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point on a rough plate in the presence of a transverse magnetic field. A suitable sim-
ilarity transformation is used to transform the governing partial differential equation
into a nonlinear ordinary differential equation along with partial slip boundary condi-
tions. The resulting equation with its boundary conditions contains two parameters:
the magnetic parameter, M and the slip parameter, A. Some properties of the velocity
profiles such as monotonic behaviour and bounded are obtained before proceeding
numerical results. Further, the asymptotic behaviour at the free boundary has also
been discussed. The validation of the obtained solution has been done numerically
by shifted Chebyshev collocation method. The velocity profiles are plotted to address
the significance of the parameters. The results are also compared through the table

with previous results and found remarkably good agreement.
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1 | INTRODUCTION

The flow near the stagnation point appears in various applications in industry such as flow over submarines, aircraft etc. In air-
craft, the stagnation point is important because its position on the airfoil has much to do with how the air flows around the wing
and generates the forces. The stagnation flow model was first analyzed by Hiemenz'' by considering a steady two-dimensional
flow of viscous fluid impinging perpendicularly on a wall. He reduced the governing equations into a third-order ordinary dif-
ferential equation with two-point boundary conditions. For this solution, the no-slip boundary condition was considered. The
condition of no-slip not always exists in general. Instead, a certain degree of tangential slip may allow on the wall. However, the
non-adherence of fluid to the wall is known as velocity slip. For example, rarefied gases and some non-Newtonian fluids exhibit
slip boundary conditions. The slip boundary conditions have been considered by Wang?, and he obtained an exact numeri-
cal solution of the Navier-Stokes equations. For its numerous practical applications, this classical stagnation problem has been
extended in various ways=4>,

We discuss the two-dimensional stagnation point flow in the presence of a magnetic field. In this case, a force is produced inside
the fluid, which always opposes the flow. This force is called the Lorentz force. The Lorentz force is applied to stabilize the
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boundary layer flow. In the presence of a magnetic field, the stagnation point flow first considered by NaZ and solved it numeri-
cally. However, the reported missing values of the boundary value problem does not satisfy the asymptotic boundary condition
at infinity. The numerical work has been extended by Ariel®. To learn more about the applications of this MHD stagnation point
flow, the interested reader could read the works of Hashim et al.”, Bilal et al.l¥, Agbaje et al.'!' and the references therein.

The governing similarity equations, along with the boundary conditions, are generally complicated and highly nonlinear. In
the absence of an analytical solution, the resulting boundary value problem is usually solved numerically or semi-analytical
4ll21L3 on the boundary layer flows are solved by shooting technique or Keller-box finite
difference method. Furthermore, there are other semi-analytical techniques such as Homotopy analysis method by Liao#, Ado-
mian’s decomposition method by Hayat et al.l2 and numerical techniques such as Chebyshev collocation method by Uddin et
al.’® and many others. We adopted the shifted Chebyshev collocation method™” to get the numerical results. In this method, the
missing initial values directly define without any correction interpolation method.

Literature survey reveals that many numerical results have been discussed for different boundary layer flows, but there is always
an open question on the existence and uniqueness results of solutions. To concern, this question, Weyl!® done the first theoretical
work by considering Falkner-Skan flow. After that, many researchers are trying to provide the existence and uniqueness results
for different boundary layer flows. Ahmad et al.l gave the existence results for a coupled system of nonlinear fractional dif-
ferential equations with three-point boundary conditions. Robert et al.2%2l' gave existence results of the solution for non-linear
differential equation arising in stagnation point flow in porous media and MHD Falkner-skan flow. There are many general tools
to prove the existence results of the solutions. Talay et al.% established existence and uniqueness results using the Schauder
fixed point theorem. Paullet??24 have been demonstrated the results by topological shooting argument for many boundary layer
flow problems. The shooting argument is a very useful technique to prove existence results of the solution as it also provides
solution properties. We quote the comments of Kwong2>: “in the special case of second-order equations, the shooting argument
can be an effective tool, sometimes yielding better results than those obtainable via fixed point techniques". One may refer to
Hastings et al.? and Rao et al.?’ for an introduction to the topological shooting arguments. Recently, Samanta et al.*® discussed
the existence result of the solution of modified Burger’s equation.

