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Abstract14

Ensemble data assimilation methods, such as the Ensemble Kalman Filter (EnKF), are15

well suited for climate reanalysis because they feature flow-dependent covariance. How-16

ever, because Earth System Models are heavy computationally, the method uses a few17

tens of members. Sampling error in the covariance matrix can introduce biases in the18

deep ocean, which may cause a drift in the reanalysis and in the predictions. Here, we19

assess the potential of the hybrid covariance approach (EnKF-OI) to counteract sam-20

pling error. The EnKF-OI combines the flow-dependent covariance computed from a dy-21

namical ensemble with another covariance matrix that is static but less prone to sam-22

pling error. We test the method within the Norwegian Climate Prediction Model (Nor-23

CPM), which combines the Norwegian Earth System Model (NorESM) and the EnKF.24

We test the performance of the reanalyses in an idealised twin experiment, where we as-25

similate synthetic sea surface temperature observations monthly over 1980-2010. The dy-26

namical and static ensembles consist respectively of 30 members and 315 seasonal mem-27

bers sampled from a pre-industrial run. We compare the performance of the EnKF to28

an EnKF-OI with a global hybrid coefficient, referred to as standard hybrid, and an EnKF-29

OI with adaptive hybrid coefficients estimated in space and time. Both hybrid covari-30

ance methods cure the bias introduced by the EnKF at intermediate and deep water.31

The adaptive EnKF-OI performs best overall by addressing sampling noise and rank de-32

ficiencies issues and can sustain low analysis errors by doing smaller updates than the33

standard hybrid version.34

Plain Language Summary35

Data assimilation is a statistical method that reduces uncertainty in a model, based36

on observations. Because of their ease of implementation, the ensemble data assimila-37

tion methods, that rely on the statistics of a finite ensemble of realisations of the model,38

are popular for climate reanalysis and prediction. However, observations are sparse – mostly39

near the surface – and the sampling error from data assimilation method introduces a40

degradation in the deep ocean. We use a method that complements this ensemble with41

a pre-existing database of model states to reduce sampling error. We show that the ap-42

proach substantially reduces error at the intermediate and deep ocean. The method typ-43

ically requires the tunning of a parameter, but we show that it can be estimated online,44

achieving the best performance.45

1 Introduction46

Data assimilation estimates the state of a model (called the analysis) that approaches47

the “unknown true state” of the system based on observations, a prior model estimate,48

and statistical information on their uncertainties. Data assimilation is applied sequen-49

tially/recursively to provide a reanalysis, which can also be used to understand the mech-50

anisms of variability and initialise predictions. Data assimilation has been one of the key51

ingredients in the progress of numerical weather prediction (Bauer et al., 2015) and is52

now used in a wide range of geosciences applications (Carrassi et al., 2018), including53

climate prediction. The ensemble Kalman Filter (EnKF, Evensen, 2003), is an advanced54

data assimilation method that provides flow-dependent covariance – i.e., that can evolve55

in time and space with a transient state or a regime shift – and the ensemble provides56

a quantification of the uncertainty of the system. These properties are well suited for cli-57

mate reanalysis and predictions, and the method is becoming increasingly popular in that58

field (e.g., Zhang et al., 2009; Counillon et al., 2014; Brune et al., 2015; Karspeck et al.,59

2018; O’Kane et al., 2019).60

Ensemble-based data assimilation methods (e.g., the EnKF) approximate the fore-61

cast error covariance matrix using a finite-size ensemble from a Monte Carlo integration62

step. Rank deficiencies and sampling errors emerge and deteriorate the performance of63

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the system, causing an artificial reduction of the ensemble spread and may even lead to64

filter divergence. Several ad-hoc methods have been introduced to counteract sampling65

errors. Localization (Houtekamer & Mitchell, 2001; Evensen, 2003; Ott et al., 2004; An-66

derson, 2007) limits the spatial extent of the corrections, based on the approximation67

that the covariance function decays as a function of the distance – and can be seen as68

a way to effectively reduce the degree of freedom of the system. Inflation (Anderson, 2001;69

Whitaker & Hamill, 2012; Raanes et al., 2019) counteracts the spread-collapse by arti-70

ficially inflating the ensemble spread at every assimilation step. The last method is the71

covariance hybridization method, which is the topic of our paper.72

Covariance hybridization (Hamill & Snyder, 2000) linearly combines the flow-dependent73

covariance computed from a finite Monte-Carlo ensemble with another covariance ma-74

trix that is less prone to sampling error. The static matrix can be parameterized (Hamill75

& Snyder, 2000; Weaver & Courtier, 2001), computed from a long model simulation (Counillon76

et al., 2009), computed as the average of the background error covariance matrices from77

a previous data assimilation run (Carrió et al., 2021) or computed from a dynamical en-78

semble at a lower resolution (Rainwater & Hunt, 2013). The hybrid covariance method79

achieves better performance than the standalone EnKF, particularly for small ensem-80

bles, and performance converges to that of the EnKF for large ensembles (X. Wang et81

al., 2007; Counillon et al., 2009; Raboudi et al., 2019). The computational cost of the82

hybrid covariance methods is customizable to the desired cost.83

The linear coefficients combining the static and the dynamic covariance are called84

the “hybridization coefficients”, which optimally balance the superior but noisy sample85

covariance with that of less noisy but static covariance. To achieve optimal performance,86

it is crucial to tune these coefficients (X. Wang et al., 2007; Counillon et al., 2009; Raboudi87

et al., 2019; Gharamti et al., 2014). The optimal values of these coefficients depend on88

the non-stationarity of the dynamical system as well as the data assimilation settings,89

such as the dynamical ensemble size, localisation and inflation settings. As such, it is ex-90

pected that the optimal value of the hybridization coefficients should vary in space and91

time. A first attempt to estimate spatial and time-varying hybridization coefficient has92

been developed (Gharamti, 2020) with a Bayesian framework (using fixed localisation93

settings). They found that a spatially heterogeneous hybridization coefficient formula-94

tion outperforms a homogeneous formulation. Ménétrier and Auligné (2015) and Ménétrier95

et al. (2015) formulated the problem of hybridization as a linear filtering problem of the96

background error covariance matrix to optimize both the localization and the hybridiza-97

tion coefficients simultaneously.98

In this work, we aim to investigate the benefit of background error covariance hy-99

bridization for climate reanalysis and climate prediction systems, as for example with100

the CMIP6 Decadal Climate Prediction Project (DCPP, Boer et al., 2016). We use the101

