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Abstract: We apply the Bielecki metric on the space C ([a, b]), to analyze the different
types of stabilities of non-linear fractional integral equation corresponding to fractional
boundary value problems. Sufficient conditions are obtained to prove stability results for
fractional non-linear Volterra and Fredholm integral equations, given by Ulam, Hyer and
Rassias. We extend the respective stability results to the fractional integral equations
where the domain of integration is an unbounded interval. We provide numerical examples
which asserts our stability results.
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1 Introduction

The applications of the integral equations of fractional
order is found in many discipline including biological
science, physical and chemical sciences, aerodynamics,
control theory and signal processing etc. The integral
equations in the mathematical modeling of systems
or process have been stimulated for extensive research
in their respective disciplines. Authors Konjik et al.
(2011); Valerjo et al. (2014) have studied some recent
and specific pioneer applications of fractional calculus.
Comparatively, the analysis of these new stability results
are very less. To mention few, one can refer to Haihuva
Wang (2017); Joan Hoffacker (2011).

The question arised by Ulam (1940) has become a
genesis for stability problems of functional equations.
Ulam’s question can be phrased as “Under what
conditions, the set of all additive mapping between
metric groups is dense in the set of all approximate
additive mappings between metric groups′′. Hyers (1941)
settled this question when the metric group is Banach
space.

Let B1, B2 be two Banach spaces and ε > 0. If g :
B1 → B2 satisfies

‖g(b+ w)− g(b)− g(w)‖ ≤ ε, for every b, w ∈ B1,

then we can find unique additive mapping h : B1 → B2

such that

‖g(b)− h(b)‖ ≤ ε, for all b ∈ B1,

where h(b+ w) = h(b) + h(w) for all b, w ∈ B1.
This condition is called as Hyers-Ulam stability

for functional equations. Rassias (1978) generalized it
for linear mappings. These latest stability results for
several functional equations are discussed by Hyers et
al. (1998) and Jung (2001, 2004). Among the class of
integral equations, Wei et al. (2012) used standard norm
to provide sufficient conditions for these new stability
results and Castro et al. (2018) used Bielcki metric to
obtain such stability results.

In this paper, we give attention to the non-linear
fractional Volterra integral equation with delay α, which
are equivalent to the fractional boundary problem:

g(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] . (1)

Here t ∈ J := [0, T ] for some T > 0, f is continuous on
J2 × C2, α is continuous delay function and a, b are the
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constants involved in the fractional boundary conditions.
The solutions of above integral equation are solutions of
fractional boundary value problems.

Lemma 1: [Benchohra et al. (2008)] Let 0 < p < 1,
and f be continuous J2 × C2. A function g(t) ∈ C (J,C)
is a solution of the fractional integral equation

g(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]

if and only if g(t) is a solution the fractional boundary
value problem

cDαg(t) = f(t, g(t)), t ∈ J
ag(0) + bg(T ) = c.

2 preliminaries

The different types of stabilities given by Ulam, Hyer and
Rassias can be defined to integral equations as follows.

Definition 2.1: Let ω(t) be an increasing function on
J. If an arbitrary function g satisfies∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ω(t)

for all t ∈ J, there is a solution g0 of (1) with

|g(t)− g0(t)| ≤ Cω(t),

for all t ∈ J, then we say that (1) possess
HyersUlamRassias stability. Where C is positive
constant and independent of g and g0.

Definition 2.2: Let ε be a non negative number. Then
(1) possess HyersUlam stability if an arbitrary function
g satisfies∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ε

for all t ∈ J, there is a solution g0 of (1) and a positive
constant C such that

|g(t)− g0(t)| ≤ Cε,

for all t ∈ J (where C is independent of g and g0).

Definition 2.3: Suppose ω(t) be a non decreasing
function on J and ε ≥ 0. Then (1) is having semi-Hyers-
Ulam stability if an arbitrary function g satisfies∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ε

for all t ∈ J, there is a solution g0 of (1) and a positive
constant C independent of g and g0 such that

|g(t)− g0(t)| ≤ Cω(t),

for all t ∈ J.

Let us recall the following well known concepts.

Definition 2.4: A generalized metric δ on a set A is
defined as a function from A×A to [0,∞) satisfying
following conditions.