It is widely known that the Lorentz force stabilizes fluid flows. Due to its effects, it is necessary to discuss far-field solution
behaviour, and so, the present study also focuses on the asymptomatic approach to investigate the boundary layer. Sahoo et al.2?
discussed the far-field solution behaviour for non-Newtonian Bodewadt flow. The rate of decay for this asymptotic solution is
also estimated.

Motivated by above litterateurs, an attempt is made to discuss the existence, uniqueness and asymptotic results of MHD stagna-
tion point flow with slip in the plate. Moreover, the salient features of the flow are discussed by numerical results in detail. The
rest of the paper is arranged as follows: The formulation of the problem, along with its boundary conditions, is given in section
2. In section 3, the existence and uniqueness results of the resulting nonlinear boundary value problem are discussed thoroughly.
The behaviour of the solution at the free boundary is given in section 4. Section 5 contains a brief description of the numerical
scheme. In section 6, the theoretical and numerical results are compared, and the effects of the physical parameters on the flow
domain are discussed. Lastly, section 7 summarizes a brief conclusion of our present works.

methods. Most of the numerical studies

2 | MATHEMATICAL FORMULATION

The problem considered here is a steady two-dimensional flow of viscous fluid impinging perpendicularly on a non-impregnable
wall. It is assumed that the wall is subjected to obey the partial slip condition and a uniform magnetic field of strength B, is
applied in the y-direction. The schematic diagram of the flow configuration is shown in Figure [[T_]|.

The governing boundary layer equations are (For details see Ariel® )

Ju Ov
— 4+ —==0 1
ox dy M
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u—+v—=U—+4+v—+—U —u 2

ox oy dx 0%x p ( ) @
where u, v are the velocity components along the x — axis and y — axis respectively, U = ax is the free stream velocity, v is

kinematic viscosity, p is fluid density, ¢ is the electrical conductivity and By, is strength of the magnetic field.
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FIGURE 1 Schematic diagram of the flow

The similarity variable { = \/g y which gives the similarity transform

u=axf'(¢), v=1+avf()
The equation (T)) is satisfied automatically and equation (2)) becomes
flll+ff/l_f/2_M2(f/_1)+1=0 (3)
(o} 2 . . . . . .

where M = 4/ ai;” is called Hartmann number and a is constant related to intensity of the potential fluid flow.
The general no-slip boundary conditions of the stagnation point flow has been changed to partial slip conditions and the
appropriate boundary conditions for velocity components are (For details see Wang? )

u=A1—, v=0 aty=0

ay
u— ax asy— oo.

where A* is the slip parameter. Using similarity transforms the boundary conditions become

f0)=0, f/0)=4f"0), f'(c0)=1 “

3 | EXISTENCE AND UNIQUENESS RESULTS
In this section, the existence and uniqueness results of the solutions of the nonlinear boundary value problem (3)-({@) have been
studied for all cases of M, A > 0. The main focus of this section will be proving the following theorems:

Theorem 1 (Existence). For any M, A > 0 there exists at least one solution of the boundary value problem(BVP) (3)-@).
Further, the solution is monotonic.

Theorem 2 (Uniqueness). The solution is also unique for all M, A > 0.
Begin with some propositions that are necessary to proof the theorems.

Proposition 1. For each positive solution f/(¢) of (B) and @), 41" (0) < f'(¢) < 1 forall0 < ¢ < L.
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Proof. For sake contradiction, suppose that f/(£) > 1 for some ¢ € [0, L]. Then, f'({) has a positive maximum value in [0, L),
say, . Then, at &y, 1" (&,) = 0 and f"'(¢,) < 0. From (3),

0 < (f' () = D)+ 1+ M) = (&) + fC)f" (&) <0
which is a contradiction. Hence, Af”"(0) < f'({) < 1on¢ € [0, L). O

Proposition 2. If f/({) be a positive solution of (@) with Aa < f/({) < 1on¢ € [0, L) then L — oo.

