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Abstract

Smart antennas are becoming popular in the cellular wireless communication for capacity enhancement while reducing multipath effect and interference from undesired direction and to be useful for both base station and mobile handset antennas. The demands for smart antenna is even increasing widely as 5G cellular communication evolves to support higher data speed and bandwidth. The fundamental principle of smart antenna design is the adaptive beamforming using any best suited adaptive algorithm such as Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Sample Matrix Inversion (SMI) and Recursive Least Square (RLS) each having its own pros and cons. Among the four, the LMS and NLMS are iterative approaches while SMI is block adaptive and RLS is a recursive method. Though there are many discrete research works using these algorithms, but comprehensive investigations considering all for smart antenna design is not available to the best of our knowledge. Thus, in this paper, exhaustive comparative performance studies of LMS, NLMS, SMI, RLS are performed in antenna array beamforming with multiple interference rejection using null steering. The contribution of this paper includes implementation methods of adaptive beamforming algorithms in presence of multiple interferers through flow charts illustration. Then exhaustive comparative results are analyzed for all four algorithms in terms of beamwidth, null depth, maximum sidelobe level, rate of convergence and error variation with respect to number of antenna elements and spacing. Finally, a comparative look up table is prepared which observes the pros and cons of all the algorithms listed. This paper will be a good ready reference for researcher in smart antenna design using these adaptive algorithms.
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Introduction

Antenna arrays are generally used for beamforming in desired directions depending on the number of elements, spacing between the elements and current phase of each antenna elements [1, 2]. Antennas or arrays are sometimes used in dynamic environments where both the desired signal and the interfering signals arrive from different direction with varying signal levels requiring the development of adaptive antenna arrays. Adaptive antenna array research began in 1950 and continues to grow in this field. The adaptive antenna arrays become smart when used digital signal processing algorithms to form and place the desired beam nullifying interference from the undesired directions. This also requires identifying direction of arrivals of the signal. Smart antenna system is also known as adaptive array antenna, digital antenna arrays and now recent time Multiple Input Multiple Output (MIMO) systems [3]. The purpose of using smart antenna system is to enhance efficiency of digital wireless communication systems by taking the advantages of diversity reception at the transmitter or receiver. Most of the base station antennas in the cellular communication are either omnidirectional or sectored type. This may lead to power wastage unless the users are not uniformly distributed within the region of base station coverage [4]. Sometimes it may cause increased interference to the other users hence degrading the signal to interference plus noise ratio and thus limiting the capacity enhancement. Further, with the forthcoming wave of 5G communication the demands for multibeam antennas are increasing to support high bandwidth and high data hungry applications [5,6]. Smart adaptive beam forming antennas can enhance capacity by nullifying interference thus enhancing signal condition. The smart antenna or adaptive array processing was first introduced by Van Atta [7] in 1959 to describe a self phased array. The smartness of smart antenna design resides in the weight adaptation of each antenna elements and hence is called adaptive array. All elements of the adaptive antenna array have to be combined optimally so that maximum signal reception is possible in some desired direction while signal at the same frequency coming from other directions can be cancelled out. To get this optimal weight, various adaptive algorithms such as the Least Mean Square (LMS), Normalized Least Mean Square (NLMS) [8, 9], Sample Matrix Inversion (SMI) [9]and Recursive Least Square (RLS) [10, 11] are being used in order to adapt the radio environments. The LMS, NLMS are iterative approach, SMI is block adaptive approach and RLS is a recursive method. 
Among all, LMS algorithm is the simplest one and was first introduced in 1960 by Bernard Widrow [12] as a class of adaptive filter that relates to find the error signal i.e., difference between the desired and the reference signal. LMS algorithm uses continuous adaptation. The weights are adjusted as the data is sampled such that the resulting weight vector sequence converges optimally. LMS algorithm is based on steepest descent gradient approach and the convergence of this method is dependent upon the eigenvalue spread of the array correlation matrix. The largest eigenvalues derived from the correlation matrix correspond to the strongest signals and the smallest eigenvalues corresponds to the weakest signals or noise. The NLMS algorithm is a continuous adaptive algorithm and has a slow convergence rate when the eigenvalues of the correlation matrix are widespread. SMI algorithm was introduced by Reed, Mallet and Brennen in 1974 [13], which is suitable for a discontinuous transmission, originated the weights of an array by replacing the array correlation matrix with its estimates. It is much more suitable for dynamic environment as it uses block samples. RLS is an adaptive algorithm that recursively finds the coefficients to minimize a weighted linear least squares cost function relating to the input signals. It is well known that the rate of convergence of SMI algorithm is much faster than that of LMS and its variant NLMS algorithm [14-16]. RLS algorithm is recursive one and is better than LMS, NLMS and SMI at the cost of complexity.
Adaptive antenna array transmits and receives signal simultaneously and hence creates many multipath propagation and multiple angles of arrival. Therefore, it is important for the antenna array to determine the true angles of arrival by eliminating the interferers and noise [17]. The MUSIC (Multiple Signal Classification) [18,19] is a spectral estimation based algorithm used for unbiased estimates of the number of signals, the direction of arrival and the strength of the waveform. The ESPRIT [20, 21] (Estimation of Signal Parameters via Rotational Invariant Techniques) is used to exploit the rotational invariance in the signal subspace.
Smart antenna processing or adaptive array processing is a process for obtaining a desired signal in a noisy and interfering environment. The antenna array is called smart because a prior knowledge of the undesired signal direction is made for noise removal. Smart antenna is also called digital beamforming (DBF) [22-29] array. The implementation of the array signals can be performed electronically through analog devices but more easily it is done using digital signal processing. The array output signals are digitized using an analog to digital converter. Design of adaptive array for a specified direction requires the sidelobe reduction or cancellation for automatic nulling of the interfering signals. Adaptive sidelobe cancellation was first introduced by Howells [17] in 1959. 
In this paper, we present an exhaustive comparative performance result of these four adaptive algorithms, keeping them on the same platform in adaptive array optimization problem. We use the weight optimization techniques to obtain a desired array factor, multiple interference rejection, null depth, sidelobe levels and observed the convergence rate of each algorithm.

