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Abstract. The Hopf algebraic structure problem for a two-parameter
deformed white noise Heizenberg algebra based on the two-parameter
deformation of canonical commutation relations is discussed. Firstly,
in the basis of the (p, q)-Fock space we present the Fock realization of
the (p, q)-deformed quantum Heizenberg algebra and we give its Hopf
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1. Introduction

In recent years from the point of view of physical applicability in concrete
physical problems and quantum algebras a lot of interest has been devoted
to the study of the various quantum deformations of Heizenberg algebra.
From mathematical point of view such popularity connected with numerous
relations which exist between deformed oscillators and other quantum de-
formations (quantum groups, quantum algebras, quantum spaces etc). From
the other side there are some hopes that in a physical studies of non-linear
phenomena the deformed Heizenberg can play the role much the same as the
usual boson oscillator in standard quantum mechanics. Such hopes are sup-
ported by several applications of the deformed oscillators in conformal field
theory, lattice models [6, 9], nuclear spectroscopy [5, 7], in describing the
systems with non-standard statistics and energy spectrum. For this reason,
the interests in quantum deformations of Lie algebras [16, 14], Lie bialgebras

.
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[18, 21] and quantizations of Lie algebras [17] have been growing in the phys-
ical and mathematical literatures which are closely related to the Virasoro
algebra. Among the quantum deformations of Lie algebras, the q-deformed
Virasoro algebra has been most intensively considered [3, 13, 20], which can
be viewed as a typical example of the physical application of quantum groups.
Roughly speaking, the quantum Lie algebras in the context of these deforma-
tions are universal enveloping algebras deformed by one or more parameter(s)
(q-deformation) and possess structures of Hopf algebras. More precisely, the
q-deformed Heizenberg algebra Heizq(H) begin with Bożejko, Kümmerer, and
Speicher in [8], [10] and [11] which introduce for q ∈ (−1, 1) the q-analogues
of Brownian motions and Gaussian processes. Their constructions were based
on a suitably deformed Fock space Fq(H) on which the creation and annihi-
lation operators satisfied the q-commutation relation:

A(ξ)A∗(η)− qA∗(η)A(ξ) = 〈ξ, η〉H1, ∀ξ, η ∈ H.

Furthermore, it has showed that Heizq(H) posses a structure of Hopf alge-
bra. Although one-parameter deformations have been mostly studied, the
multiparameter ones have aroused much interest because they become more
flexible when we are dealing with applications to concrete physical models.
This give our motivation to study the two-parametric deformations of the
quantum algebras and its Hopf structure.

Our paper is organized as follows. Section 2 is devoted to the study of
Fock representation of the generators of the quantum (p, q)-deformed white
noise Heizenberg algebra Heizp,q(H) based on the so-called (p, q)-Fock space
and the following (p, q)-deformed commutation relations :

a(ξ)a∗(η)− pa∗(η)a(ξ) = qN 〈ξ, η〉1, [N, a∗(ξ)] = a∗(ξ)
a(ξ)a∗(η)− qa∗(η)a(ξ) = pN 〈ξ, η〉1, [N, a(ξ)] = −a(ξ).

In Section 2, we discuss briefly the concept of a Hopf algebra and show that
Heizp,q(H) is endowed with a non-trivial Hopf algebra structure.

2. Fock representation of (p, q)-deformed commutation relation

For p and q be two real numbers such that 0 < q < p ≤ 1, the natural number
n has the following (p, q)-deformation:

[n]p,q =

n∑
i=1

qi−1pn−i =
pn − qn

p− q
, [0]p,q = 0,

which is a natural generalization of the q-number that is we have

lim
p→1

[n]p,q = [n]q =
1− qn

1− q
.