Proof. The equation (B)) can be rewrite as
(f"e") = (f"©) = DU+ 1+ M’ <1,

where F=/0§ f(@®dt. Then f"(0) < f"($)ef < 0 implies f” is bounded and therefore from (@) f”’(¢) is bounded on [0, L]
if L < oo. It also implies that f”, f’, f have limits as { — L and hence the solution of (3) will be continued, clearly a
contradiction. Hence ¥ — 0. O]

Now, proving the existence results of the solutions to the BVP (3)-(@), we will investigate a related initial value problem(IVP)(3)
along with its initial conditions

fO) =0, f'(0)=Aa, f"(0)=«a &)
where « is a free variable and hence, the solution of the IVP is dependent on both { and a. We denote the solution by f({; a),
and the initial value problem has a solution for each a, although all the solutions don’t satisfy the boundary conditions at infinity.
Hence, we are looking for an «, for which corresponding solution f({, @) will satisfy the boundary condition at infinity i.e.
f'(c0) = 1. We use topological shooting argument to find at least one a, and define the two subsets A and B of a connected set
(0, ) as follows:

A={a€(0,0)]| f"(;a)=0 whenever la < f'({;a) <1}
B={ae€(0,0)]| f'(¢;a) =1 whenever 0 < f"({;a) < a}

The following lemmas will involve to proof theorem (T).

Lemma 1. If « is sufficiently small, then it is in A.

Proof. Let us first consider the case @ = 0 and we have from equation
0 @) = —(1 — Ada)(1 + Aa + M?) (6)

which implies, f””/(0;0) < 0, then { € (0;¢] for some € > 0, we have f”(£;0) < 0 and f'({;0) < 1. By neighborhood
property of continuous solution of the initial value problem, f’(¢; a) will remain close to f/({;0), i.e. whenever { € (0; €],
then f/({;a) < 1 with f”(e;) < 0. But f”(0; @) = a > 0. Hence there exists ¢, € (0, €) such that f”(¢,; @) = 0 whenever
Aa < f'(&;a) < 1on ¢ € (0,&,]. Thus, sufficiently small @ > 0is in A.

Therefore A is non-empty. O
Lemma 2. If « is sufficiently large, then it is in B.

Proof. We want to claim that if positive a is large enough then f’({; a) = 1 before f”(¢; a) > 0 in [0, 1]. Suppose, our claim
is false then one of the following assertion must hold:

1) f"(; @) =0atapointin [0, 1] with f/(&;a) < 1. Or,
() f'(¢;a) < 1and f"(&;a) > 0forall ¢ €[0,1]. Or,

(iii) f'(&;a) = 1and f"(¢; a) = 0 happen simultaneously.
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To prove our claim, we have to discard each of assertion and begin with (i). Let us consider there exists {; € [0, 1] such that
f"¢ra) =0 )

with f/(;a) < 1 for ¢ € [0, 1]. Since f”(¢; @) is decreasing and positive on (0,¢;), f'({; @) is monotonic increasing and
concave down. Thus Ae < f'({;a) < 1 on [0, 1]. Integrating the inequality in [0, {], we have dal < f(&;a) < . Again if we
integrate the ODE (EI) in between 0 to {, we have

¢
'O = r"0) = —f(C)f'(C)+2/f’2d1+M2(f(C)—C)—C
0

¢
= f"O=a-1+M)H¢—fOf(&)+2 / frdt+ M*f(©) 8)
0

Using above bounds on f(¢{) and f’(¢) and avoiding all the positive term except a we get the following
") >a—-2-M?, forall ¢ €[0,¢]

Thus, if @ > 2 + M? then f”(¢{;) > 0, contradicting the fact . So, for large a case (i) does no happen. Similarly, we can
eliminate case (ii) when a > 2 + M2 + M. Thus, only one case (iii) remain i.e. f'(;a) =1 and f”({; @) = 0 happen simulta-
neously. However, substituting it into ODE (3) gives f”’(£) = 0. Also we have f%({) =0, V k > 3 implying that f'(¢) = 1. It
is clear a contradiction the basic existence theorem of initial value problem, f'(0) = Aa # 1. Thus, ifa > 2+ M 24 M, large
enough then f/(¢;a) = 1 whenever 0 < f"({; @) < a.

Therefore the set B is non-empty. O
Lemma 3. The set A and B are mutually disjoint and both are open.

Proof. The sets A and B are clearly disjoint subset of (0, c0). To prove A is open, suppose that if a* is in A then a sufficiently
nearby to a* is in A and corresponding solution of the IVP satisfy at ¢, that f”({y; «*) =0 with Aa* < f'({y; a*) < 1. From
equation (3),
S Gy = PG a) = 1+ MA(f(Gia®) = 1) # 0
Thus, by neighborhood property of continuous solutions, f”(¢; @) has a root near ¢, for « sufficiently nearby to o* with Aa <
f'(&; &) < 1. Thus A is open. Using similar argument, B is open.
O

Remark 1 : Thus by previous lemmas (1), (2) and (3), the non-empty sets A and B are both mutually disjoint open subset of
connected set (0, 00).