Norwegian Climate Prediction Model (NorCPM, Counillon et al., 2014, 2016) that pro-102

vides coupled reanalysis and contributed to CMIP6 DCPP (Bethke et al., 2021). Here,103

we focus on long coupled reanalysis as NorCPM will produce such a reanalysis from 1850104

to the present. Sea surface temperature (SST) dominates the ocean observation network105

before the emergence of altimetry in the 90s and Argo data in the 2000s. Using only SST,106

NorCPM can control the upper ocean heat content, and major indices of climate vari-107

ability in the North Atlantic well (Counillon et al., 2016). Two features of NorCPM, flow-108

dependent assimilation and assimilation in isopycnal coordinates, were found to be par-109

ticularly important in that success. However, it also yields an unrealistic update of the110

intermediate water masses in the North Atlantic Subpolar Gyre (SPG) (typically below111

1000m) (Counillon et al., 2016), which subsequently causes a drift in the multi-year pre-112

dictions in the North Atlantic SPG region (Bethke et al., 2018). We aim to address this113

limitation in our current assimilation system.114

We test the performance of NorCPM for coupled reanalysis in the framework of ide-115

alised twin experiments with the assimilation of SST. We assess whether 1) hybrid co-116
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variance can solve this issue and compare the performance of a 31-year coupled reanal-117

ysis produced with the EnKF (currently used in NorCPM) and hybrid covariance meth-118

ods, 2) compare robustness and optimality of two flavours of hybrid covariance meth-119

ods: one using an empirically tuned globally constant hybridization coefficient and one120

where the hybridization coefficients are estimated adaptively in space and time (Ménétrier121

et al., 2015; Ménétrier & Auligné, 2015; Ménétrier, 2024).122

This paper is organised as follows. Section 2 presents the Earth System Model (ESM)123

used in this work, the Norwegian Earth System Model (NorESM). Section 3 presents the124

deterministic EnKF, and its practical implementation within the NorCPM. Section 4 de-125

scribes hybridization with a static covariance matrix. Section 5 describes the adaptive126

covariance hybridization method and its practical implementation within NorCPM for127

SST assimilation. In section 6, we introduce the experimental design and the evaluation128

metrics. The numerical results are presented in section 7. Section 8, provides a conclu-129

sion, discussion and future perspective to this work.130

2 Model system: the Norwegian Earth System Model131

NorESM1-ME (Bentsen et al., 2013) is based on version 1.0.4 of the Community Earth132

System Model (Hurrell et al., 2013). Its atmosphere component is the CAM4-OSLO, the133

ocean component is the Bergen Layered Ocean Model, BLOM, (Bentsen et al., 2013),134

the land component is the Community Land Model, CLM4, (Lawrence et al., 2011), the135

sea ice component is the Los Alamos Sea Ice Model, CICE4, (Bitz et al., 2012), and the136

coupler is CPL7 (Craig et al., 2012).137

The atmosphere and the land components have 1.9◦×2.5◦ latitude-longitude res-138

olution. The atmosphere component has 26 hybrid sigma-pressure levels ranging from139

the surface up to 3 hPa. The ocean and the sea ice components have a 1◦ horizontal res-140

olution in both latitude and longitude with a bipolar grid. BLOM comprises in the ver-141

tical a stack of 51 isopycnic layers and two layers for representing the bulk mixed layer.142

Before 2005, the forcings are the CMIP5 historical forcings (Taylor et al., 2012), while143

after 2005, they are the representative Concentration Pathway 8.5 forcings (van Vuuren144

et al., 2011).145

3 The deterministic ensemble Kalman filter146

Let X ∈ Rn×N an ensemble of N model states (x1,x2, . . . ,xN ), x ∈ Rn the en-147

semble mean and A ∈ Rn×N the ensemble anomalies. We note n the model state di-148

mension. x and A are given by Eq. (1) and (2):149

x =
1

N
X1, (1)150

A = X

(
I− 1

N
11T

)
, (2)151

where I ∈ RN×N is the identity matrix and 1 ∈ RN is a vector with all elements equal152

to 1. In the following equations, the superscripts f and a stand respectively for the fore-153

casted and analysed states of the mean and the anomalies.154

We note xt the true state of the system. The observations y are defined by Eq. (3):155

y = Hxt + ε, ε ∼ N (0,R) , (3)156

where H ∈ Rp×n is the observation operator, R ∈ Rp×p is the observation error co-157

variance matrix, and p is the number of observations.158
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In this study, the deterministic EnKF (DEnKF) introduced by Sakov and Oke (2008)159

is used. The DEnKF is a square-root (deterministic) flavour of the EnKF that solves the160

analysis without the need for perturbation of the observations. It inflates the error by161

construction and is intended to perform well in applications where corrections are small162

(Sakov & Oke, 2008). The scheme has been robustly tested and validated (Sakov et al.,163

2012; Counillon et al., 2016; Bethke et al., 2021). The DEnKF decomposes into two steps:164

a forecast step and an analysis step. In the forecast step, each analyzed member xa
i is165

integrated forward in time, which becomes the prior xf
i at the following assimilation cy-166

cle:167

xf
i = M (xa

i ) , i = 1, . . . , N, (4)168

where M is an operator that stands for the model integration.169

The analysis step of the DEnKF proceeds in two steps, the update of the ensemble170

mean, Eq. (5), and the update of the ensemble anomalies, Eq. (6):171

xa = xf +K
(
y −Hxf

)
, (5)172

Aa = Af − 1

2
KHAf , (6)173

where:174

K = PfHT
(
HPfHT + R

)−1

, (7)175

Pf =
Af

(
Af

)T

N − 1
, (8)176

are respectively the Kalman gain matrix and the background error covariance matrix es-177

timated from the ensemble anomalies.178

In the following, the DEnKF will be referred to as EnKF since general conclusions179

of this work are independent of the flavour of the EnKF analysis scheme used.180

Applying an EnKF with a large dimensional system requires few ad-hoc implemen-181

tations. In order to avoid a too abrupt start of assimilation, the variance of the obser-182

vation error is multiplied by a factor 8 at the first assimilation cycle and is then reduced183

by 1 every two months until it reaches 1 over the course of 14 months. We use the rfac-184

tor inflation scheme (Sakov et al., 2012), for which the observation error is inflated by185

2 when updating the ensemble anomaly in Eq. 6. We also use pre-screening of the ob-186

servation; i.e., the observation error variance is inflated so that the analysis remains within187