The (p, q)-factorial and (p, q)-binomial coefficients are defined as

[n]p,q! =

n∏
k=1

[k]p,q with [0]p,q! = 1;

(
n
k

)
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.
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The (p, q)-deformed Heizenberg algebra is defined by the three generators
A,A+, N satisfying the following (p, q)-deformed canonical commutations re-
lations

AA+ − qA+A = pN , [N,A] = −A
AA+ − pA+A = qN , [N,A+] = A+,

where the commutator [·, ·] is defined by [B,C] = BC−CB. Now we will give
a one-mode interacting Fock space representation of the previous algebra. In
the same way as the usual Hermite polynomials are connected to the bosonic
relation with p = 1 and q → 1, the (p, q)-deformed relations are linked to
(p, q)-analogues of the Hermite polynomials.

Definition 2.1. The polynomials H
(p,q)
n with leading coefficient equals to 1

satisfying the recursion formula{
xH

(p,q)
n (x) = H

(p,q)
n+1 (x) + [n]p,qH

(p,q)
n−1 (x), n ∈ N

H
(p,q)
−1 (x) := 0, H

(p,q)
0 (x) := 1

(2.1)

are called (p, q)-Hermite polynomials.

Let Γ(C, {λn,p,q}) be the weighted Fock space associated with

λn,p,q = ‖H(p,q)
n ‖2 = [n]p,q! , i.e.,

Γ(C, {λn,p,q}) =
{

(zn)n∈N, zn ∈ C;

+∞∑
n=0

λn,p,q|zn|2 <∞
}

We define linear operators A± and N by

A+Φn =
√

[n+ 1]p,qΦn+1, n ≥ 0,

A−Φn =
√

[n]p,qΦn−1, n ≥ 1, A−Φ0 = 0
NΦn = nΦn, n = 0, 1, 2, · · · .

Equipped with the natural domains, A± become closed operators which are
mutually adjoint. Then Γ := Γ(C, {λn,p,q}, A±) is called an interacting Fock
space associated with λn,p,q. By a simple computation one can see that A±

and N satisfy the relation of the (p, q)-deformed Heizenberg algebra.
Now our goal is to give the infinite dimensional analogue of the previous

Fock representation. Let Sn denote the symmetric group of all permutations
on [[1, n]] := {1, · · · , n} and I(σ) denote the number of inversions of the
permutation σ ∈ Sn defined by

I(σ) = ](Inv(σ)) := ]
{

(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)
}
,

where ](E) stands the cardinality of the set E. Analogously, the pair (i, j) ∈
[[1, n]]2 with i < j is called a co-inversion in σ if σ(i) < σ(j). The correspond-
ing co-inversion is encoded by (i, j) and contained in the set

Cinv(σ) :=
{

(i, j) | 1 ≤ i < j ≤ n, σ(i) < σ(j)
}

with cardinality C(σ) := ](Cinv(σ)). Let H = L2(R, dt) be the real Hilbert
space with the norm | · |0 generated by the inner product 〈·, ·〉 and denote
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H its complexification. Denote F0(H) =
⊕
n≥0

H⊗n the full Fock space over H

with the inner product 〈·, ·〉 and Ffin0 (H) the linear span of vectors of the
form ξ1 ⊗ · · · ⊗ ξn ∈ H⊗n, n ∈ N, where H⊗0 = CΩ for the vacuum vector

Ω = (1, 0, 0, · · · ) ∈ F0(H). We equip Ffin0 (H) with the inner product

〈ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηm〉 = δn,m

n∏
k=1

〈ξk, ηk〉.

Define the operator Tp,q on Ffin0 (H) by a linear extension of

Tp,qΩ = Ω, Tp,q(ξ1 ⊗ · · · ⊗ ξn) =
∑
σ∈Sn

qI(σ)pC(σ)ξσ(1) ⊗ · · · ⊗ ξσ(n),

and put

ξ1 ⊗p,q · · · ⊗p,q ξn := Tp,q(ξ1 ⊗ · · · ⊗ ξn), ξi ∈ H, i ∈ [[1, n]].

Definition 2.2. Define F (n)
p,q (H) as the separable Hilbert space witch coincide

with H⊗n as a set and has scalar product〈
f (n), g(n)

〉
p,q

:=
〈
f (n), g(n)

〉
F(n)

p,q (H)
=
〈
Tp,qf (n), g(n)

〉
. (2.2)

Hence the (p, q)-Fock space denoted Fp,q(H) is defined by

Fp,q(H) =

∞⊕
n=0

F (n)
p,q (H).