Proof of Theorem 1. Using the definition of connected set, A U B # (0, 00). Thus there exists @ € (0, co) which is neither in
A nor in B (i.e., we can’t have f”(;a) = 0 whenever Aa < f'({;@) < 1and f/(;a) = 1 whenever 0 < f"(&; @) < @).
Also, f'(¢;a) = 1 and f”(¢; a) = 0 can’t happen simultaneously by lemma (2). Thus, only one possibility is /”/(¢, @) > 0 with
f'(&,a) < 1 forall { > 0. From equation , we get f'(co0; @) — 1 giving the existence results of the solution of BVP -.
O

Proof of Theorem 2. To claim unique solution of the BVP, let us first consider that there exists two positive a; and a, with
a, > a; (without loss of generality) such that corresponding solutions of IVP, f({; ;) and f({;a,) are both the solution of
BVP (3)-(). Next, applying the mean value theorem in the interval [a;, @,] we get:
of'
f(Ga) =G a) = <E) (ay —ay) )]
where a* € (a, a;). )
Now, at { — oo, equation (9) implies

<6_f’> _ (i) — fleoiay) _ (10)

Ju (0'2 - al)
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Considering the function w({; @) = ‘2—{;, we differentiate ODE (3)) with respect to « along with its initial conditions (5) gives
w" + fw” =2f'wW +wf" — M*w' =0 (11)
subject to
wO0;a)=0, w0;a)=24 w'0;a)=1 (12)

where primes are denoting differentiation with respect to { which implies
w"(0;0) =227 + M?2
w(0;a) =2da + M* >0 (13)
Thus, from the initial condition on w, we get w'({;a) > 0, w'(&;a) > 1 and w"({;a) > O when 0 < ¢ < e fore > 0.
Particularly, positive function w’({; @) is concave up increasing initially and to become zero, it has to change first from concave
up to concave down. Thus there exists a first £, such that w”’(¢,; @) = 0 and w™(,; a) < 0. But until this point &, w(¢; a) and

all its derivatives through w'”(¢; &) are positive and increasing. Therefore, f(¢; «) and all its derivative through f"’(¢; a) are
increasing function with respect to a. Thus, for a« € (a;, a,) we have

WGy a) = —w(&y; ) [ Gz @) + W' (Gos @) [ 6oz @) + (G 0w (Gys @) + M2 (G @) (14)
which implies wi”(CZ; a) > 0 for all @. Thus w'({;a) = ‘;—": can never be zero, contradicting the fact . Hence, we claim that
there exists a unique « which must satisfy all boundary conditions. O

Remark 2: The BPV problem (3) with its boundary conditions (@) has a unique monotonic solution and further it is unique for
all values of M, A > 0.

4 | ASYMPTOTIC BEHAVIOUR OF THE SOLUTION

In this section, we discuss the behavior of the solution at { — oo(i.e, far field behaviour of the solution). To get the asymptotic
behaviour of (7)-(9), we convert it into a three-dimensional linear dynamical system as following:

I
Uy =u,

) = us (15)

L= —wus+us + Muy— 1) -1

Us

and find an exact solution at { — oo which satisfy the asymptotic boundary conditions. Since, f/({) — 1 as { — oo, we can
assume that /() — f as { — oo, where f, is a constant. Then, for the system, we discuss system at the point (u}, 3, u3) =
(f> 1,0). Now, Jacobian (J) of the non-linear system

0 1 0
J=10 0 1
—uy 2uy, + M? —u,

. . L o\ SLABHAM? [ [ [oABHAM? -
gives three eigen values and corresponding eigen values are 0, > , > . Using the boundary conditions
(@), we eliminate the solutions which blow up as { — oo. Thus only one solution remains which satisfy all the boundary
conditions and at { — oo solution behave like

FO=fo+Ae™, fO=14Ae"