1. δ(a, a′) = 0 if and only if a = a′;

2. δ(a, a′) = δ(a′, a) for all a, a′ ∈ A;

3. δ(a, a′′) ≤ δ(a, a′) + δ(a′, a′′) for all a, a′, a′′ ∈ A.

Theorem 2: Let (A, δ) be complete metric space and
the operator T be contraction on A with a Lipschitz
constant L < 1. If there is any non-negative integer n0

such that δ(T n0+1a,T n0a) <∞ for some a ∈ A, then
the following properties hold good:

1. the sequence of elements (T na), n = 1, 2, 3, · · · in
A converges to a unique fixed point a∗ in A∗ = {y ∈
A : δ(T n0a, y) <∞};

2. If y ∈ A∗, then

δ(y, a∗) ≤ 1

1− L
δ(T y, y). (2)

3 HyersUlamRassias Stability for fractional
Volterra integral equations in the finite
interval case using Bielecki metric

We are interested in the continuous functions space
C (J,C), equipped with a bielecki metric given by

δp(g, φ) = sup
x∈J

|g(x)− φ(x)|
epx

,∀g, φ ∈ C (J,C). (3)
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In general,

δ(g, φ) = sup
x∈J

|g(x)− φ(x)|
ω(x)

,∀g, φ ∈ C (J,C). (4)

Where ω : [a, b]→ (0,∞) is a nondecreasing and
continuous function. The completeness of the space
C (J,C) with respect to the Bielecki metric is given by
Rolewicz (1987). We denote Cp(J,C) for the set of all
continuous functions with respect to the metric (3).

Theorem 3: Let 0 < q < p < 1 and p+ q = 1. Let
K = 1

Γ(p)
1−q
p−qT

p−q for some T > 0. Let α be a continuous

delay functions on J satisfies α(x) ≤ x. Let L and η

be any constants with KLη
(

1 + b
a+b

)
< 1 and ω : J→

(0,∞) be any increaing function with the property that(∫ x

a

(ω(t))
1
p dt

)p
≤ ηω(x), for all x ∈ J. (5)

If f : J2 × C2 → C is continuous and satisfies the
Lipschitz condition

|f(x, t, g(t), g(α(t))− f(x, t, h(t), h(α(t))|
≤ L|g(t)− h(t)|,∀x, t ∈ J, (6)

then the following fractional integral equation

g(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds− c


has the HyersUlamRassias stability. That is, if g ∈
C (J,C) is such that∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

+
b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ω(t), (7)

for every t ∈ J and KLη
(

1 + bω(T )/ω(0)
a+b

)
< 1, then there

is unique solution g0 ∈ C (J,C) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c]

and

|g(x)− g0(x)| ≤ 1

1−KLη
(

1 + bω(T )/ω(0)
a+b

)ω(x), (8)

for all x ∈ J.

Proof: We define the map T : C (J,C)→ C (J,C) by

(T g)(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] ,

for all g ∈ C (J,C). Our claim is to show that T is
contraction with respect to the Bielecki metric. We take
g, h ∈ C (J,C). Using Holder’s inequality, we have

δ(T g,T h)

= sup
t∈J

|(T g)(t)− (T h)(t)|
ω(t)

= sup
t∈J

1

ω(t)

∣∣∣∣∣∣ 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

+
bc

a+ b
− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, h(s), h(α(s)))ds

+
b

a+ b

1

Γ(p)

T∫
0

(T − s)p−1f(T, s, h(s), h(α(s)))ds

− bc

a+ b

∣∣∣∣
≤ sup

t∈J

1

ω(t)

1

Γ(p)


t∫

0

(t− s)p−1

|f(t, s, g(s), g(α(s)))− f(t, s, h(s), h(α(s)))| ds

+
b

a+ b

T∫
0

(T − s)p−1

|f(T, s, g(s), g(α(s)))− f(T, s, h(s), h(α(s)))| ds}

≤ sup
t∈J

1

ω(t)

L

Γ(p)


t∫

0

(t− s)p−1 |g(s)− h(s)| ds

+
b

a+ b

T∫
0

(T − s)p−1 |g(s)− h(s)| ds


=

L

Γ(p)
sup
t∈J

1

ω(t)


t∫

0

(t− s)p−1w(s)
|g(s)− h(s)|

w(s)
ds
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+
b

a+ b

T∫
0

(T − s)p−1w(s)
|g(s)− h(s)|

w(s)
ds


≤ Lδ(g, h)