2 standard deviations of the forecast error from the ensemble mean of the forecasts (Sakov188

et al., 2012). We also used the upscaling method (Y. Wang et al., 2016) that handles the189

update of the water layers thickness (truncated Gaussian) and better preserve mass, heat190

and salt. For producing long reanalysis (from 1850) with SST assimilation, we use the191

Hadley Centre Sea Ice and Sea Surface Temperature (HadISST2.1.0.0) available from192

1850–present. This type of product is practical because it handles the biases between193

different data set and provide a grided ensemble SST that can be used to quantify the194

uncertainty. Still, it is constructed by statistical interpolation/extrapolation from the195

raw data and the neighbouring observation errors are highly correlated. Our assimila-196

tion code assumes the observation error to be independent (i.e., R is diagonal) and it197

was therefore decided to only retain the nearest SST observation to update the water198

column (we speak of “strong localization”). For more details about the implementation199

of the EnKF within NorCPM, see Counillon et al. (2014) and Counillon et al. (2016).200
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4 Background error covariance matrix hybridization201

The dynamical covariance matrix Pf
d is estimated from the dynamic ensemble Xd.202

The size of Xd is limited to 30 members in the current version of NorCPM. Such a small203

ensemble size results in spurious covariances (Anderson, 2007; Bishop & Hodyss, 2007)204

and rank deficiencies (Oke et al., 2007). Background error covariance hybridization was205

initially introduced by Hamill and Snyder (2000) to combine an EnKF with a 3DVar and206

bring some flow-dependency in variational data assimilation. Covariance hybridization207

has been used in sequential ensemble data assimilation by X. Wang et al. (2007), Counillon208

et al. (2009) and Gharamti et al. (2014) (hereafter referred to as EnKF-OI) as a way to209

limit the impact of under-sampling and rank deficiency. The background error covari-210

ance matrix combines linearly a dynamical covariance matrix Pf
d with another covari-211

ance matrix Pf
s (where the subscript s stands for static) computed from a climatolog-212

ical ensemble of size Ns, Xs (where Ns ≫ Nd). That static ensemble is constructed by213

gathering model outputs before running the assimilation experiment. As such, the EnKF-214

OI does not increase the computational cost of the integration step and has only a lim-215

ited impact on the computational cost of the analysis step (Counillon et al., 2009). In216

the special case of the EnKF-OI in NorCPM the CPU-time of the EnKF-OI is 7% larger217

than that of the standard EnKF; we discuss in Section 8 possible ways to reduce the com-218

putational cost of the EnKF-OI in NorCPM. We denote Pf
h the hybrid covariance ma-219

trix:220

Pf
h = αdP

f
d + αsP

f
s, αd, αs ≥ 0 (9)221

Unless explicitly mentioned, the sum of the coefficients αd and αs can be different222

from 1.223

The update of the mean and the anomalies with the EnKF-OI writes:224

xa
d = xf

d +Kh

(
y −Hxf

d

)
, (10)225

Aa
d = Af

d −
1

2
KhHAf

d, (11)226

where Kh is the hybrid Kalman gain,227

Kh = Pf
hH

T
(
HPf

hH
T + R

)−1

. (12)228

In practice, we do not compute explicitly the hybrid covariance matrix Ph:229

Ph =
Ah (Ah)

T

Nh − 1
, (13)230

where Ah stands for the hybrid anomalies (Counillon et al., 2009):231

Ah =
√
Nh − 1

[√
αd

Nd − 1
Ad,

√
αs

Ns − 1
As

]
, (14)232

and [., .] stand for the concatenation of two sets of vectors. Therefore, the EnKF-OI is233

implemented within NorCPM following Evensen (2003) and Sakov et al. (2010).234
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5 Adaptive covariance hybridization235

5.1 Explicit optimality of the hybridization coefficients236

In this section, we build on the work of Ménétrier et al. (2015); Ménétrier and Auligné237

(2015) and adapt a method proposed in Ménétrier (2024) to determine the optimal hy-238

bridization coefficients.239

We take advantage of the strong localization setting (see Section 3) to consider only240

the covariance between a single point at the surface of the ocean and the multivariate241

state vector of the water column below so that the covariance matrix in each point re-242

duces to a vector. In the following, we note P the asymptotic covariance vector at a given243

point (which would be obtained with an infinite ensemble) from which we only have a244

noisy estimation Pd. We use the subscript i to refer to the ith element of the covariance245

vector (e.g., Pi for the ith element of the asymptotic covariance vector). We define the246

scalar product of two random vectors X and Y as E [X · Y] =
∑p

i=1 E [XiYi]. We as-247

sume that Pd and P are realizations of two independent random processes and that the248

sampling error of Pd, i.e., Pd−P, is unbiased, and orthogonal to the asymptotic covari-249

ance, (see Ménétrier et al. (2015), section 5.a and Ménétrier (2024), Eqs. (108)-(114)).250

Therefore:251

E [Pd − P] = 0, (15a)252

E [(Pd − P) · P] = 0. (15b)253

The optimal hybridization coefficients (αd, αs) are defined as those minimizing, in254

a statistical sense, the square of the error between Ph and P, i.e., (αd, αs) minimize the255

function e:256

e(αd, αs) = E
[
∥Ph − P∥2

]
= E

[
∥αdPd + αsPs − P∥2

]
, (16)257

where ∥.∥ stands for the L2-norm of a vector. It can be shown (see Appendix A) that258

minimizing the function e is equivalent to solving a system of two equations, with un-259

known αd and αs, whose solution is given by:260

(αd, αs) =
(nd

∆
,
ns

∆

)
, (17)261

where:262

∆ = ∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]

2
, (18)263

nd = ∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
, (19)264

ns =
(
E
[
∥Pd∥2

]
− E

[
∥P∥2

])
E [Pd · Ps] . (20)265

5.2 Properties266

The properties highlighted by Ménétrier et al. (2015) in the case of the dual optimiza-267

tion of localization and hybridization hold here:268

1. Behavior of the hybridization coefficients: if the static covariance is mul-269

tiplied by a factor λ, then αs is divided by λ, while αd remains unchanged. As such,270
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it is not necessary to tune the static covariance with a scalar a priori, as done in271