If we denote Ffinp,q (H) the linear span of vectors of the form

ξ1 ⊗p,q · · · ⊗p,q ξn ∈ F (n)
p,q (H), n ∈ N,

one can see that 〈·, ·〉p,q on Ffinp,q (H) satisfy the following useful relation〈
f (n), ξ1 ⊗p,q · · · ⊗p,q ξm

〉
p,q

= δn,m[n]p,q!
〈
f (n), ξ1 ⊗ · · · ⊗ ξm

〉
. (2.3)

Fore more details about the properties of the operator Tp,q and the construc-
tion of the (p, q)-Fock space we can see [4].

Definition 2.3. For each ξ ∈ H, we define the (p, q)-creation operator a∗(ξ)
and the (p, q)-annihilation operator a(ξ) on the dense subspace Ffinp,q (H) as
follows:

a∗(ξ)Ω = ξ,

a∗(ξ)f1 ⊗p,q · · · ⊗p,q fn = ξ ⊗p,q f1 ⊗p,q · · · ⊗p,q fn (2.4)

and

a(ξ)Ω = 0,

a(ξ)f1 ⊗p,q · · · ⊗p,q fn = ξ ⊗1
p,q (f1 ⊗p,q · · · ⊗p,q fn),
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where f⊗1
p,q g is the left 1-contraction of f ∈ H and g ∈ H⊗n. More precisely,

we have

ξ ⊗1
p,q (f1 ⊗p,q · · · ⊗p,q fn) =

n∑
i=1

qi−1pn−i〈ξ, fi〉f1 ⊗p,q · · · ⊗p,q f̆i ⊗p,q · · · ⊗p,q fn,

(2.5)

where 〈·, ·〉 denote the inner product on H and the symbol f̆i means that fi
has to be deleted in the tensor product.

Lemma 2.4. The (p, q)-creation and (p, q)-annihilation operators fulfill the
(p, q)-commutations relations of the (p, q)-deformed quantum oscillator alge-
bra, i.e.,

a(ξ)a∗(η)− pa∗(η)a(ξ) = qN 〈ξ, η〉1, (2.6)

a(ξ)a∗(η)− qa∗(η)a(ξ) = pN 〈ξ, η〉1, ∀ξ, η ∈ H (2.7)

[N, a∗(ξ)] = a∗(ξ), [N, a(ξ)] = −a(ξ), (2.8)

where N is the standard number operator defined by

Nf1 ⊗p,q · · · ⊗p,q fn = nf1 ⊗p,q · · · ⊗p,q fn. (2.9)

Proof. For any n ∈ N and ξ, η, f1, · · · , fn ∈ H we have

a(ξ)a∗(η)(f1 ⊗p,q · · · ⊗p,q fn)

= a(ξ)(η ⊗p,q f1 ⊗p,q · · · ⊗p,q fn)

= pn〈ξ, η〉f1 ⊗p,q · · · ⊗p,q fn (2.10)

+

n+1∑
i=2

qi−1pn+1−i〈ξ, fk−1〉η ⊗p,q f1 ⊗p,q · · · f̆k−1 ⊗p,q · · · ⊗p,q fn.

On the other hand, one can see that

n+1∑
i=2

qi−1pn+1−i〈ξ, fi−1〉η ⊗p,q f1 ⊗p,q · · · f̆i−1 ⊗p,q · · · ⊗p,q fn

= η ⊗p,q
( n∑
i=1

qipn−i〈ξ, fi〉 ⊗p,q f1 ⊗p,q · · · f̆i−1 ⊗p,q · · · ⊗p,q fn
)

= qa∗
( n∑
i=1

qipn−i〈ξ, fi〉 ⊗p,q f1 ⊗p,q · · · f̆i−1 ⊗p,q · · · ⊗p,q fn
)

= qa∗(η)a(ξ)(f1 ⊗p,q · · · ⊗p,q fn). (2.11)

Therefore, by (2.10) and (2.11) we obtain

a(ξ)a∗(η)(f1 ⊗p,q · · · ⊗p,q fn)

= pn〈ξ, η〉f1 ⊗p,q · · · ⊗p,q fn + qa∗(η)a(ξ)(f1 ⊗p,q · · · ⊗p,q fn)

which proves (2.6). Note the symmetry of this relation under the exchange
of p and q gives (2.7) and by a same calculus we obtain (2.8). �
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Proposition 2.5. Let ξ ∈ H.