Γ(p)
sup
t∈J

1

ω(t)


t∫

0

(t− s)p−1w(s)ds

+
b

a+ b

T∫
0

(T − s)p−1w(s)ds


≤ Lδ(g, h)

Γ(p)
sup
t∈J

1

ω(t)


 t∫

0

(t− s)
p−1
q

q

 t∫
0

|ω(s)|
1
p ds

p

+
b

a+ b

 T∫
0

(T − s)
p−1
q

q

 T∫
0

|ω(s)|
1
p ds

p
≤ Lδ(g, h)K sup

t∈J

1

ω(t)


 t∫

0

|ω(s)|
1
p ds

p

+
b

a+ b T∫
0

|ω(s)|
1
p ds

p
≤ Lδ(g, h)K

{
sup
t∈J

η
ω(t)

ω(t)
+

b

a+ b
sup
t∈J

η
ω(T )

ω(0)

}
≤ LKη

(
1 +

bω(T )/ω(0)

a+ b

)
δ(g, h).

Thus, by hypothesis and Theorem 2, we have the
HyerUlam stability for (1). If we again apply the
Theorem 2, we get that

δ(g, g0) ≤ 1

1−KLη
(

1 + bω(T )/ω(0)
a+b

)δ(T g, g).

Using the metric δ and (7),

sup
x∈J

|g(x)− g0(x)|
ω(x)

≤ 1

1−KLη
(

1 + bω(T )/ω(0)
a+b

) .
By supremum property (8) follows.

Corrolary 4: Let 0 < q < p < 1 and p+ q = 1. Let
T > 0 and K = 1

Γ(p)
1−q
p−qT

p−q. Let α be a continuous

delay functions satisfies α(x) ≤ x for all x ∈ J. If f :
J2 × C2 → C is a continuous Lipschitz function with
Lipschitz constant L > 0 satisfying (6) and g ∈ C (J,C)
is such that∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ept,

for all t ∈ J and KL
(
eT − 1

)p (
1 + beT

a+b

)
< 1, then there

is unique solution g0 of (1) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c]

and

|g(t)− g0(t)| ≤ ept

1−KL (eT − 1)
p

(1 + beT

a+b )
,

for all t ∈ J.

Proof: If ω(t) = ept and η ≥
(
eT − 1

)p
, then above result

follows from the inequality t∫
0

(epτ )
1
p dτ

p

≤ ηet,∀t ∈ J.

In Theorem 3, the sufficient condition (5) can be
replaced as follows.

Theorem 5: Let 0 < p < 1 Let α be a continuous
delay functions on J satisfies α(x) ≤ x. Let L and η be

any constants with Lη
(

1 + b
a+b

)
< 1 and ω : J→ (0,∞)

be a non-decreasing function with the property that∣∣∣∣ 1

Γ(p)

∫ x

0

(x− t)p−1ω(t)dt

∣∣∣∣ ≤ ηω(x), (9)

for all x ∈ J. If f : J2 × C2 → C continuous with the
Lipschitz condition

|f(x, t, g(t), g(α(t))− f(x, t, h(t), h(α(t))|
≤ L|g(t)− h(t)|, (10)

for all x, t ∈ J, then the HyersUlamRassias stability for
the integral equation (1) is obtained. That is, if g ∈
C (J,C) is such that

∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds+

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ω(t), (11)
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for every t ∈ J and Lη
(

1 + bω(T )/ω(0)
a+b

)
< 1, then there

is unique solution g0 ∈ C (J,C) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c]

and

|g(x)− g0(x)| ≤ 1

1− Lη
(

1 + bω(T )/ω(0)
a+b

)ω(x), (12)

for all x ∈ J.

4 HyersUlam and Semi HyersUlam
stabilities for fractional integral equations
with delay in the finite interval case using
Bielecki metric

We provide sufficient conditions to obtain Semi
HyersUlam and HyersUlam stabilities for (1). We
proceed with metrics defined in (3) and (4).

Theorem 6: Let 0 < q < p < 1 and p+ q = 1. Let
K = 1

Γ(p)
1−q
p−qT

p−q for T > 0. Let ω(t) = ept and α be

a continuous delay function with α(t) ≤ t for all t ∈
J. Suppose f : J2 × C2 → C is a continuous Lipschitz
function with the positive Lipschitz constant L and

|f(t, s, g(s), g(α(s))− f(t, s, h(s), h(α(s))|
≤ L|g(t)− h(t)| (13)

If g ∈ Cp(J) is such that∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

+
b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ε,∀t ∈ J, (14)

where ε > 0 and KL(eT − 1)p
(

1 + beT

a+b

)
< 1, then there

is unique solution g0 ∈ C (J,C) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) .