A/ fEA8+HAM2+f

where r = r(f,) = 3 , 1s rate of decay of the solution and A;, i = 1,2 are constant. It is observed that r increase
as f,, increases or M increases. In other words, when the magnetic parameter M increases then f’(¢) tends to approach their
far-field values more rapidly. Also, the rate of decay is independent on the slip parameter, 4.
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5.1 | Shifted Chebyshev polynomials and collocation points

The Shifted Chebyshev polynomials (ShCP) on the interval [0, (] are the affine transformation of the chebyshev 1st kind
polynomial 7,.({) and defined as

2
TO=T-1) (16)
The shifted collocation points, 0 = §, < {; < - < { = {,,, are obtained by
£ =520 cos(iZ)), i=0.1.2....N a17)
2 N

5.2 | Function approximation

To find the stable numerical solution of the resulting boundary equation (3), we 1st approximate /() as

N
/'O~ Y aTE), 0<¢ <L, (18)
r=0
Now, from (T8))
¢ N ¢ N
1) = / fwdt+ f'O0)~ Y a, / T,(Odt + 4 ) a,T,(0),
0 r=0 0 r=0
where f'(0) = Af"(0). Using formulae for integral chebyshev polynomial of 1st kind we have,
N+l N
SO~ Y bT(0dt+ 1) a,T,0), (19
r=0 r=0

where

z?:(ao - :4—; + Zl]\gl (l;_l)l a), r=0
giif)—-'_}“)ﬁ)r ji 2,3,....N—1
2\ or or E

oo (Grot _
=(%£L), r=N,N+1

Analogously, the approximate of f({) is given by,

€ N+l S N
f©) = f0) = / flodix b, / T(0di +¢4 Y a,T,0).
0 r=0 0 r=0
and since f(0) =0,
N+2 N
f@ & Y ¢ T,(di+¢4 Y a,T,0), (20)
r=0 r=0
where

Sy -2+ X, Sb), r=0
By -2), r=1
r Coo ¢ by by _
éibi) rz;),]\; NZ-;_31, ..,N—-1
22 ” ’
It is noticed that the coefficients b; and ¢; are the linear combination of the unknown coefficients a;. Now the approximate ()
is obtained by

@ =

N
df" N ,
dC - r=0 ar—l]—r (C) (21)

We use all the approximate function to find the solution.
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5.3 | Collocation method for solving resulting boundary value problem

Substituting all the approximate solution (I8)-(2I) in the resulting equation (3)) gives

N N+2 N N N+1 N 2
Y aT()+ (Z (T +EAY a,T,(O)) Y aT ) - ( PRAKGEFSY a,T,(0)>
r=0 0 0 r=0

r=1 r=0
N+1 N
-M? < Y BT+ 4 4T, 0) - 1) +1=0 (22)
0 r=0
Our technique is based on domain truncation, the boundary condition at {, is replaced by approximation which yields
N+1
Y bTE) =1 (23)
r=0

At the collocating point {,, r = 0,2, ..., N — 1 the equation Z2)) gives

N N+2 N N N+l N 2
Y a )+ (Z (T +EA ) a,T,(O)) Y 4T - (Z BTG +4 ), a,T,(O))
r=0 0 r=0

r=1 r=0 0

N+1 N

-M? (Z BTG+ 4D aT,0) - 1> +1=0, r=01,2...,N—1 24)
0 r=0

The system ([24) together with (23)) is an algebraic system of (N + 1) equation with a,, r = 0,2, ..., N unknowns. This system

is solved using Newton’s iteration technique. It is worth mentioning that the initial condition { = 0 is already taken in the

approximation of solutions.

6 | NUMERICAL RESULTS AND DISCUSSION

For several values of governing parameters M and A, the equation (3), with its boundary conditions have been solved
numerically by the Shifted Chebyshev Collocation technique. The semi-infinite domain [0, co0) is approximated by [0, {,] for
numerical computation where the value of ¢ is assumed sufficiently large and fixed. The values of skin-friction coefficient
f"(0) are given in the following tables, and it is verified with Wang’s results for M = 0, and it shows a good comparison.
Therefore, the present results are accurate enough. For any fixed M, values of f”/(0) decreases continuously as A increases.

Current results for N=25 | Wang?
A f"(0) Q)
0 1.232588 1.2325

0.4 0.886346 0.8863
1 0.593462 0.5934
2 0.375886 0.3758
5 0.177260 0.1772

TABLE 1 Comparison of the numerical results for M = 0 and N=25

Table gives the values of f"'(0) for different values of A and M. It is observed that f”'(0) is increasing as increases M for
fixed A. The results also agree with the reported values of Ariel®. The Table is given for different values of N to verify the
rapid convergence of the present numerical method. It is noticed that the convergence of the proposed method is very fast.