Evensen (2003), Oke et al. (2008) and Counillon et al. (2009).272

2. Asymptotic behavior: with an infinite ensemble, E
[
∥Pd∥2

]
= E

[
∥P∥2

]
. We273

can replace E
[
∥Pd∥2

]
by E

[
∥P∥2

]
in Eqs. (19)-(20), and obtain (αd, αs) = (1, 0)274

as expected – there is no need for hybridization.275

3. Benefits of hybridization: whatever the choice of the static covariance (see Ap-276

pendix B),277

e(1, 0) ≥ e(αd, αs), (21)278

showing the superiority of the hybrid scheme over the standalone EnKF.279

4. Optimality condition: at optimality the following equivalence is verified, see280

Ménétrier et al. (2015); Ménétrier and Auligné (2015):281 
∂e

∂αd
= 0

∂e

∂αs
= 0

⇔

 E [(Ph − P) · Pd] = 0

E [(Ph − P) · Ps] = 0
, (22)282

which means that there is optimality if and only if the error of the hybrid to the283

asymptotic covariance is independent from both Pd and Ps.284

Here are some remarks:285

1. if αd ̸= 1, Ph can be interpreted as the linear interpolation between Pd and λPs,286

where:287

λ =
αs

1− αd
, (23)288

thus, λ ≥ 1 (resp ≤ 1) is equivalent to αd+αs ≥ 1 (resp. ≤ 1). λ acts as an in-289

flation or deflation term for the matrix Ps and Ph is the linear interpolation be-290

tween Pd and the inflated/deflated Ps.291

2. The numerator of αd, nd, can be interpreted as a measure of the collinearity of292

the static covariance Ps, and the expectation of the asymptotic covariance P. Hence,293

nd is equal to 0 if and only if Var(P) = 0 and P and Ps are collinear. Similarly,294

the denominator of αd and αs is a measure of the collinearity of Ps and E [Pd],295

see Appendix C. Conversely, E [Pd · Ps] = 0 (E [P · Ps] = 0 respectively) if and296

only if E [Pd] and Ps (E [P] and Ps) are orthogonal.297

3. It follows from Eq. (15b) that (see Appendix B, Eqs. (B1)-(B2)):298

E
[
∥Pd − P∥2

]
= E

[
∥Pd∥2

]
− E

[
∥P∥2

]
≥ 0. (24)299

Therefore, the difference E
[
∥Pd∥2

]
−E

[
∥P∥2

]
can be interpreted as a measure300

of the optimality (or the non-optimality) of the covariance function computed from301

the dynamic ensemble Pd: the smaller the difference, the smaller the distance ∥Pd − P∥302

in a statistical sense. Conversely, the larger the difference, the larger the distance303

∥Pd − P∥.304

4. It follows from remarks 3 and 4 that the hybridization coefficients αd and αs are305

the combination of the optimality of the dynamic covariance function Pd and the306

collinearity/orthogonality of the static covariance Ps and the expectation of the307

asymptotic covariance P/the dynamic covariance Pd.308

5. As a consequence of Eq.(24) and Appendix C, 0 ≤ αd ≤ 1. We can not give sim-309

ilar upper and lower boundaries for the values of αs, as the term E [Pd · Ps] can310

be negative and we do not know its lower bound. Numerical simulations showed311

that this term is almost always positive (not shown). We can just say that αs is312

maximal when ∆ is minimal and therefore E [Pd · Ps] is maximal. In that case,313

αd is minimal.314
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6. The hybrid scheme exhibited in this work does not consider model bias and takes315

only into account the sampling noise in the computation of the hybridization co-316

efficient. However, following (Ménétrier, 2024), section 10.8, we can replace P in317

Eq. (16) by an hybrid target ᾱdP+ᾱsPs. This reduces to defining a new hybrid318

matrix P̄h = ᾱdPh+ᾱsPs, see Appendix D, where Ph is the hybrid matrix com-319

puted with the approach followed in this paper. The coefficients ᾱd and ᾱs can320

be computed by a method that takes into account the model bias, see for exam-321

ple (Gharamti, 2020).322

7. In this study, we have used one coefficient per water column in order to preserve323

the dynamical consistency of the model e.g. the relationship between the ocean324

bottom pressure and the layer thicknesses. The method could be adapted to use325

different hybridization coefficients in the vertical over one water column in order326

to further minimize the distance between the hybrid covariance Ph and the asymp-327

totic covariance P. In that case, a strong post-processing is needed to deal with328

the dynamical consistency in the vertical.329

5.3 Practical implementation330

Quantities in Eq. (19) and Eq. (20) can not be computed directly as they are a function331

of E
[
∥P∥2

]
, E [Pd · Ps], and E

[
∥Pd∥2

]
that are unknown.332

Nonetheless, the sampling theory developed in Ménétrier (2024) allows us to express333

E
[
P2

i

]
, i = 1, . . . , p as a function of the covariance and variance of the dynamic ensem-334

ble. Using Eq. (123a) of Ménétrier (2024) one can write:335

E
[
P2

i

]
=

(Nd − 1)
2

Nd (Nd − 3)
E
[
P2

di

]
+

Nd − 1

Nd (Nd − 2) (Nd − 3)
E [vdivd1]−

Nd

(Nd − 2) (Nd − 3)
E [Ξd1i] ,

(25)336

where where vdi is the variance of the dynamic ensemble for the i-th element of the model337

state and:338

Ξd1i =
1

Nd

Nd∑
k=1

A2
d1kA

2
dik, (26)339

where Adik is the i-th element of the anomaly of the k-th member of the dynamic en-340

semble.341

In the case where the ensemble is Gaussian, one can write using Eq. (127a) of Ménétrier342

(2024):343

E
[
P2

i

]
=

(Nd − 1)
2

(Nd − 2) (Nd + 1)
E
[
P2

di

]
− Nd − 1

(Nd − 2) (Nd + 1)
E [vdivd1] . (27)344

The quantities nd, ns, and ∆ are then fully expressed as a function of the static covari-345

ance and the expectation of the sample variance, the sample covariance and the sam-346

ple fourth-order centered moment, Ξd, of the dynamic ensemble.347

The expectation terms in Eq. (18), (19), (20), and (27) are estimated under a sim-348

plifying assumption of “local homogeneity”: it is assumed that in an area surrounding349

the water column, the vertical covariance functions are representative of the covariance350

function of the water column. The expectation terms are then estimated as the average351

of the surrounding vertical covariance functions. Numerical tests have shown that at least352

500 covariance functions are necessary to compute reliable statistics. In this work, we353
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consider covariance functions in a radius up to 1000 km around the water column, which354

usually provides between 500 and 1000 covariance functions to compute the expectation355

terms. Numerical experiments (not shown) indicated that the hybridization coefficients356

converge to the values exhibited in this study for a radius larger than 750 km.357