1. The operators a∗(ξ) and a(ξ) are adjoints of each other on Ffinp,q (H)
with respect to 〈·, ·〉p,q.

2. The operators a∗(ξ) and a(ξ) are bounded on Fp,q(H).

Proof. 1. By using (2.3), (2.4) and (2.5), then for any fi, gj ∈ H, i ∈
{1, · · · , n− 1}, j ∈ {1, · · ·n}, we have〈

a∗(ξ)f1 ⊗p,q · · · ⊗p,q fn−1, g1 ⊗p,q · · · ⊗p,q gn
〉
p,q

= [n]p,q!
∑
σ∈Sn

qI(σ)pC(σ)〈ησ(1), g1〉 · · · 〈ησ(n), gn〉

= [n]p,q!
∑
σ∈Sn

qI(σ
−1)pC(σ−1)〈η1, gσ−1(1)〉 · · · 〈ηn, gσ−1(n)〉

= [n]p,q!
∑
ρ∈Sn

qI(ρ)pC(ρ)〈ξ, gρ(1)〉 · · · 〈fn−1, gρ(n)〉

= [n]p,q!
〈
f1 ⊗p,q · · · ⊗p,q fn−1, ξ ⊗1

p,q g1 ⊗p,q · · · ⊗p,q gn
〉
,

where η1 = ξ and ηi = fi−1, i = 2, · · · , n. For convenience, we put
−→
f = f1 ⊗ · · · ⊗ fn−1,

−→
f p,q = f1 ⊗p,q · · · ⊗p,q fn−1.

Then by (2.5) we have〈−→
f , ξ ⊗1

p,q g1 ⊗p,q · · · ⊗p,q gn
〉

=
〈−→
f , Tp,q

( n∑
i=1

qi−1pn−i〈ξ, gi〉g1 ⊗ · · · ⊗ ği ⊗ · · · ⊗ gn
)〉

=
〈−→
f p,q,

n∑
i=1

qi−1pn−i〈ξ, gi〉g1 ⊗ · · · ⊗ ği ⊗ · · · ⊗ gn
〉
.

Hence we deduce that〈
a∗(ξ)f1 ⊗p,q · · · ⊗p,q fn−1, g1 ⊗p,q · · · ⊗p,q gn

〉
p,q

= [n]p,q!
〈−→
f p,q,

n∑
i=1

qi−1pn−i〈ξ, gi〉g1 ⊗ · · · ⊗ ği ⊗ · · · ⊗ gn
〉

=
〈
f1 ⊗p,q · · · ⊗p,q fn−1, a(ξ)g1 ⊗p,q · · · ⊗p,q gn

〉
p,q

which follows the proof.
2. For any ξ ∈ H and fi ∈ H, i ∈ {1, 2, · · · , n}, we have

‖a(ξ)f1 ⊗p,q · · · ⊗p,q fn‖2p,q

=
〈
a(ξ)f1 ⊗p,q · · · ⊗p,q fn, a(ξ)f1 ⊗p,q · · · ⊗p,q fn

〉
p,q

=
〈
f1 ⊗p,q · · · ⊗p,q fn, a∗(ξ)a(ξ)f1 ⊗p,q · · · ⊗p,q fn

〉
p,q
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On the other hand by using (2.6) and (2.7) we get

a∗(ξ)a(η) =
pN − qN

p− q
= [N ]p,q〈ξ, η〉, (2.12)

where the operator [N ]p,q is defined by

[N ]p,q(f1 ⊗p,q · · · ⊗p,q fn) = [n]p,qf1 ⊗p,q · · · ⊗p,q fn. (2.13)