Smart Antenna: Concept and Components



Figure 1      Block diagram of a smart antenna system

The basic building blocks of a smart antenna system are shown in the Figure 1, with the various important components. Smart essentially means computer control of the antenna performance using some digital signal processor technology [21, 22]. When the radiation pattern is controlled via certain algorithms with a digital signal processing capability, it refers to smart antennas. By suitable designing of algorithms, the signal-to-interference ratio can be maximized, minimized according to the variance and mean square error (MSE) [9], nulling the interfering signals and steering the main beam towards the user. This kind of environment practically contains interfering signals and Gaussian noise. In this situation the main beam is directed in the desired direction with nullification in the interfering direction by controlling the weights of the antenna using adaptive algorithms. The inputs are containing desired signal, interfering signals and Gaussian noise, which are applied to the antenna arrays. Using some adaptive algorithms, the array weights are controlled and the output error is minimized. The error is calculated by subtracting the output signal with the reference signal and is minimized using adaptive algorithms by controlling the weights.




Figure 2    Functional block diagram of smart antenna for minimizing mean square error

Two most important aspects to understand smart antenna are estimation of direction of arrival (DOA)and the Digital Beamforming. Figure 2 represents the functional diagrams of smart antenna system. These are antenna array unit, array weight adapter unit, direction of arrival unit and adaptive algorithms unit. Within the smart antenna system, estimation of DOA [21] for signal and interferer is the most important aspect on which the performance of the adaptive array depends.  Here some of the standard DOA methods are discussed first then a detail implementation of ESPRIT algorithm for DOA is given along with the result generated.
ESTIMATION OF DIRECTION OF ARRIVAL (DOA)

Direction of arrival is also known as spectral estimation, bearing estimation or angle of arrival estimation (AOA) [19]. In adaptive array processing if one or many transmitters are operating simultaneously, then each source creates many propagation paths and angle of arrival at the receiver. Therefore, it is important for the antenna array to determine the true angles of arrival by eliminating the interferers and noise signals for greater fidelity [19-21]. It is assumed that the arriving signals are monochromatic and time varying, thus our calculations are based upon t-time snapshots of the incoming signals. It is initially assumed that the number of antenna element is greater than the number of arriving signals. If the transmitters are moving, the matrix of steering vectors and the corresponding arriving angle are changing. The direction of arrival algorithm depends on array correlation matrix and signal correlation matrix. 
Figure 2 depicts M element array with M potential weights with N incident plane waves arriving from N directions and each antenna element includes white Gaussian noise. The array output is written in the following form,