In order to limit the computational burden of estimating the hybridization coeffi-358

cients, they are computed on a subgrid of the domain (every 5 grid cells). The hybridiza-359

tion coefficients are then interpolated to the remaining wet points using linear interpo-360

lation of the neighbouring wet points.361

The hybridization coefficients are estimated based on both temperature and salin-362

ity as they are key oceanic variables. Doing so yields, on one hand, a lower root mean363

square error than when computing the hybridization coefficients solely based on the tem-364

perature (not shown) and, on the other hand, a lower computational cost than when adding365

variables like e.g. the velocity. In other words, this is the best compromise between ac-366

curacy and computational efficiency.367

6 Experimental design and evaluation metrics368

6.1 Experimental design369

The free ensemble run (hereafter referred to as FREE), consists of 30 members run370

with transient forcing from 1850 to 2014. The true run (hereafter referred to as TRUE)371

is created by spawning one member (adding noise to surface temperature) on member372

1 of FREE in 1960 and running it up to 2010. It was verified in Y. Wang et al. (2022)373

that TRUE and member 1 of FREE were fully de-synchronised at the start of the ex-374

periment in 1980. The synthetic observations of SST are generated by adding white noise375

to the monthly SST of TRUE. The amplitude of the noise is set equal to the observa-376

tion uncertainty (in space and time) of HadISST2. As in the real framework for assim-377

ilation of SST, we do not use SST data under sea ice.378

We produce reanalyses with monthly assimilation of SST observations from January379

1980 to December 2010. All experiments start with the same initial dynamic ensemble380

(taken from FREE in January 1980). The static ensemble is made from the monthly restarts381

of a 315 years stable pre-industrial run. It is different for each calendar month and we382

use the same static ensemble for the same month of two different years. This implies that383

we have in total 12 different static ensembles, one for each calendar month. The exper-384

iments are separated into three categories:385

• EnKF: the standard EnKF used in NorCPM (Counillon et al., 2016).386

• Standard hybrid: a constant and global hybridization coefficients (see Section387

4). The sum of αd and αs is 1. We performed 7 reanalyses with αd = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.388

The case where αd = 0 is equivalent to an ensemble of EnOI, and the case where389

αd = 1 is equivalent to the standard EnKF.390

• Adaptive hybrid: the hybridization coefficients are estimated at each assimi-391

lation cycle, they vary spatially and their sum is not imposed equal to 1 (see Sec-392

tion 5).393

6.2 Evaluation metrics394

The accuracy of the reanalyses is estimated based on the root mean square error (RMSE).395

The RMSE is computed as:396

RMSE =

√√√√ N∑
i=1

ωi (xi − xt
i)

2
. (28)397
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In the following, the RMSE is computed either over a time series at a given point398

(in which case ωi = 1
N ), or over the whole domain at a given time (in which case ωi399

is the relative size of the grid cell).400

In order to easily compare RMSE between the nine different schemes (see Section 6.1),401

we introduce the Mean Skill Score of one configuration i, MSSi. It is the relative reduc-402

tion of RMSE compared to the mean of the RMSE of the nine configurations, Eq. (29):403

MSSi = 1− RMSEi

1
9

∑9
j=1 RMSEj

, (29)404

where RMSEi is the RMSE of one of the schemes. The MSS is 1 if the scheme is per-405

fect (RMSE is equal to 0), between 0 and 1 if the scheme performs better than the mean406

of the other schemes and negative otherwise.407

Another important metric to evaluate the relative efficiency of different data assim-408

ilation schemes is to consider the “degrees of freedom for signal” (DFS, Cardinali et al.,409

2004; Wahba et al., 1995). It can be interpreted as the number of modes of variability410

reduced from the ensemble by the assimilation (i.e. the assimilation change). The DFS411

is defined as follows:412

DFS =
∂Hxa

d

∂y
= Tr (KH) (30)413

The DFS is between 0 (i.e., the observations have no impact on the ensemble), and414

the total number of degrees of freedom (i.e., observations has collapsed the number of415

modes of variability into a single one, Xie et al., 2018). The total number of degrees of416

freedom is the minimum between the ensemble size and the number of observations used417

for the local assimilation. In NorCPM, in the context of strong localisation (where we418

retain only the nearest observation, see Section 3), it implies that the DFS is between419

0 and 1 (independently of the ensemble size). This allows for an inter-comparison of the420

DFS even though the schemes have different ensemble sizes.421

7 Results422

7.1 Stability of the adaptive covariance hybridization423

The adaptive covariance hybridization method (see Section 5) estimates adaptive hy-424

bridization coefficients both in space and time.425

Figure 1 shows the time series of globally averaged αd, αs, and αd+αs (sea ice-covered426

points where there are no SST data are masked). After a spin-up period of approximately427

three years, the averaged values of the hybridization coefficients converge to a global av-428

erage of 0.7 for αd, and 0.175 for αs. This shows that the mean values of αd and αs are429

stable in time and display a limited temporal variability despite an important spatial vari-430

ability, and so does the sum αd+αs. Hence, the mean values of αd and αs computed431

in specific basins show similar behaviour and converge within 3 years (not shown). The432

global averaged value of αd + αs is roughly 0.875. Following remark 1 in Section 5.2,433

it implies that the static ensemble has a larger error variance than the error growth within434

one assimilation cycle and needs to be reduced - in agreement with Oke et al. (2008),435

Counillon and Bertino (2009), and Evensen (2003).436

Figures 2 shows the pointwise averaged map of αd and αs computed over the years437

1983 to 2010 for January and July. The values of αd display an important spatial vari-438

ability with values ranging approximately from 0.4 up to 1. Regions where αd is small439

coincide with places where αs is large. The spatial variations of the values of αd and αs440
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Figure 1. Time series of the global average values of αd, αs, and αd + αs. Ice-covered regions

are masked.