For validating our theoretical results, figure [2_}3 || are figured, and it also describes the significance of physical parameters M
and A on velocity profiles. Figure displays the velocity component f’(¢) with varies of slip parameter A for fixed M = 1.



M
0 0.1 0.5 1
1.232588 1.236603 1.329407 1.585331
0.886346  0.887939  0.923970 1.015985
0.593462  0.594053  0.607312  0.640276
0.375886  0.376095  0.380765  0.392275
0.177260  0.177301 0.178233  0.180520

VNS R=IES
~

TABLE 2 Values of f”(0) for several values of M and A when N=25

N 5 10 15 20 25
F"(0) | 0.60975587 0.60731194 0.6073118 0.6073118 0.6073118

TABLE 3 Values of f”(0) for different N when A =1 and M = 0.5

M=1 127
g T o
i KL " — M=
)22 -

— )

FIGURE 2 Variation of f/(¢) with A for FIGURE 3 Variation of f/(¢) with M for

It is noticed that f”({) increases as increase of A. Physically, when slip acts, the velocity of fluid near the wall in not equal to
zero. So, the increase in A means slip velocity increases.

Figure , the velocity component f'() is plotted against { for varies of M with fixed for A = 1. It is observed that f'({)
increases as increase of M. It is worth mentioning that our discussion on asymptotic behaviour at free boundary also agrees
with the numerical results, i.e., f({), mainstream velocity is approaching quickly to the value of the velocity of the potential
flow. This similar trend of velocity profile has been found in the article of Ariel® for without slip, i.e. A = 0.
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7 | CONCLUSION

The existence result of the solution of third-order nonlinear boundary value problem related to MHD stagnation point flow with
partial slip has been proved. Notably, there is a unique f({) of the resulting boundary value problem which satisfies the following
properties.

1. f(¢) is increasing and non-negative.
2. f'(&) is increasing, non-negative and A1 (0) < f/({) < 1.
3. f"(&) is decreasing , non-negative and 0 < /(&) < f"(0).

Therefore, shooting arguments becomes a very powerful tool to prove existence results. The asymptotic analysis shows that the
solution of the boundary value problem is approaching more quickly to free stream velocity with the increasing value of M for
any value of A. Further, all the properties of f({) are validated by numerical results as presented in section [[6]. Note that the
results are obtained for all relevant parameters, i.e. magnetic parameter M > 0 and slip parameter A > 0. It is worth mentioning
that the numerical solution and question of the existence, uniqueness and far-field behaviour of the solution are the pillars of our
manuscript, and all are discussed in detail.

References

1. Hiemenz K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder.
Dinglers Polytech. J. 1911; 326: 321-324.

2. Wang C. Stagnation flows with slip: exact solutions of the Navier-Stokes equations. Zeitschrift fiir Angewandte Mathematik
und Physik 2003; 54(1): 184—189.

3. Andersson HI, Rousselet M. Slip flow over a lubricated rotating disk. International journal of heat and fluid flow 2006;
27(2): 329-335.

4. Sahoo B. Hiemenz flow and heat transfer of a third grade fluid. Communications in Nonlinear Science and Numerical
Simulation 2009; 14(3): 811-826.

5. Ahmad M, Sajid M, Hayat T, Ahmad I. On numerical and approximate solutions for stagnation point flow involving third
order fluid. AIP Advances 2015; 5(6): 067138.

6. Weidman P. Hiemenz stagnation-point flow impinging on a uniformly rotating plate. European Journal of Mechanics-
B/Fluids 2019; 78: 169-173.

7. Na TY. Computational methods in engineering boundary value problems. 145. Academic Press . 1980.
8. Ariel P. Hiemenz flow in hydromagnetics. Acta Mechanica 1994; 103(1-4): 31-43.

9. Hashim H, Mohamed MKA, Hussanan A, Ishak N, Sarif NM, Salleh MZ. The effects of slip conditions and viscous
dissipation on the stagnation point flow over a stretching sheet. In: . 1691. AIP Publishing. ; 2015: 040007.