										  (1)

where,  		             (2)
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Where  array weights, = = undesired signal vector, incident signals vector, interfering signals vector, = matrix of steering vector ,  noise vector at each array element, M-element array steering vector for the  direction of arrival and incident complex signal vector at time ‘t’. It is assumed that the arriving signals are monochromatic and the number of arriving signals is less than the number of array elements. If the arriving signals are changing with respect to time then the steering vector a well as the corresponding arriving angles are also changing [8]. The array correlation matrix can be written as,
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where,  and  are the signal and noise correlation matrix, which are found by taking the expected value of the respective absolute values squared. The matrix of steering vector  is matrix. Therefore, we can approximate the correlation by estimating a time averaged correlation and is defined by,




,  and                               (5)
The array correlation matrix has to be diagonal matrix and nonsingular if the signals are uncorrelated and partly correlated respectively. The goal of direction of arrival is to determine a function that gives an indication of the angle of arrival based upon maxima versus arriving angle. There are several potential approaches and algorithms for defining the function like MUSIC, root-MUSIC, ESPRIT and many more approaches [20, 21]. If the array weight is uniform in nature, we use Bartlett AOA estimation method which is defined as,


						 (6)


where,  is known as pseudospectrum. If power is incident in one direction and while all other sources are considered as interferer, at this situation we use Capon AOA estimation method [21]. In this method the pseudospectrumis defined as,


						(7)

This method is also known as minimum variance distortionless response (MVDR). Thus our goal is to maximize the signal-to-interference ratio (SIR). The source correlation matrix is assumed to be diagonal which maximizes SIR using a set of array weights, which is given by,


					                              (8)


MUSic and root-music AOA estimation

If the signal correlation is high the MUSIC [18] algorithm breaks down. For MUSIC, the array correlation matrix is calculated first assuming uncorrelated noise with equal variances. In this method the array correlation matrix is given by 


                                                                                        (9)






where, = is the signal correlation matrix, = eigen values of uncorrelated noise and = identity matrix. For finding eigenvalues and eigenvectors for, it has to produce N eigenvectors associated with the signals and  eigenvectors associated with the noise. In case of the uncorrelated signals, the smallest eigenvalues are equal to the variance of the noise. At this situation we have to construct the  dimensional subspace spanned by the noise eigenvectors. The noise eigenvectors are defined as,

					                            (10)


 is orthogonal to the array steering vectors at the angles of arrival. The MUSIC pseudo 
spectrum [9] is defined by

					              (11)

esprit aoa estimation


ESPRIT (Estimation of Signal parameters via Rotational Invariance Techniques) algorithm is much less computationally intensive and makes the estimation more practical when only a finite number of noisy measurements are required. With a translation invariance structure the goal of the ESPRIT [19, 20] technique is to exploit the rotational invariance in the signal subspace which is created by two arrays. This algorithm assumes that the signal sources are narrowband and the signal sources can be either random or deterministic and the noise is assumed to be random in nature with zero mean. It is assumed that this algorithm is used for multiple identical arrays called doublets. Doublets are produced by the combination of separate arrays. These arrays are displaced translationally but not rotationally. Figure 3 shows a four element linear array composed of two identical three element two doublets, where two doublets are translationally displaced by the distance ‘’. Let the two doublets be represented by array 1 and array 2.



Figure 3    Two identical displaced arrays or doublets

The signals induced on each of the arrays are given by



		





where,  Vandermonde matrix of steering vectors for subarrays1,  Induced array signals,  Gaussian noise at subarray 1

Similarly, 





where,a  diagonal unitary matrix,  Vandermonde matrix of steering vectors for subarrays 2, Gaussian noise at subarray 2

Estimate the angle of arrival θi, given that


fori = 1, 2, ... , B				              (12)
[image: ]
Figure 4     Polar plot angle of arrival estimation using ESPRIT
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Figure 5        Cartesian plot Normalized angle of arrival estimation using ESPRIT

Figure 4 and Figure 5 shows the Angle of Arrival estimation of five different angles in polar and Cartesian representation using ESPRIT algorithm. 

