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Abstract

We first consider the nonlinear time fractional diffusion equation

D1+α
0|t u+ Dβ

0|tu−∆Hu = |u|p

posed on the Heisenberg group H, where 1 < p is a positive real nimber to be specified
later; Dδ

0|t is the Liouville-Caputo derivative of order δ. For 0 < α < 1, 0 < β ≤ 1. This
equation interpolates the heat equation and the wave equation with the linear damping Dβ

0|tu.
We present the Fujita exponent for blow-up. Then establish sufficient conditions ensuring
non-existence of local solutions. We extend the analysis to the case of the system

D1+α
0|t u+ Dβ

0|tu−∆Hu = |v|q

D1+δ
0|t v + Dγ

0|tv −∆Hv = |u|p.

Our method of proof is based on the nonlinear capacity method.
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1 Introduction

This paper is devoted to proving nonexistence results first for the equation

D1+α
0|t u+ Dβ

0|tu−∆Hu = |u|p (1)

posed on the Heisenberg group H, supplemented with the initial data

u(η, 0) = u0(η), ut(η, 0) = u1(η). (2)

Then we consider the system

D1+α
0|t u+ Dβ

0|tu−∆Hu = |v|q, (3)

D1+δ
0|t v + Dγ

0|tv −∆Hv = |u|p, (4)

under the initial data

u(η, 0) = u0(η), ut(η, 0) = u1(η), v(η, 0) = v0(η), and vt(η, 0) = v1(η). (5)

Where 0 < α, γ, β, δ < 1 and p, q > 1. We will present a "threshold" exponent depending
on the data.
Let us mention from the beginning that, in practice, the exponents α, β in (1) are in general
of the form α = 1 ± ε1, β = 1 ± ε2 with 0 < ε1, ε2 small; here, we consider the case where
α = 1 − ε1, β = 1 − ε2. Of course a comparaison of our results with those of the wave
equation with fractional damping corresponding to α = β = 1 will be of great interest and
will shed light on the modeling.

Before describing our results in details, let us dwell on existing references on the subject. It
took more than twenty years and great efforts of many researchers to obtaining the critical
exponent for the wave equation in the case the problem is posed on the euclidean space; the
final result for any dimension of the space is due to Yordanov and Zhang [16]. The Fujita
exponent for the wave equation with linear damping has been obtained by Zhang [17] and
Kirane and Qafsaoui [9].
For the wave equation posed on the Heisenberg group, very few articles appeared tille now. To
describe them, let us precise the framework [13]: Let η = (x, y, τ) = (x1, ..., xN , y1, ..., yN , τ) ∈
R2N+1 with N ≥ 1. The Heisenberg group H, whose points are denoted by η, is the set R2N+1

endowed with the group operation ◦ defined by

η ◦ η̃ = (x+ x̃, y + ỹ, τ + τ̃ + 2(< x, ỹ > − < x̃, y >)),

where < ., . > is the usual inner product in RN . The laplacian ∆H over H is defined, via the
vector fields Xi = ∂

∂xi
+ 2yi

∂
∂τ

and Yi = ∂
∂yi

+ 2xi
∂
∂τ
, by

∆H =
N∑
i=1

(X2
i + Y 2

i ),
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which is explicitly

∆H =
N∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+ 4yi

∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2i + y2i )

∂2

∂τ 2

)
.

The homogeneous dimension of H is equal to Q = 2N + 2.
Pohozaev and Véron [13] obtained, among other results, a nonexistence result for the equa-
tion

utt −∆H(au) ≥ |u|p.