Then Eq. (2.6) yields

a∗(ξ)a(ξ)f1 ⊗p,q · · · ⊗p,q fn = 〈ξ, ξ〉[N ]p,q
(
f1 ⊗p,q · · · ⊗p,q fn

)
= [n]p,q|ξ|20 f1 ⊗p,q · · · ⊗p,q fn

and we obtain

‖a(ξ)f1 ⊗p,q · · · ⊗p,q fn‖2p,q = [n]p,q|ξ|20‖f1 ⊗p,q · · · ⊗p,q fn‖2p,q
≤ |ξ|20

p− q
‖f1 ⊗p,q · · · ⊗p,q fn‖2p,q.

Hence we prove that ‖a∗(ξ)‖OP ≤
|ξ|0√
p− q

which proves (2).

�

Definition 2.6. The (p, q)-deformed white noise Heizenberg algebra Heizp,q(H)
is defined by generators{

a(ξ), a∗(η), N ; ξ, η ∈ H
}

satisfying

(a∗(ξ))∗ = a(ξ), N∗ = N

and the commutation relations (2.6)-(2.8).

3. Hopf structure of the (p, q)-deformed white noise
Heizenberg algebra

In this section, we give a direct construction of the Hopf algebraic structures
of the Fock realization of the (p, q)-deformed white noise Heizenberg algebra
Heizp,q(H). This structures will be done by several lemma bellow.

Lemma 3.1. There is a unique algebraic homomorphism

∆ : Hp,q −→ Heizp,q(H)×Heizp,q(H)

with

∆(N) = N ⊗ 1 + 1⊗N, (3.1)

∆(a∗(η)) = a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η), (3.2)

∆(a(ξ)) = a(ξ)⊗ q−N/2 + q−N/2 ⊗ a(ξ). (3.3)
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Proof. We need to show that ∆(N),∆(a∗(η)) and ∆(a(ξ)) satisfy the (p, q)-
commutation relation. Firstly, one can see that

∆(a∗(η))∆(a(ξ))

=
(
a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η)

)(
a(ξ)⊗ q−N/2 + q−N/2 ⊗ a(ξ)

)
= a∗(η)a(ξ)⊗ 1 + a∗(η)q−N/2 ⊗ qN/2a(ξ)
+ qN/2a(ξ)⊗ a∗(η)q−N/2 + 1⊗ a∗(η)a(ξ)

and

∆(a(ξ))∆(a∗(η))

=
(
a(ξ)⊗ q−N/2 + q−N/2 ⊗ a(ξ)

)(
a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η)

)
= a(ξ)a∗(η)⊗ 1 + a(ξ)qN/2 ⊗ q−N/2a∗(η)
+ q−N/2a∗(η)⊗ a(ξ)qN/2 + 1⊗ a(ξ)a∗(η).

Then by using (3.2) and (3.3) we obtain

∆(a(ξ))∆(a∗(η))− q∆(a∗(η))∆(a(ξ))

= pN 〈ξ, η〉1⊗ 1 + (a∗(η)q−N/2 ⊗ qN/2a(ξ)− qa(ξ)qN/2 ⊗ q−N/2a∗(η))
+ (qN/2a(ξ)⊗ a∗(η)q−N/2 − qq−N/2a∗(η)⊗ a(ξ)qN/2) + 1⊗ pN 〈ξ, η〉1.

On the other hand by using a basis (ζk)k of the Hilbert space H, we get(
a∗(η)q−N/2 ⊗ qN/2a(ξ)− qa(ξ)qN/2 ⊗ q−N/2a∗(η)

)
ζ⊗nk ⊗ ζ⊗nk

= q−n/2a∗(η)ζ⊗nk ⊗ qn−1/2a(ξ)ζ⊗nk
− qn+1/2a(ξ)ζ⊗nk ⊗ q−(n+1)/2a∗(η)ζ⊗nk
= q−1/2[n]p,q〈ξ, ζ⊗nk 〉