Digital beamforming

Digital beamforming (DBF) [24-29] is a technique for separating a desired signal from interfering signals. With the development of adaptive algorithms, DBF technology has progressed. It has been applied to radar systems, sonar systems and communication systems etc.  In this method the operations of phase shifting and amplitude scaling for each antenna element and summation for receiving are done digitally. In case of digital beamforming, the major advantage is that phase shifting and array weighting which can be performed on the digitized data rather than by being implemented in hardware.




Figure 6        Digital beamforming process

Figure 6 shows the digital signal processor which requires that the signal for each antenna element is digitized using an analog to digital converter.  From the figure it is depicted that the radio signals above shortwave frequencies are too high to directly digitize, digital beamforming receivers use analog RF translators to shift the signal frequency down before the analog-to-digital converters. Figure 7 shows the schematic block diagram of a RF translator. The RF translator consists of a band pass filter, mixer, local oscillator and a low pass filter. The design of the receiver portrays the performance of a DBF array.



Figure 7      Block diagram of RF Translator

Fixed weight beamforming basics

In fixed beamforming arrival angles are fixed, hence no need for optimal array weight adjustment.

maximum signal to interference ratio

The best idea in enhancing the received signal is to minimize the interfering signals and maximize the signal-to-interference ratio (SIR).



The arriving signals are time varying and based upon time snapshots. We can calculate the array correlation matrix  for desired signal and undesired signal correlation matrix . The SIR is defined as the ratio of the desired signal power by the undesired signal power.

					              (13)	




Where, ;,= interference and noise correlation matrix. The SIR can be maximized in (13) by taking the derivative with respect to  and then setting the result equal to zero [5].

minimum mean square error







Figure 2 above shows one desired signal arriving from the angle  and  interfering signal arriving from angles. The desired and interfering signals are received by an array of -elements with  potential weights. Also each received signal includes additive Gaussian noise. So the weighted array output for th time samples can be written by recalling equation (1) as, 

						           (14)





The best method for optimization of the array weights are found by minimizing the mean square error (MSE) [9]. The signal  is the reference signal which is identical to the desired signal and uncorrelated with the interfering signal. The error signal  as indicated in Figure 2 can be represented as,

						              (15)
By squaring (15) and taking the expected value, the mean square error is given by,
  

					              (16)

                  Where, 				              (17)

The expression of (16) is a quadratic function of the weight vector . Since the optimum weights provide the minimum MSE, the extremum is the minimum of this function. Thus we can write,

					              (18)
From (18) after simplification we reach to Wiener solution. i.e.


							              (19)

Adaptive beamforming

There are two types of smart antennas which are switched beam antennas [22, 23] and adaptive antenna array [22, 23]. If the desired arrival angles continuously change with time, it is necessary to devise an optimization scheme that can continuously update the array weights. The adaptive beamforming is the best technique for tracking the mobile user continuously to the changing RF environment.

least mean square algorithm

The least mean square (LMS) [8-10, 30-40] algorithm is a gradient based continuous adaptive approach which we have discussed in the following flowchart representation in Figure 8.



We know that the gradient method is the best method for determining minima [9]. We here established the performance surface  (cost function) by finding the MSE again. By squaring errorfrom (15) and taking the expected value,



or,					              (20)


or,						              (21)	where, 

The performance surface  is in the shape of an elliptic paraboloid having one minimum. We may employ the gradient method to locate the minimum of the above (21) as, 


							           (22)


where,  is the gradient of the performance surface. The minimum occurs when the gradient of (22) is zero. Thus, the solution for the weights is the optimum as given by,


									           (23)

We have used an iterative technique called the method of steepest descent to approximate the gradient of the cost function. Using the LMS method we can approximate the method of steepest descent in terms of the weights. The steepest descent approximation as obtained,

						           (24)


where,  is a step size parameter and is given in (22). If we substitute the instantaneous correlation approximations, we have the LMS solution as,


							              (25)

where, error signal.



The convergence of the LMS algorithm in (25) is directly proportional to the step size parameterand  denotes the complex conjugate. If  is chosen to be very small, then convergence becomes very slow and if it is large, then convergence becomes very fast. It can be shown that the stability is dependent upon the following condition,


									           (26)


where,  is the largest eigen value of the array correlation matrix.