Moreover

|g(t)− g0(t)| ≤ (a+ b)ε

a+ b−KL(eT − 1)p(a+ b+ beT )
ept

for all t ∈ J. That is above sufficient conditions give the
semi HyersUlam stability for (1).

Proof: We define the map T : Cp(J)→ Cp(J) by

(T g)(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] ,

for all g ∈ C (J,C). By applying the same process as
in the above theorem, T becomes contractive with
respect to the extended Bielecki metric (3) provided

KL
(
eT − 1

)p (
1 + beT

a+b

)
< 1. Hence, the semi-Hyers-

Ulam stability for the integral equation (1) is ensured by
the Banach fixed point theorem.

Corrolary 7: Let 0 < q < p < 1 and p+ q = 1. Let
K = 1

Γ(p)
1−q
p−qT

p−q for some T > 0. Let α be a continuous

delay functions satisfies α(t) ≤ t for all t ∈ J. Suppose
f : J2 × C2 → C is a continuous function with the
Lipschitz constant L > 0 satisfy (13). If y ∈ Cp(J)

satisfies (14), with ε > 0 and KL
(
eT − 1

)p (
1 + beT

a+b

)
<

1, then there is unique solution g0 ∈ Cp(J) inwhich

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) ,

and

|g(t)− g0(t)| ≤ (a+ b)eT

a+ b−KL (eT − 1)
p

(a+ b+ beT )
ε

for all t ∈ J.

Thus the HyersUlam stability under above conditions
for (1) is achieved. Next, we shall consider the
generalized metric (4).

Theorem 8: Let 0 < q < p < 1 and p+ q = 1. Let
K = 1

Γ(p)
1−q
p−qT

p−q for some T > 0. Assume the delay

function α be continuous with α(t) ≤ t for all t ∈ J and
ω : J→ (0,∞) be an increasing function. Suppose that
there is η ∈ R such that(∫ t

a

(ω(s))
1
p ds

)p
≤ ηω(t), for all t ∈ J. (15)
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If f : J2 × C2 → C is a continuous Lipschitz function
such that

|f(t, s, g(s), g(α(s))− f(t, s, h(s), h(α(s))|
≤ L|g(t)− h(t)|, for all t ∈ J (16)

with L > 0. If g ∈ C (J,C) is such that∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds+

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ε, (17)

for all t ∈ J, where ε > 0 and KLη
(

1 + b
a+b

)
< 1, then

there is unique solution g0 ∈ Cp(J) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds−

b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) .

Moreover,

|g(x)− g0(x)| ≤ (a+ b)ε

a+ b−KLη(a+ b+ bω(T )/ω(0))
ω(x)

for all x ∈ J. That is, semi-Hyers-Ulam stability for (1)
is obtained.

Proof: Define T : C (J,C)→ C (J,C) by

(T u)(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] ,

for all g ∈ C (J,C), for all t ∈ J.
We can prove the contractive property of T with

respect to the generalized Bielecki mentric by applying
the same process used in the above theorem and the

fact that KLη
(

1 + bω(T )/ω(0)
a+b

)
< 1. As T becomes

contraction, the Banach fixed point theorem gives the
desired result.

Corrolary 9: Let 0 < q < p < 1 and p+ q = 1. Let
K = 1

Γ(p)
1−q
p−qT

p−qwith T > 0. Let ω be non decreasing

function J with the condition (15) and assume the delay

function α be continuous with α(t) ≤ t for all t ∈ J.
Suppose f : J2 × C2 → C (16) is a Lipschitz function
with the Lipschitz constant with L > 0. If g ∈ C (J,C)

satisfies (17), with ε > 0 and KLη
(

1 + bω(T )/ω(0)
a+b

)
< 1,

then there is unique solution g0 such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) ,

and

|g(x)− g0(x)| ≤ (a+ b)ω(T )/ω(0)

a+ b−KLη(a+ b+ bω(T )/ω(0))
ε

for all x ∈ J. This implies that (1) has Hyers-Ulam
stability.