(
η ⊗ ζ⊗nk ⊗ ζ⊗(n−1)

k − ζ⊗nk ⊗ η ⊗ ζ⊗nk
)

and (
qN/2a(ξ)⊗ a∗(η)q−N/2 − qq−N/2a∗(η)⊗ a(ξ)qN/2

)
ζ⊗nk ⊗ ζ⊗nk

= qn−1/2a(ξ)ζ⊗nk ⊗ q−n/2a∗(η)ζ⊗nk
− q−(n+1)/2a∗(η)ζ⊗nk ⊗ qn/2a(ξ)ζ⊗nk
= q−1/2[n]p,q〈ξ, ζ⊗nk 〉

(
ζ⊗nk ⊗ η ⊗ ζ⊗nk − η ⊗ ζ⊗nk ⊗ ζ⊗(n−1)

k

)
.

Hence we get

∆(a(ξ))∆(a∗(η))− q∆(a∗(η))∆(a(ξ)) = pN 〈ξ, η〉1⊗ 1 + 1⊗ pN 〈ξ, η〉1
= ∆(pN 〈ξ, η〉1),

and by a similar calculus we obtain

[∆(N),∆(a∗(η))] = ∆(a∗(η)), [∆(N),∆(a(ξ))] = −∆(a(ξ)).

That means that ∆ is an algebraic homomorphism. Consequently, Heizp,q(H)
is a bialgebra. �
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Lemma 3.2. The comultiplication ∆ on Heizp,q(H) is coassociative, i.e.,

(1⊗∆)∆ = (∆⊗ 1)∆.

Proof. We have to check that all the generators of Heizp,q(H) are mapped
both ways by (1⊗∆)∆ and (∆⊗1)∆ to the same image, which simply involves
straightforward calculations. We shall take a∗(η) as an example (others can
be done similarly). So we have

(1⊗∆)∆(a∗(η)) = (1⊗∆)(a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η))
= a∗(η)⊗∆(qN/2) + qN/2 ⊗∆(a∗(η))
= a∗(η)⊗ (qN/2 ⊗ 1 + 1⊗ qN/2)
+ qN/2 ⊗ (a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η))
= a∗(η)⊗ qN/2 ⊗ 1 + a∗(η)⊗ 1⊗ qN/2
+ qN/2 ⊗ a∗(η)⊗ qN/2 + qN/2 ⊗ qN/2 ⊗ a∗(η)

and

(∆⊗ 1)∆(a∗(η))

= (∆⊗ 1)(a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η))
= ∆(a∗(η))⊗ qN/2 + ∆(qN/2)⊗ a∗(η)
= (a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η)) + (qN/2 ⊗ 1 + 1⊗ qN/2)⊗ a∗(η)
= a∗(η)⊗ qN/2 ⊗ qN/2 + qN/2 ⊗ a∗(η)⊗ qN/2 + qN/2 ⊗ 1⊗ a∗(η)
+ qN/2 ⊗ qN/2 ⊗ a∗(η).

This gives the statement. �

Now for simplicity of notation we will denote Heizp,q(H) ⊗ Heizp,q(H)

by Heiz⊗2
p,q(H).

Lemma 3.3. There is a unique homomorphism of C-algebras

ε : Heizp,q(H) −→ C
with

ε(1) = 1 and ε(N) = ε(a(ξ)) = ε(a∗(ξ)) = 0.

Moreover, the following diagrams are commutative

Heizp,q(H)

id

��

∆ // Heiz⊗2
p,q(H)

1⊗ε
��

Heizp,q(H)
π1 // Heiz⊗2

p,q(H)

(3.4)

Heizp,q(H)

id

��

∆ // Heiz⊗2
p,q(H)

ε⊗1

��
Heizp,q(H)

π2 // Heiz⊗2
p,q(H)

(3.5)

namely, (1⊗ε)∆ = π1 ◦id and (ε⊗1)∆ = π2 ◦id, where π1 (resp. π2) denotes
the isomorphism u 7→ u⊗ 1 (resp. u 7→ 1⊗ u) for any u ∈ Heizp,q(H).
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Proof. It is straightforward to see that (ε(1), ε(N), ε(a(ξ)), ε(a∗(η))) = (1, 0, 0, 0)
satisfy the (p, q)-commutation relations (2.6)–(2.8). So we have the algebraic
homomorphism ε. For the commutativity of the two diagrams, it can be eas-
ily checked on the generators. The homomorphism ε is called the counit of
Heizp,q(H). �

Lemma 3.4. There is a unique linear map S of Heizp,q(H) with
S(a∗(η)) = −q−N/2a∗(η)qN/2

S(a(ξ)) = −q−N/2a(ξ)qN/2

S(N) = N.

