ∈ [a, b] Delayed payment Delayed payment Y
(t∗12 + t∗22)d < Q0 6 (ta2 + t∗11)d (Q0/d− t, t), with t ∈ [a, b] Delayed payment Delayed payment Y
0 6 Q0 6 (t∗12 + t∗22)d (t∗21, t

∗
22) Delayed payment Delayed payment Y
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Table 7. Optimal order decisions of the two retailers when d1 = d2 = d.
Range of Q0 q∗1 q∗2 Retailer 1’s PM Retailer 2’s PM Joint ordering

Q0 > (ta1 + ta2)d t∗11d t∗21d Immediate payment Immediate payment N
(t∗12 + t∗22)d < Q0 6 (ta1 + ta2)d Q0 − tg(Q0)d tg(Q0)d Delayed payment Delayed payment Y
0 6 Q0 6 (t∗12 + t∗22)d t∗12d t∗22d Delayed payment Delayed payment Y

Table 8. Numerical result on Example 1.
Q0 q∗1 q∗2 f1(q∗1) f2(q∗2) F (Q0) Overall profit Payment method Joint ordering

6164.661 87.919 76.742 18.446 7.6604 65.8536 91.96 Delayed payment Y
164.662 87.919 76.743 18.446 7.6604 65.8536 91.96 Delayed payment Y
165.1 87.919 77.181 18.446 7.6603 65.854 91.96 Delayed payment Y
165.7 87.919 77.781 18.446 7.6597 65.8546 91.96 Delayed payment Y
166.3 87.919 78.381 18.446 7.6585 65.8552 91.96 Delayed payment Y
166.9 87.919 78.981 18.446 7.657 65.8558 91.959 Delayed payment Y
167.5 87.919 79.581 18.446 7.6549 65.8564 91.957 Delayed payment Y
168.1 87.919 80.181 18.446 7.6524 65.8569 91.955 Delayed payment Y
168.674 87.919 80.755 18.446 7.6496 65.8574 91.953 Delayed payment Y
>168.675 83.32 72.727 17.918 7.2 65.691 90.809 Immediate payment N
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Figure legends.

Figure 1. Total amount of interest earned and payable.
Figure 2. Sub-functions fi1(ti) and fi2(ti), with i = 1, 2.
Figure 3. The maximizer of the mean profit function fi(ti), with i = 1, 2.
Figure 4. The best response functions of Retailer 1 and Retailer 2.
Figure 5. The intersection of t̃11 and t̃22.
Figure 6. The intersection of t̃11 and t̃21.
Figure 7. The intersection of t̃12 and t̃22 when d1 > d2.
Figure 8. The intersection of t̃12 and t̃22 when d1 = d2.
Figure 9. The effect of Q0 on the supplier’s mean profit.
Figure 10. The effect of Q0 on Retailer 1’s mean profit.
Figure 11. The effect of Q0 on Retailer 2’s mean profit.
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