Remark 1: In a similar way, we can discuss above
stability results to obtain sufficient conditions for the
fractional integral equation of the form,

g(t) =
1

Γ(p)

T∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] ,∀t ∈ J. (18)

Here both terms are considered to be Fredholm, f is
continuous on J2 × C2 and α is a delay function. Since
t ∈ J, then t∫

0

(t− s)
p−1
q

q

≤

 T∫
0

(t− s)
p−1
q

q

.

Hence, all the above stability results will be true for the
Fredholm integral equations of fractional order(18) if the
sufficient conditions are unaltered.

5 HyersUlamRassias stability for the
integral equation of fractional order in
the infinite interval case using Bielecki
metric

In this section, we shall analyze the HyersUlamRassias
stability for the given fractional integral equation (1),
when the interval is unbounded. Here, we allow the
parameter t from 0 to∞. In this regard, we consider the
integral equations of the form,
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g(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] ,

for all t ∈ [0,∞). We consider the Bielecki metric over
unbounded interal defined by

δB(g, φ) = sup
t∈[0,∞)

|g(t)− φ(t)|
ω(t)

,

where ω : [0,∞)→ (µ, ν) (where µ, ν > 0) is an
increasing bounded continuous function. We have
C (J,C) is complete with respect to δB . One can see
Cadariu et al. (2012); Rolewicz (1987).

Theorem 10: Let 0 < p < 1. Let α : [0,∞)→ [0,∞)
be a continuous delay functions with α(x) ≤ x,∀x ∈
[0,∞) and ω : [0,∞)→ (µ, ν), µ, ν > 0 be a non-
decreasing bounded continuous function. Choose η ∈ R
with∣∣∣∣ 1

Γ(p)

∫ x

0

(x− t)p−1ω(t)dt

∣∣∣∣ ≤ ηω(x), (19)

for all x ∈ [0,∞). If f : [0,∞)2 × C2 → C is a
continuous Lipschitz function with Lipschitz constant
L > 0 or

|f(x, t, g(t), g(β(t))− f(x, t, h(t), h(β(t))|
≤ L|g(t)− h(t)| (20)

then the integral equation

g(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c] (21)

for all t ∈ [0,∞), has the HyersUlamRassias stability.
That is, if y ∈ CB([0,∞)) is such that∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g(s), g(α(s)))ds

+
b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g(s), g(α(s)))ds

−c]| ≤ ω(t),

for every t ∈ [0,∞) and Lη
(

1 + bν/ω(0)
a+b

)
< 1, then there

is unique solution g0 in CB(R) such that

g0(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) (22)

and

|g(x)− g0(x)| ≤ 1

1− Lη
(

1 + bν/ω(0)
a+b

)ω(x), (23)

for all x ∈ [0,∞). That is the Volterra integral equation
of fractional order(21) has the HyersUlamRassias
stability.

Proof: Define In = [0, 0 + n] for each n ∈ N. By the
Theorem 5, we can find unique bounded continuous
function g0,n : In → C such that

g0,n(t) =
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0,n(s), g0,n(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0,n(s), g0,n(α(s)))ds

−c] , (24)

and

|g(t)− g0,n(t)| ≤ 1

1− Lη
(

1 + bω(n)/ω(0)
a+b

)ω(t), (25)

for each t ∈ In. Since In ⊂ In+1 and the uniqueness of
g0,n implies that

g0,n(t) = g0,n+j(t) for each j = 1, 2, 3, · · · . (26)

For each t ∈ [0,∞), let nt = min{n ∈ N/t ∈ In} and
define

g0(t) = g0,nt(t). (27)

Let us prove that, this g0 is continuous on [0,∞). For any
tα ∈ [0,∞), Choose an integer nα = ntα . Then tα lies in
the interior of Inα+1. We can find ε > 0 such that g0(t) =
g0,nα+1(t) for all t ∈ (tα − ε, tα + ε). Thus, continuity of
g0 follows from continuity of gnα+1.

Now, we prove that g0 satisfies the Volterra fractional
integral equation (21) and the inequality (25). For,
Choose an arbitrary t ∈ [0,∞) and nt so that t ∈ Int . By
(24) and (27),we get

g0(t)

= g0,nt(t)
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=
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0,nt(s), g0,nt(α(s)))ds− b

a+ b 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0,nt(s), g0,nt(α(s)))ds

−c)

=
1

Γ(p)

t∫
0

(t− s)p−1f(t, s, g0(s), g0(α(s)))ds

− b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1f(T, s, g0(s), g0(α(s)))ds

−c) .