(Section 5.2) can be explained from the perspective of the optimality of the dynamic co-441

variance Pd (depending on the sampling error in the dynamical ensemble), and the collinear-442

ity between the static covariance Ps and the asymptotic covariance P (meaning that static443

covariance is sufficient). Larger values of αd are found in locations where the dynamic444

is non-stationary and internal variability is large; e.g., in the Northern part of the At-445

lantic Ocean (Gulf Stream pathway, Subpolar Gyre, near the ice edge), the North Pa-446

cific, El Niño–Southern Oscillation and in the Southern Ocean. Conversely, there are rel-447

atively low values of αd in the Indian Ocean where variability is primarily externally forced448

(Guemas et al., 2013), the decadal fluctuations are less pronounced than in the Atlantic449

or the Pacific Ocean and where the Pacific Ocean teleconnections dominate the region-450

ally driven variability (Frankcombe et al., 2015). In the tropical Atlantic, the model is451

performing very poorly and has no skill (Counillon et al., 2021); it is thus not surpris-452

ing that αd is also low. In the Southern Ocean, in summer, high values of αd and αs co-453

exist. This implies that the sampling noise of the dynamic covariance is small while the454

numerator of αs is small too. This means that E [Pd] and Ps are close to collinearity and455

that Var (Pdi) for all i is small according to remark 3, therefore the dynamic covariance456

is stationary.457
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Figure 2. Pointwise averaged estimate of αd (top row), and of αs (bottom row) computed

over 1983–2010 for the months of January and July.

In Fig. 3, we analyse the interannual de-seasoned standard deviation of the hybrid458

coefficient beyond year 3 (once it has converged). We can see that the variability is very459

small, except in a few places, e.g. in the Arctic, in Indian Ocean and in the tropical At-460

lantic and Pacific Gyre. In those places, the performance between the standard hybrid461

coefficient method is relatively small (not shown).462

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Standard-deviation of the de-seasoned values of αd (a), and of αs (b) computed

over 1983–2010.

7.2 Intercomparison of the performance of the EnKF and the hybrid co-463

variance schemes464

Figure 4 shows the MSS (see Section 6.2) of ocean heat and salt content for the dif-465

ferent schemes at different depth ranges (0-200m, 200-500m, ..., 2000-4000m). We in-466

clude the EnKF (αd = 1 and αs = 0) and the ensemble of EnOI (αd = 0 and αs = 1)467

as particular cases of the standard hybrid covariance method. A red cell (resp. blue cell)468

indicates that the scheme provides a reduction (resp. an increase) of RMSE compared469

to the average performance of all the schemes for a given depth range. For example, the470

adaptive hybrid and the standard hybrid scheme with αd = 0.9 reduces the RMSE of471

the temperature at depth 500-1000m by 10% compared to the average performance, while472

the standard hybrid with αd = 0 increases the RMSE at the depth 200-500m by 15%.473

The results for heat and salt content are very similar. As expected, the EnKF is out-474

performing the ensemble of EnOI (i.e., αd = 0), showing the superiority of flow-dependent475

covariance over static covariance. It also shows the importance of tuning the hybrid co-476

efficient as for a large span of standard hybrid coefficient values, the hybrid covariance477

methods perform poorer than the EnKF. When αd is larger than 0.8 (αd = 0.9 being478

optimal), the standard hybrid covariance outperforms the EnKF; notably between 2000479

and 4000m. In the latter, the error is gradually increasing due to spurious covariance480

at depth (Y. Wang et al., 2022; Bethke et al., 2018). In the former, the improvements481

are mostly the consequence of the filtering of the sampling noise with the static covari-482

ance, especially in the North Pacific and the North Atlantic. In the Weddell Sea and the483

Southern Ocean, there is virtually no hybridization (with small values of αs associated484

with a very limited variability), and the improvement is associated to deflation/regularization485

of the dynamic covariance with the dynamic coefficient αd. The adaptive hybrid covari-486

ance method performs best at nearly all depth levels for heat and salt content. In the487

following, we will therefore present the adaptive hybrid and assess the spatial distribu-488

tion of the improvements over the EnKF, but results with the best standard hybrid are489

nearly comparable (not shown).490
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Figure 4. MSS of all the schemes for temperature (a) and salinity (b) at different depth inter-

vals. αd = 0, αd = 0.2, . . . , αd = 0.9 refer to the hybridization coefficient of the standard hybrid.

αd = 0 is the ensemble of EnOI, full static case, and αd = 1 is the EnKF – the default scheme

used in NorCPM. ”α adp” stands for the adaptive hybridization scheme. The warm colour indi-

cates that the scheme performs better than the average skill of all systems.

The adaptive hybrid and the EnKF achieve similar performance in the top 1000m491

(Figure 4), and we focus on performance below this depth range. We compare the re-492

duction of RMSE of the EnKF and the adaptive hybrid compared to that of FREE for493

two depths range.494

Between 1000 and 2000m (Fig. 5), the EnKF reduces the error overall (warmer value495

is predominant) compared to FREE. Still, there are few places where it increases the RMSE496

of temperature, e.g.: in the North Pacific, the subtropical Atlantic, and near the Wed-497

dell Sea. Results are relatively comparable for salt content (see Fig. 5-b). The overall498

pattern is similar with the adaptive hybrid. Still, it yields further improvement, as in499

the North Atlantic subpolar gyre and it mitigates the degradation in the aforementioned500

regions. The degradation in the Weddell Sea is nearly completely removed.501
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Figure 5. RMSE difference between FREE and the EnKF (a,b), and FREE and the adaptive

hybrid (c,d) between 1000 and 2000m depth for the temperature (left column) and the salinity

(right column). Warm colour indicates that assimilation reduces error compared to FREE.

Between 2000 and 4000m (Fig. 6), the EnKF degrades overall performance compared502

to FREE. The degradation is larger in the North Pacific, the North Atlantic, and the503

Southern Ocean for both the temperature and the salinity. The improvements are also504

limited to the South Atlantic Ocean. The adaptive hybrid corrects or mitigates these bi-505

ases. Some degradation remains (in the North Atlantic subpolar gyre, the Sea of Japan506

in particular for salinity), but the assimilation yields an overall improvement over FREE.507
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Figure 6. Same as fig. 5 but for 2000–4000m depth interval.

An ideal assimilation system achieves minimal error while making the smallest change508

possible during the assimilation. Figure 7 shows the difference of DFS (that quantifies509

the assimilation change) between the EnKF and the best standard hybrid (αd = 0.9)510

(panel a) and between the EnKF and the adaptive hybrid (panel b). The standard hy-511

brid has a larger DFS value than the EnKF (negative values), implying that the data512

assimilation induces more change. This is most notable in the Southern Ocean and the513

tropical Pacific. In the Southern Ocean, the standard hybrid covariance method performs514

better than the EnKF, so it can be argued that the larger corrections are beneficial. How-515

ever, in the tropical Pacific, the ∆RMSE of the two remains quite close, meaning the anal-516

ysis induces more changes without improving performance. On the contrary, the adap-517

tive hybrid, Fig. 7-(b), has a DFS close to that of the EnKF. There are some slight dif-518

ferences (in the North Pacific, the North Atlantic, and the Southern Ocean), with a max-519

imum in the Irminger Sea, where it strongly outperforms the EnKF (e.g., 1000–2000m).520

It implies that the adaptive hybrid induces only change where this yields improved per-521

formance.522
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Figure 7. Difference of DFS between the EnKF and the standard hybrid covariance with

αd = 0.9 (a), and between EnKF and adaptive hybrid covariance (b). The cold colour indicates

that the hybrid covariance yields a larger reduction of DFS than with the EnKF.