10. Bilal M, Sagheer M, Hussain S, Mehmood Y. MHD stagnation point flow of williamson fluid over a stretching cylinder with
variable thermal conductivity and homogeneous/heterogeneous reaction. Communications in Theoretical Physics 2017,
67(6): 688.

11. Agbaje T, Mondal S, Makukula Z, Motsa S, Sibanda P. A new numerical approach to MHD stagnation point flow and heat
transfer towards a stretching sheet. Ain Shams Engineering Journal 2018; 9(2): 233-243.

12. Mahapatra T, Sidui S. Non-axisymmetric Homann stagnation-point flow of a viscoelastic fluid towards a fixed plate.
European Journal of Mechanics-B/Fluids 2020; 79: 38—43.



| n

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Seth G, Singha A, Mandal M, Banerjee A, Bhattacharyya K. MHD stagnation-point flow and heat transfer past a non-
isothermal shrinking/stretching sheet in porous medium with heat sink or source effect. International Journal of Mechanical
Sciences 2017; 134: 98-111.

Liao SJ. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. Journal
of Fluid Mechanics 2003; 488: 189-212.

Hayat T, Hussain Q, Javed T. The modified decomposition method and Padé approximants for the MHD flow over a non-
linear stretching sheet. Nonlinear Analysis: Real World Applications 2009; 10(2): 966-973.

Uddin MJ, Alginahi Y, Bég OA, Kabir MN. Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous
media with Stefan blowing and multiple slip effects. Computers & Mathematics with Applications 2016; 72(10): 2562-2581.

Kajani MT, Maleki M, Allame M. A numerical solution of Falkner-Skan equation via a shifted Chebyshev collocation
method. In: . 1629. American Institute of Physics. ; 2014: 381-386.

Weyl H. On the differential equations of the simplest boundary-layer problems. Annals of Mathematics 1942: 381-407.

Ahmad B, Nieto J. Existence results for a coupled system of nonlinear fractional differential equations with three-point
boundary conditions. Computers & Mathematics with Applications 2009; 58(9): 1838—1843.

Van Gorder RA, Vajravelu K. Existence and uniqueness results for a nonlinear differential equation arising in stagnation
point flow in a porous medium. Acta mechanica 2010; 210(3-4): 215-220.

Van Gorder RA, Vajravelu K. Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet. Mechanics
Research Communications 2010; 37(1): 113-118.

Akyildiz FT, Tatar S, Ulusoy S. Existence and uniqueness for a nonlinear inverse reaction-diffusion problem with a nonlinear
source in higher dimensions. Mathematical Methods in the Applied Sciences 2013; 36(17): 2397-2402.

Paullet J, Weidman P. Analysis of stagnation point flow toward a stretching sheet. International Journal of Non-Linear
Mechanics 2007; 42(9): 1084—-1091.

Paullet JE. Analysis of stagnation point flow of an upper-convected Maxwell fluid. Electronic Journal of Differential
Equations 2017; 2017(302): 1-14.

Kwong M. The shooting method and multiple solutions of two/multi-point BVPs of second-order ODE. Electronic Journal
of Qualitative Theory of Differential Equations 2006; 2006(6): 1-14.

Hastings SP, McLeod JB. Classical methods in ordinary differential equations: with applications to boundary value
problems. 129. American Mathematical Soc. . 2011.

Rao CS, Satyanarayana E. A survey on shooting arguments for boundary value problems. Indian Journal of Pure and
Applied Mathematics 2007; 38(6): 495.

Samanta P, Rao CS. Existence and Uniqueness of a Non-Negative Monotonic Solution of a Nonlinear Ordinary Differential
Equation. Differential Equations and Dynamical Systems 2019: 1-12.

Sahoo B, Van Gorder RA, Andersson H. Steady revolving flow and heat transfer of a non-Newtonian Reiner—Rivlin fluid.
International communications in heat and mass transfer 2012; 39(3): 336-342.



	Analysis of Magnetohydrodynamics Stagnation point flow with Partial slip boundary conditions
	Abstract
	Introduction
	Mathematical Formulation
	Existence and uniqueness results
	Asymptotic Behaviour of the solution
	Numerical method
	Shifted Chebyshev polynomials and collocation points
	Function approximation
	Collocation method for solving resulting boundary value problem

	Numerical results and discussion
	Conclusion
	References