Concerning local existence and global existence results for small initial data, the results
obtained by Zuily [18] are worth to be mentioned.
For the following problem

utt −
2N∑
j=1

X2
j u+

2N∑
j,k=1

X2
j γjk(u,Xu)XjXku+ λut + µu = F (u,Xu), t > 0, (6)

subject to the initial conditions

u|t=0 = εu0, ut|t=0 = εu1, (7)

where the nonlinearities F (u,Xu) and γjk(u,Xu) are C∞ functions of their arguments u,X =

(∂t, X1, . . . · · ·X2N), X2u = (XiXju)0≤i,j≤2n, λ > 0, µ ≥ 0; the functions F and γjk satisfy,
for 1 ≤ j, k ≤ 2N :

|γjk(u, ξ)| ≤ C(µ|u|+ |ξ|), |F (u, ξ)| ≤ C(µ|u|2 + |ξ|2),

for |u|+ |ξ| ≤ 1, he obtained the following results:

• If u0, u1 ∈ C∞, then there exist a finite time T > 0 such that problem (6)-(7) admits
a unique solution u ∈ C∞([0, T ]× R2n+1) (of course without the restriction on F and
γjk)

• . If u0, u1 ∈ C∞ and the restrictions on F and γjk here above are assumed, then there
exists ε0 > 0 but small enough such that, if ε ≤ ε0, the problem (6)-(7) admits a
unique global solution u ∈ C∞(R2n+1 × R+).

Of course, following the argument in [18], one can obtain local and global (though for small
initial data) existence results for the equations considered in this paper modulo some modi-
fications inherent to the fractional in time setting.

More recently, Georgiev and Palmieri [6] treated the problem

utt −∆Hu+ ut = |u|p, p > 1, t > 0,
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with given initial data
u|t=0 = εu0, ut|t=0 = εu1.

They find, as expected, that the Fujita exponent is pFuj = 1 + 2
Q
. Let us mention here in

passing that the fact that solutions blow-up for 1 < p ≤ pFuj has already been decided by
Kirane et al. [3]. The new points in [6] is the local existence result and the global existence
result for suitable initial data when p > pFuj.
An other remark is that in Theorem 2.3 in [6] the condition

lim
R→∞

∫
DR

(u0(η) + u1(η)) dη > 0

can be relaxed into
lim
R→∞

∫
DR

u0(η) dη > 0

by taking β
(
t2

R2

)
instead of β

(
t
R2

)
in the proof as it was noticed by Pohozaev and Véron

[13].

2 Preliminaries

In this section, we present some preliminaries that will be used in the sequel and we announce
the main results. At first, let us recall some definitions and properties concerning fractional
integrals and derivatives.

Let n ∈ N and θ ∈ (n − 1, n). For a function f belongs to Cn([0, T ]), the left –handed
Liouville-Caputo derivative is given by(

Dθ
0|tf
)

(t) = In−θ0|t (f (n))(t).

Where, for all f ∈ Lq(0, T ), 1 ≤ q ≤ ∞ and α ∈ (0, 1) the left–handed and right–handed
fractional integral of order α are the following

(
Iα0|tf

)
(t) =

1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, and
(
Iαt|Tf

)
(t) =

1

Γ(α)

∫ T

t

(s− t)α−1f(s) ds.

Lemma 2.1. Let f, g ∈ C([0, T ]), we have the formula of integration by parts (see[14])∫ T

0

(
Iα0|tf

)
(t)g(t) dt =

∫ T

0

f(t)
(
Iαt|Tg

)
(t) dt.

Lemma 2.2. For t ≥ 0, T > 0 and σ � 1, let

f(t) =

(
1− t

T

)σ
+

.

4



Then for all α ∈ (0, 1) and k ∈ {0, 1, 2}, we have

(
I1−αt|T f

)(k)
(t) =

(−1)kΓ(σ + 1)

Γ(2 + σ − α− k)
T 1−α−k

(
1− t

T

)1+σ−α−k

+

This yields
I1−αt|T f(T ) = (I1−αt|T f)t(T ) = 0,

and
I1−αt|T f(0) =

Γ(σ + 1)

Γ(2 + σ − α)
T 1−α, and (I1−αt|T f)t(0) = − Γ(σ + 1)

Γ(1 + σ − α)
T−α.

3 Results

First let
QT = H× [0, T ].