(3.6)

Proof. We need to show that (S(N), S(a∗(η)), S(a(ξ))) satisfies the (p, q)-
commutation relation in Heizp,q(H). By using (2.6), we have

S(a∗(η))S(a(ξ))− qS(a(ξ))S(a∗(η))

= (−q−N/2a∗(η)qN/2)(−qN/2a(ξ)qN/2)
− q(−qN/2a(ξ)qN/2)(−q−N/2a∗(η)qN/2)
= q−N/2a∗(η)a(ξ)qN/2 − qq−N/2a(ξ)a∗(η)qN/2

= q−N/2(a∗(η)a(ξ)− qa(ξ)a∗(η))qN/2

= q−N/2pNqN/2〈ξ, η〉1.

On the other hand one can see that the action of q−N/2pNqN/2〈ξ, η〉1 and
pN 〈ξ, η〉1 coincide on the basis (ζ⊗nk )k of the Hilbert space H⊗n. Thus we
deduce that

S(a∗(η))S(a(ξ))− qS(a(ξ))S(a∗(η)) = S(pN 〈ξ, η〉1),

namely, the map S preserves (2.6). One can similarly check that (2.7) and
(2.8) are also preserved by S. So there is a homomorphism S : Heizp,q(H) −→
Heizp,q(H) satisfying (3.6). Now S2 is an ordinary homomorphism from Heizp,q(H)
to Heizp,q(H). Moreover by using (3.6) one can see that the action of S2 on
the generators is given by

S2(a∗(η)) = S(S(a∗(η))) = −q−N/2(S(a∗(η)))qn/2

= −q−N/2(−q−N/2a∗(η)qN/2) = q−Na∗(η)qN ,
S2(a(ξ)) = S(S(a(ξ))) = q−Na(ξ)qN ,
S2(N) = S(S(N)) = S(N) = N.

By a same argument we can easily verify that q−Na∗(η)qN and a∗(η) coincide
on the basis (ζ⊗nk )k and we deduce that S2 = id, which implies that S is
bijective. �

The map S from Lemma 3.4 is called the antipode of Heizp,q(H). It is
clear that the inverse S−1 of S is also an antiautomorphism, which is given
by

S−1(a∗(η)) = −q−N/2a+(η)qN/2,
S−1(a(ξ)) = −q−N/2a(ξ)qN/2,
S−1(N) = N.
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Lemma 3.5. The following diagrams are commutative

Heizp,q(H)

σ◦ε
��

∆ // Heiz⊗2
p,q(H)

1⊗S
��

Hp,q m // Heiz⊗2
p,q(H)

(3.7)

Heizp,q(H)

σ◦ε
��

∆ // Heiz⊗2
p,q(H)

S⊗1

��
Heizp,q(H)

m // Heiz⊗2
p,q(H)

(3.8)

where

m : Heiz⊗2
p,q(H) −→ Heizp,q(H)

is the multiplication map, namely, m(u ⊗ v) = uv for all u, v ∈ Heizp,q(H),
and where σ : C −→ Heizp,q(H) is the embedding σ(a) = a1 for all a ∈ C.