Thus we obtain the last equality in above equation by
nx ≤ nt and nα(x) ≤ nt, for any x ∈ Int . Using (26) and
(27), we have

g0,nt(x) = g0,nx(x) = g0(x)

and

g0,nt(α(x)) = g0,nx(α(x)) = g0(α(x)).

Also, t ∈ Int for every t ∈ [0,∞). Using (27) and
boundedness of ω, we have

|g(t)− g0(t)| = |g(t)− g0,nt(t)| ≤
1

1− Lη
(

1 + bν/ω(0)
a+b

)ω(t),

for each t ∈ [0,∞). To prove the uniqueness, let h0 be
any other function which satisfies (22) and (23) for all
t ∈ [0,∞). For any arbitrary t ∈ [0,∞), the restriction of
g0 and h0 on Int satisfy (22) and (23) for all t ∈ [0,∞).
By the uniqueness of the solution of gnt = g0|Int gives
that

g0(t) = g0|Int (t)
= h0|Int (t)
= h0(t).

Thus the proof is completed.

6 Example

Here, we show few examples where above stability results
are possible.

Example 11: Set T = −pq ln
(

p
p+q

)
, 0 < q < p < 1,

K = 1
Γ(p)

1−q
p−qT

p−q. Let Z(s, t) be a polynomial in s

and t, α(x) = sinx, ω(t) = e−pt, Let L = min{ T
T+1 ,

1
K }.

Assume the function f with the Lipschitz constant L as
follows:

f(t, s, g(s), g(α(s)) = Z(s, t) + L(g(s) + g(sins)).

If g(t) is a continuous function on J with∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1

(Z(s, t) + L(g(s) + g(sins))) ds

+
b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1

(P (s, T ) + L(g(s) + g(sins))) ds− c]| ≤ e−pt,

for all t ∈ J. Also, we have,(∫ x

0

(ω(t))
1
p dt

)p
=

(∫ x

0

e
−pt
q dt

)q
≤ e−px,

for all x ∈ J. Here η = 1. Therefore, by applying
Theorem 3, there is unique solution g0 of (1) satisfying

|g(t)− g0(t)| ≤ 1

1− L
(

1 + be−pT

a+b

)e−pt,
for all t ∈ J.

Example 12: Let I = [0,∞) and T ∈ I. Assume that
Q(s, t) is any polynomial s and t, and y is a continuous
functions on I, with∣∣∣∣∣∣g(t)− 1

Γ(p)

t∫
0

(t− s)p−1 (Q(s, t) + L(g(s) + g(3s))) ds

+
b

a+ b

 1

Γ(p)

T∫
0

(T − s)p−1

(Q(s, T ) + L(g(s) + g(3s))) ds− c]| ≤ e−pt,

for all t ∈ I. We take f = (Q(s, t) + L(g(s) + g(3s)))
with Lipschitz constant L > 0, ω(t) = e−pt. Then∣∣∣∣ 1

Γ(p)

∫ x

0

(x− t)p−1ω(t)dt

∣∣∣∣ ≤ η(p)e−px, for all x ∈ [0,∞).

provided η(p) =
(∫∞

0
ap−1epada

)
. Therefore, by applying

Theorem 10, there is unique solution g0 of (21) satisfying

|g(x)− g0(x)| ≤ 1

1− Lη(p)
(

1 + b
a+b

)ω(x),

for all x ∈ [0,∞).

7 Conclusion

We obtained some new stability results for the class
of fractional integral equations having the boundary
condition in its corresponding differential equation.
Novel stability ideas are used to obtain sufficient
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conditions. Using Banach fixed point theorem, we have
proved the HyersUlamRassias, Hyers-Ulam and semi
Hyers Ulam stabilites for system of fractional non-
linear integral equations satisfying the given boundary
condition with delay on a closed and bounded interval.
Further, we extended same results to unbounded
intervals. Our results show that, there is a close analytic
solution to the system which are stable in the sense
of HyersUlam and HyersUlamRassias. In future work,
these new concepts of stability results and Bielecki
metric could be used to stabilize the system of impulsive
fractional integral equations.
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