Then, for the case of problem(1)-(2), we start with

Definition 3.1. A weak solution of problem (1)-(2) is a function u ∈ C([0, T ];Lploc(R2N+1)∩
C([0, T ];L1

loc(R2N+1) such that∫
QT

ϕ|u|p +

∫
H
u0(η)

(
I1−βt|T ϕ− (I1−αt|T ϕ)t

)
(η, 0) dη +

∫
H
u1(η)(I1−αt|T ϕ)(η, 0) dη

=

∫
QT

u(I1−αt|T ϕ)tt −
∫
QT

u(I1−βt|T ϕ)t −
∫
QT

u∆Hϕ, (8)

for any nonnegative function ϕ ∈ C2(QT ), such that

I1−αt|T ϕ(η, T ) = I1−βt|T ϕ(η, T ) = (I1−αt|T ϕ)t(η, T ) = 0.

Theorem 3.2. Let 1 < p. Assume that α, β ∈ (0, 1) and u0, u1 ∈ L1(H). If

lim sup
T→+∞

T ( 1
p−1
−Q

2
)β

∫
H

(
u0(η) + T β−αu1(η)

)
dη = +∞, (9)

then problem (1)-(2) does not admit global in time solutions.

Corollary 3.3. Let 1 < p. Assume that α, β ∈ (0, 1) and u0, u1 ∈ L1(H). Then, in the all
following situation, problem (1)-(2) does not admit global in time solutions.

(i) 0 < β < α,
∫
H u0(η) dη > 0, and 1 < p < 1 + 2

Q
.

(ii) 0 < α < β,
∫
H u1(η) dη > 0, and 1 < p < 1 + 2β

β(Q−2)+2α
.

(iii) α = β,
∫
H(u0(η) + u1(η)) dη > 0, and 1 < p < 1 + 2

Q
.

(iv)
∫
H u0(η)dη > 0,

∫
H u1(η) dη > 0, and 1 < p < 1 + 2β

βQ−2max{0,β−α} .
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Now for the problem(3)-(4)-(5), the weak solution is defined as follow

Definition 3.4. A weak solution of system (3)-(4)-(5) is a couple of functions

u ∈ C([0, T ];Lploc(R
2N+1))∩C([0, T ];L1

loc(R2N+1)), v ∈ C([0, T ];Lqloc(R
2N+1))∩C([0, T ];L1

loc(R2N+1)),

such that∫
QT

ϕ|v|q +

∫
H
u0(η)

(
I1−βt|T ϕ− (I1−αt|T ϕ)t

)
(η, 0) dη +

∫
H
u1(η)(I1−αt|T ϕ)(η, 0) dη

=

∫
QT

u(I1−αt|T ϕ)tt −
∫
QT

u(I1−βt|T ϕ)t −
∫
QT

u∆Hϕ (10)

∫
QT

ϕ|u|p +

∫
H
v0(η)

(
I1−γt|T ϕ− (I1−δt|T ϕ)t

)
(η, 0) dη +

∫
H
v1(η)(I1−δt|T ϕ)(η, 0) dη

=

∫
QT

v(I1−δt|T ϕ)tt −
∫
QT

v(I1−γt|T ϕ)t −
∫
QT

v∆Hϕ, (11)

for any nonnegative function ϕ ∈ C2(QT ), such that at

I1−αt|T ϕ(η, T ) = I1−βt|T ϕ(η, T ) = (I1−αt|T ϕ)t(η, T ) = I1−δt|T ϕ(η, T ) = I1−γt|T ϕ(η, T ) = (I1−αt|T δ)t(η, T ) = 0.

Theorem 3.5. Let p, q > 1, assume that α, β ∈ (0, 1) and u0, u1, v0, v1 ∈ L1(H). If

lim sup
T→+∞

T
2(β+qγ)−Q(q(p−1)β+(q−1)γ)

2(pq−1)

∫
H

(
u0(η) + T β−αu1(η)

)
dη = +∞, (12)

or
lim sup
T→+∞

T
2(γ+pβ)−Q(p(q−1)γ+(p−1)β)

2(pq−1)

∫
H

(
v0(η) + T γ−δv1(η)

)
dη = +∞. (13)

Then problem (3)-(4)-(5) does not admit global in time solutions.