8 Discussion and conclusion523

In this work, we compare two different versions of hybrid covariance data assimila-524

tion with the standard EnKF for producing climate reanalysis. We use the Norwegian525

Climate Prediction Model (NorCPM) and work in an idealised twin experiment frame-526

work. The reanalyses are performed with sole assimilation of SST for the period 1980-527

2010. In the first hybrid coefficient method, the hybridization coefficients are tuned em-528

pirically to optimize the performance, while in the second, the hybridization coefficients529

are estimated adaptively, both in space and time. The two hybrid coefficient methods530

outperform the standard EnKF and mitigate the degradation it introduces in the inter-531

mediate and deep ocean compared to unassimilated simulations. The adaptive performs532

best and is doing so by making smaller corrections than the standard hybrid. The hy-533

bridization coefficients with the adaptive hybrid are converging quickly (less than 3 years)534

to stable values and only show small seasonal variations.535

Other alternatives have been developed in parallel to address the sampling error with536

the EnKF in NorCPM – namely the isopycnal vertical localization (Y. Wang et al., 2022).537

The latter limits the assimilation update of temperature and salinity to a fixed isopy-538

cnal level and was shown to mitigate the degradation seen in the standard EnKF. Com-539

bining the two approaches is straightforward and will be tested in the future. However,540

the isopycnal vertical localization detailed in Y. Wang et al. (2022) was tuned for an en-541

semble size of 30 members, while now the ensemble size is much larger (350 members).542

The vertical tapering will thus need to be revised.543

The adaptive hybrid coefficients method is slightly more expensive than the stan-544

dard hybrid as it requires additional computation related to the estimation of the hy-545

brid coefficient at each assimilation step and corresponds to an increase of 7.5% of the546

total CPU-time of the simulation. Here, the hybridization coefficients are estimated at547

every 5 grid cells, but we could have estimated them at every 10 grid cells (reducing the548

cost by 4) with a comparable solution (not shown). In that case, the increase of the to-549

tal CPU-time of the simulation would be only of 0.5% to 1%. Furthermore, as these co-550

efficients converge rapidly to stable estimates (within 3 model years, showing only a weak551

seasonal variability). They could be stored and directly used instead of being recalcu-552

lated every time. As such, we do not consider that the additional computational cost would553

be much larger than the standard hybrid, which also has an additional cost (empirical554

estimation of the global coefficient).555
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In this study, the estimation of the hybridization coefficients in the adaptive method556

is constant in the vertical. Nonetheless, adapting the method to estimate different hy-557

bridization coefficients for different vertical levels or variables would be relatively triv-558

ial. Furthermore, we tested the method for the particular case of assimilation of SST ob-559

jective analysis, where we update a single water column with a single observation, (i.e.,560

”strong localization”). For the assimilation of temperature/salinity profile data, the ob-561

servation error is uncorrelated, and a larger localisation radius is used in NorCPM, the562

method can be adjusted following Ménétrier (2024).563

A consequence of the perfect twin experiments setting is that models are unbiased564

and that for an infinite ensemble size, the ensemble covariance matrix converges with the565

true covariance matrix. These assumptions fall apart with Earth System Models with566

considerable biases (Palmer & Stevens, 2019). Handling these biases in data assimila-567

tion remains challenging, particularly with sparse and inhomogeneous observation net-568

works and where model bias can change, e.g. as a response to external forcings. There-569

fore, the method presented in this work would benefit from further developments before570

it can be tested in a realistic system. Currently, several methods are being developed and571

tested within NorCPM to handle climate biases directly, namely: anomaly coupling (Counillon572

et al., 2021), multivariate parameter estimation (Singh et al., 2022), super-resolution data573

assimilation (Barthélémy et al., 2022), and supermodelling (Counillon et al., 2023; Scheven-574

hoven et al., 2023).575

Appendix A Minimization of the function e576

The function e is defined as:577

e(αd, αs) = E
[
∥αdPd + αsPs − P∥2

]
. (A1)578

By linearity of the expectation operator and by definition of the L2-norm ∥.∥, we can579

write:580

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ α2

s ∥Ps∥2 + E
[
∥P∥2

]
581

+2αdαsE [Pd · Ps]− 2αdE [Pd · P]− 2αsE [P · Ps] . (A2)582

It follows from Eq. (15b) that:583

E [Pd · P] = E
[
∥P∥2

]
(A3)584

Replacing Eq. (A3) in Eq. (A2), we obtain the following expression of e:585

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ α2

s ∥Ps∥2 + (1− 2αd)E
[
∥P∥2

]
+ 2αs(αd − 1)E [Pd · Ps] . (A4)586

e being a quadratic function of two variables, αd and αs, with positive coefficients587

associated to α2
d and α2

s, its has a unique minimum where both the partial derivatives588

with respect to αd and αs are null. Hence, minimizing the function e is equivalent to solve589

the following system of two equations:590


∂e(αd, αs)

∂αd
= 0

∂e(αd, αs)

∂αs
= 0

(A5)591
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The partial derivatives of e with respect to αd and αs are given by Eq. (A6) and (A7):592

∂e(αd, αs)

∂αd
= 2αdE

[
∥Pd∥2

]
+ 2αsE [Ps · Pd]− 2E

[
∥P∥2

]
, (A6)593

∂e(αd, αs)