Proof. By using (3.1), (3.2) and (3.3) we get

m ◦ (S ⊗ 1) ◦∆(N) = m ◦ (S ⊗ 1)(N ⊗ 1 + 1⊗N)
= m ◦ (S(N)⊗ 1 + S(1)⊗N)
= m ◦ (−N ⊗ 1 + 1⊗N) = 0 = η ◦ ε(N),

m ◦ (S ⊗ 1) ◦∆(a∗(η)) = m ◦ (S ⊗ 1)(a∗(η)⊗ qN/2 + qN/2 ⊗ a∗(η))
= m ◦ (S(a∗(η))⊗ qN/2 + S(qN/2)⊗ a∗(η))
= m ◦ (−qN/2a∗(η)q−N/2 ⊗ qN/2 + qN/2 ⊗ a∗(η))
= −qN/2a∗(η) + qN/2a∗(η)
= 0 = η ◦ ε(a∗(η)),

m ◦ (S ⊗ 1) ◦∆(a(ξ)) = m ◦ (S ⊗ 1)(a(ξ)⊗ q−N/2 + q−N/2 ⊗ a(ξ))
= m ◦ (S(a(ξ))⊗ q−N/2 + S(q−N/2)⊗ a(ξ))
= m ◦ (−q−N/2AqN/2 ⊗ q−N/2 + q−N/2 ⊗ a(ξ))
= −q−N/2a(ξ) + q−N/2a(ξ)
= 0 = η ◦ ε(a(ξ)).

Similarly, we have

m ◦ (1⊗ S) ◦∆(X) = η ◦ ε(X), X = N, a∗(η), a(ξ),

and (3.7) is established. �

Definition 3.6. An algebra A together with algebraic homomorphisms ∆ :
A −→ A ⊗ A, ε : A −→ C and a linear map S : A −→ A is called a Hopf
algebra, if ∆ is coassociative and if the diagrams (3.4), (3.5), (3.7) and (3.8)
(with Heizp,q(H) is replaced by A) commute i.e.,

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ (coassociativity)
(ε⊗ 1) ◦∆ = (1⊗ ε) ◦∆ = id (counitary)

m ◦ (S ⊗ 1) ◦∆ = m ◦ (1⊗ S) ◦∆ = η ◦ ε.
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We call ∆, ε and S the coproduct, the counit and the antipode of the Hopf
algebra, respectively.

So by collecting Lemmas 3.1-3.5 we obtain the following main result:

Theorem 3.7.
(
Heizp,q(H),∆, ε, S

)
defined by (2.6)–(2.8) and (3.1)-(3.6) is

a Hopf algebra.

Our next aim is to discuss the pointwise structure of the Hopf algebra
associated with creation and annihilation operators at points of the space
R. At least informally, for each t ∈ R we may consider a delta function at
t, denoted by δt and let bt and b∗t the standard pointwise annihilation and
creation operators on Fp,q(H) defined by

b∗t f
(n) = δt ⊗p,q f (n),

(btf
(n))(t1, · · · , tn−1) =

n∑
i=1

qi−1pn−if (n)(t1, · · · , ti−1, t, ti, · · · tn−1).

Hence one can see that the (p, q)-creation and (p, q)-annihilation operators
are given as the smeared operators in terms of bt and b∗t , i.e.,

a(ξ) =

∫
R
ξ(t)btdt, a∗(ξ) =

∫
R
ξ(t)b∗t dt. (3.9)

Let b̃t the operator defined by

(̃btf
(n))(t1, · · · , tn−1) = nf (n)(t1, · · · , ti−1, t, ti, · · · tn−1),

so we can see that nt := b∗t b̃t is the standard number operator. By using
the relation of the Heizp,q(H) satisfied by the operators a(ξ), a∗(ξ) and the
number operatorN on Fp,q(H), it’s easily to verify that the pointwise creation
and annihilation operators satisfy the following (p, q)-commutation relations

btb
∗
s − qb∗sbt = pb

∗
s b̃tδ(s, t),

btb
∗
s − pb∗sbt = qb

∗
s b̃tδ(s, t),

nsb
∗
t − b∗tns = b∗t δ(s, t),

nsbt − btns = −btδ(s, t),

(3.10)

where δ(s, t) is understood as:∫
R2

f (2)(s, t)δ(s, t)dtds =

∫
R
f (2)(t, t)dt.

Corollary 3.8. (Heizp,q(H),∆, ε, S) defined by (3.10) is a Hopf algebra.
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