Depending on the initial data (5), we give in the following some particular cases when the
blow up occurs.

Corollary 3.6. Let p, q > 1, assume that α, β ∈ (0, 1) and u0, u1, v0, v1 ∈ L1(H). Thanks to
(12), the problem (3)-(4)-(5) does not admit global in time solutions in the follwing cases:

(i) 0 < β < α,
∫
H u0(η) dη > 0, and q(p−1)β+(q−1)γ

β+qγ
< 2

Q
.

(ii) 0 < α < β,
∫
H u1(η) dη > 0, and q(p−1)β+(q−1)γ

(pq−1)(β−α)β+qγ <
2
Q
.

(iii) α = β,
∫
H(u0(η) + u1(η)) dη > 0, and q(p−1)β+(q−1)γ

β+qγ
< 2

Q
.

(iv)
∫
H u0(η)dη > 0,

∫
H u1(η) dη > 0, and q(p−1)β+(q−1)γ

(pq−1)max{0,β−α}+β+qγ <
2
Q
.

Using (13), similar contraints can be obtained to ensure the nonexistence of global in time
solutions to the problem (3)-(4)-(5).
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4 The proof of main results

Let f be the function introduced in Lemma2.2. We define

ϕ(t, η) = f(t)g(η),

with
g(η) = ψλ

(
|x|4 + |y|4 + τ 2

T 2β

)
, λ� 1,

and ψ ∈ C∞([0,∞)) be defined by

ψ(ξ) =


1, 0 ≤ ξ ≤ 1,

↘, 1 ≤ ξ ≤ 2,

0, ξ ≥ 2.

It is easy to verify that ϕ can be chosen as a test function in Definition3.1 and Definition3.4.

Proof. Starting with the proof of Theorem3.2 and assume that we have a global solution non
identically equal to zero to (1)-(2). Then from (8), we deduce that∫

QT

ϕ|u|p +A(u0, u1, α, β, T ) ≤
∫
QT

|u(I1−αt|T ϕ)tt|+
∫
QT

|u(I1−βt|T ϕ)t|+
∫
QT

|u∆Hϕ|, (14)

with

A(u0, u1, α, β, T ) =

∫
H
u0(η)

(
I1−βt|T ϕ− (I1−αt|T ϕ)t

)
(η, 0) dη +

∫
H
u1(η)(I1−αt|T ϕ)(η, 0) dη. (15)

Using the ε-Young inequality

ab ≤ εap + Cεb
p′ , a, b, ε, Cε > 0, 1 < p, p′, p+ p′ = pp′,

we obtain the following inequalities∫
QT

|u(I1−αt|T ϕ)tt| =
∫
QT

|uϕ
1
pϕ−

1
p (I1−αt|T ϕ)tt| ≤ ε

∫
QT

|u|pϕ+ C(ε)

∫
QT

ϕ−
p′
p |(I1−αt|T ϕ)tt|p

′
, (16)

∫
QT

|u(I1−βt|T ϕ)t| ≤ ε

∫
QT

|u|pϕ+ C(ε)

∫
QT

ϕ−
p′
p |(I1−βt|T ϕ)t|p

′
(17)

and ∫
QT

|u∆Hϕ| ≤ ε

∫
QT

|u|pϕ+ C(ε)

∫
QT

ϕ−
p′
p |∆Hϕ|p

′
. (18)

Collecting (16)-(17)-(18) and choosing ε small, the inequality (14) becomes∫
QT

ϕ|u|p + A(u0, u1, α, β, T )

≤ C

(∫
QT

ϕ−
p′
p |(I1−αt|T ϕ)tt|p

′
+

∫
QT

ϕ−
p′
p |(I1−βt|T ϕ)t|p

′
+

∫
QT

ϕ−
p′
p |∆Hϕ|p

′
)
.(19)
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First, using Lemma2.2, there exist c1, c2, c3 > 0 such that