∂αs
= 2αdE [Ps · Pd] + 2αs ∥Ps∥2 − 2E [Ps · Pd] . (A7)594

From which it follows that minimizing the function e is equivalent to solving the sys-595

tem of two equations:596


αdE

[
∥Pd∥2

]
+ αsE [Pd · Ps] = E

[
∥P∥2

]
αdE [Pd · Ps] + αs ∥Ps∥2 = E [Pd · Ps] ,

(A8)597

Appendix B Benefits of hybridization598

By definition of the function e:599

e(1, 0) = E
[
∥Pd − P∥2

]
. (B1)600

By linearity of the expectation operator and by definition of the L2-norm, we can601

show that602

e(1, 0) = E
[
∥Pd∥2

]
+ E

[
∥P∥2

]
− 2E [Pd · P] . (B2)603

Replacing Eq. (A3) in Eq. (B2) we get:604

e(1, 0) = E
[
∥Pd∥2

]
− E

[
∥P∥2

]
(B3)605

From which we can express the difference of the errors between the EnKF and the606

hybrid scheme:607

e(1, 0)− e(αd, αs) = (1− α2
d)E

[
∥Pd∥2

]
− 2(1− αd)E

[
∥P∥2

]
608

−α2
s ∥Ps∥2 − 2αs(αd − 1)E [Ps · Pd] . (B4)609

For the sake of simplicity, we note:610

α = E
[
∥P∥2

]
, (B5)611

β = ∥Ps∥2 , (B6)612

γ = E [Pd · Ps] , (B7)613

δ = E
[
∥Pd∥2

]
. (B8)614

Eq. (B4) rewrites:615
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e(1, 0)− e(αd, αs) = (1− α2
d)δ − 2(1− αd)α− α2

sβ − 2αs(αd − 1)γ. (B9)616

Given that αd = nd

∆ and αs =
ns

∆ :617

e(1, 0)− e(αd, αs) =

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ

∆2
. (B10)618

∆2 being positive, showing that e(1, 0)− e(αd, αs) ≥ 0 is equivalent to show that:619

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ ≥ 0. (B11)620

On the other hand, nd, ns, and ∆ write:621

nd = αβ − γ2, (B12)622

ns = γδ − αγ, (B13)623

∆ = βδ − γ2. (B14)624

Replacing nd, ns, and ∆ by their expression given by Eqs. (B12), (B13), and (B14)625

in the left hand side of Eq. (B11), and developing all the terms we can show that Eq. (B11)626

is verified if and only if:627

β(βδ − γ2)(δ − α)2 ≥ 0. (B15)628

β ≥ 0 as a sum of squares and (δ − α)2 ≥ 0 as a square. Showing that e(1, 0) −629

e(αd, αs) ≥ 0 is then equivalent to show that βδ ≥ γ2 i-e ∥Ps∥2 E
[
∥Pd∥2

]
−E [Pd · Ps]

2 ≥630

0. This inequality holds, see Appendix C, Eq. (C9), and replacing P by Pd. As a con-631

sequence, e(1, 0) ≥ e(αd, αs).632

Appendix C Collinearity/orthogonality of E [P] and Ps633

Because Pd is an unbiased estimation of P, see Eq. (15a), we have: E [Pd · Ps] = E [P · Ps].634

Therefore:635

∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
= ∥Ps∥2 E

[
∥P∥2

]
− E [P · Ps]

2
. (C1)636

By definition of ∥Ps∥2 and E
[
∥P∥2

]
:637
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∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE

[
P2

i

]
+

∑
1≤i ̸=j≤p

P2
siE

[
P2

j

]
, (C2)638

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
si

(
Var (Pi) + E [Pi]

2
)

639

+
∑

1≤i ̸=j≤p

P2
si

(
Var (Pj) + E [Pj ]

2
)
, (C3)640

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE [Pi]

2
+

∑
1≤i ̸=j≤p

P2
siE [Pj ]

2
+

p∑
i=1

P2
siVar (Pi)641

+
∑

1≤i̸=j≤p

P2
siVar (Pj) . (C4)642

On the other hand:643

E [P · Ps]
2
=

p∑
i=1

P2
siE [Pi]

2
+ 2

∑
1≤i<j≤p

PsiE [Pi]PsjE [Pj ] . (C5)644

Therefore:645

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)646

+
∑

1≤i ̸=j≤p

P2
siE [Pj ]

2
647

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C6)648

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)649

+
∑

1≤i<j≤p

P2
siE [Pj ]

2
+ P2

sjE [Pi]
2

650

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C7)651

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)652

+
∑

1≤i<j≤p

(PsiE [Pj ]− PsjE [Pi])
2

(C8)653

As a consequence,654

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2 ≥ 0, (C9)655

as the sum of positive terms, and ∥Ps∥2 E
[
∥P∥2

]
−E [P · Ps]

2
is equal to 0 if and only656

if Var (Pi) = 0 for all i = 1, . . . , p and (PsiE [Pj ]− PsjE [Pi])
2
= 0 for all 1 ≤ i < j ≤657

p. In particular, this condition is equivalent to:658
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Ps1E [Pj ] = PsjE [P1] , j = 2, . . . , p, (C10)659

which means that Ps and E [P] are collinear.660

Appendix D Hybrid target661

Following (Ménétrier, 2024), we can replace the asymptotic covariance P in Eq. (16)662

by an hybrid target ᾱdP+ᾱsPs, where ᾱd and ᾱs are given by the user. Following Ap-663

pendix A, we can show that the new optimal hybridization coefficients (α′
d, α

′
s) are so-664

lutions to the following system of equations (D1):665


αdE

[
∥Pd∥2

]
+ αsE [Pd · Ps] = ᾱdE

[
∥P∥2

]
+ ᾱsE [Pd · Ps]

αdE [Pd · Ps] + αs ∥Ps∥2 = ᾱdE [Pd · Ps] + ᾱs ∥Ps∥2 .
(D1)666

The solution of the system (D1) is given by:667

(α′
d, α

′
s) =

(
n′
d

∆′ ,
n′
s

∆′

)
, (D2)668

where:669

∆′ = ∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]

2
, (D3)670

n′
d = ᾱd

(
∥Ps∥2 E

[
∥P∥2

]
− E [Pd · Ps]

2
)
, (D4)671

n′
s = ᾱd

(
E
[
∥Pd∥2

]
− E

[
∥P∥2

])
E [Pd · Ps]672

+ᾱs

(
∥Ps∥2 E

[
∥Pd∥2

]
− E [Pd · Ps]

2
)
. (D5)673

Therefore:674

{
α′
d = ᾱd × αd

α′
s = ᾱd × αs + ᾱs

(D6)675

The new hybrid covariance P̄h is given by:676

P̄h = α′
dPd + α′

sPs (D7)677

P̄h = ᾱd × αdPd + ᾱd × αsPs + ᾱsPs (D8)678

P̄h = ᾱdPh + ᾱsPs (D9)679
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All the data on which this study is based were synthetically generated by (Barthélémy,681
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The figures were made using:684
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• Matplotlib version 3.5.2 [Software], Hunter (2007), available from: https://doi685
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