A(u0, u1, α, β, T ) =

∫
H

(
(c1T

1−β + c2T
−α)u0(η) + c3T

1−αu1(η)
)
g(η) dη. (20)

Then, using again Lemma2.2, and passing to the new variables

τ̃ = T−βτ, x̃ = T−
β
2 x, ỹ = T−

β
2 y, η̃ = (x̃, ỹ, τ̃),

we otain that∫
QT

ϕ−
p′
p |(I1−αt|T ϕ)tt|p

′
=

∫ T

0

f−
p′
p |(I1−αt|T f)tt|p

′
dt

∫
H
g(η) dη

= TQ−(α+1)p′
∫ T

0

(1− t

T
)σ−(α+1)p′ dt

∫
H
ψλ(η̃) dη̃

≤ c T
βQ
2

+1−(α+1)p′ , (21)

∫
QT

ϕ−
p′
p |(I1−βt|T ϕ)t|p

′ ≤ c T (Q−2p′)β
2
+1, (22)

and ∫
QT

ϕ−
p′
p |∆Hϕ|p

′
=

∫ T

0

f(t) dt

∫
H
g−

p′
p |∆Hg|p

′
dη

≤ c T (Q−2p′)β
2
+1. (23)

Collecting estimations (20)–(23). We deduce from (19) that∫
QT

ϕ|u|p +

∫
H

(
(c1T

1−β + c2T
−α)u0(η) + c3T

1−αu1(η)
)
g(η) dη ≤ c T (Q−2p′)β

2
+1.

This yields ∫
H

(
T 1−βu0(η) + T 1−αu1(η)

)
g(η) dη ≤ c T (Q−2p′)β

2
+1.

Hence, (9) follows.

Now, for the proof of Theorem3.5, we proceed analogously as for the proof of Theorem3.2.

Let
I =

∫
QT

ϕ|u|p, J =

∫
QT

ϕ|v|q

and

M(p, α, β) =

(∫
QT

ϕ−
p′
p |(I1−αt|T ϕ)tt|p

′
) 1

p′

+

(∫
QT

ϕ−
p′
p |(I1−βt|T ϕ)t|p

′
) 1

p′

+

(∫
QT

ϕ−
p′
p |∆Hϕ|p

′
) 1

p′

.

It is easy to deduce from (21)–(23) that

M(p, α, β) ≤ c T
(Q−2p′)β+2

2p′ . (24)
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Using Hölder’s inequality, we obtain from (10) and (11)

J +A(u0, u1, α, β, T ) ≤ I
1
pM(p, α, β)

and
I +A(v0, v1, δ, γ, T ) ≤ J

1
qM(q, δ, γ).

If we assume that A(v0, v1, δ, γ, T ) ≥ 0. Then, we obatin

J +A(u0, u1, α, β, T ) ≤ I
1
pM(p, α, β), and I ≤ J

1
qM(q, δ, γ).

This yields
J +A(u0, u1, α, β, T ) ≤ J

1
pqM

1
p (q, δ, γ)M(p, α, β).

Applying Young’s inequality there holds

A(u0, u1, α, β, T ) ≤ cM
q

pq−1 (q, δ, γ)M
pq
pq−1 (p, α, β).

Similarly, If we assume that A(u0, u1, α, β, T ) ≥ 0. Then, we obatin

A(v0, v1, δ, γ, T ) ≤ cM
p

pq−1 (p, α, β)M
pq
pq−1 (q, δ, γ).

Finally, thanks to (15) and (24), we deduce from the last two inequalities that∫
H

(
T 1−βu0(η) + T 1−αu1(η)

)
g(η) dη ≤ c T 1+

Q(q(p−1)β+(q−1)γ)−2q(pβ+γ)
2(pq−1) ,

and ∫
H

(
T 1−γv0(η) + T 1−δv1(η)

)
g(η) dη ≤ c T 1+

Q(p(q−1)γ+(p−1)β)−2p(qγ+β)
2(pq−1) .

Therefore, the desired constraints in Theorem 3.5 follows.
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