Figure 8   Flowchart for the Least Mean Square algorithm


normalized least mean square algorithm


The LMS algorithm is the most basic and common method for calculating weights and the algorithm to go through many iterations before satisfactory convergence is achieved. Also the stability and convergence time of LMS algorithm is dependent upon step size parameter. To overcome this dependency, the NLMS (Normalized Least Mean Square) [9] algorithm is introduced. The NLMS algorithm is used to achieve good stability and faster convergence. The weight update equation for the NLMS algorithm is given as.


					               (27)


Equation (27) represents the final weight update equation for NLMS algorithm where step size is divided by the normalized value of the input signal. In (27) to avoid denominator being zero when the data at any instant is zero a small positive constant ‘ε’ must be added to the denominator. Thus the equation (27) can be rewritten,


					               (28)


Sample matrix inversion algorithm



The sample matrix inversion (SMI) is a time average estimate algorithm of the array correlation matrix using time samples which is shown in the flowchart representation in Figure 9. If the random process is averaged over time and space (ergodic) in the correlation, the time average estimate will equal the actual correlation matrix. In this method the optimal weights are computed for each input signal block of size . Weight adaptation in the SMI algorithm can be done in three different ways [31]. Block Adaptation, Block Adaptation with Overlapping and Block Adaptation with Memory.


6.3.1 |Block Adaptation

It is most common type weight adaptation technique. In this method the weight adaptation is carried over disjoint interval of time.

6.3.2 |Block Adaptation with Overlapping

In this technique block adaptation is done in intervals that are overlapping in time.

6.3.3 |    Block Adaptation with Memory

In this method the covariance matrix estimates the computed weights in the previous blocks. This method provides faster convergence for stationary signal environment.
In this paper we use block adaptation approach. This method is well suited for time varying signals. Now from (23) we can write


							              (29)




Figure 9   Flowchart for the Sample Matrix Inversion algorithm



Now for determining the values of  and  we have to calculate the time average such that 

						              (30)


and ,						              (31)

Since we use length block of data, this method is also called a block adaptive approach. We thus here adapt the weights block-by-block. MATLAB made it easier to calculate the array correlation matrix and the correlation vector by the following procedure,


					           (32)

where,  is the block number.

					              (33)
Equation (33) is the final weight update equation for minimization of error.


where,      and  

recursive least square algorithm

SMI method is faster than the LMS algorithm, the computational burden and potential singularities can cause problems. The convergence speed of the SMI algorithm depends on auto correlation matrix with large eigenvalue spread that results in a slow convergence speed. This problem is solved using recursive least squares (RLS) algorithm which minimizes a weighted linear least square cost function relating to the input signals. 
However, we can recursively calculate the required correlation matrix and the required correlation vector as

       							           (34)   

and,   						                       (35) 


where, ‘t’ is the block length and last time samples ‘t’ and ,  is the correlation estimates ending at time sample ‘t’. Both summations of the two equations (34) and (35) use rectangular windows, thus they equally consider all previous time samples. Since the signal sources can change or slowly move with time, we would prefer to work with the recent data samples. This can be done by modifying the two equations (34) and (35) such that we forget the previous time samples, which is called weighted estimate.






Figure 10   Flowchart for the Recursive Least Square algorithm



                     Thus        					           (36) 

		and,						           (37) 


Where ,  is called the forgetting factor and its value lies between .
Thus the next values for the array correlation matrix and the vector correlation matrix can be found by previous values, we can rewrite equation (36) and (37) as,





			                       (38)

			

							                       (39)

Equation (38) and (39) is the final updated value of array correlation matrix and vector correlation matrix. The flow chart representation of RLS algorithm is shown in Fig.10.

Comparative Performance Analysis of LMS, NLMS, SMI and RLS algorithms in light of Adaptive Array 






The performance of the above algorithms is done by extensive simulations under MATLAB platform in terms null depth, maximum sidelobe level, rate of convergences. In this paper, we have studied main beam variation towards desired user, null steering towards interfering direction, weight variation and output error of the LMS, NLMS and SMI algorithms. Here, initially smart antenna system is designed by taking a uniform linear array of twenty elements with inter elemental spacing equal to half wavelength distance and later we varied the array elements and spacing.  The desired signal is taken as simple cosine signal. We have taken 8000 data samples for simulation purpose.  In the example considered here, the desired angle of arrival is with five interfering signals arriving at angles , , , , .


[image: ]

Figure 11         Beamforming using LMS algorithm

[image: ]

Figure 12          Beamforming using NLMS algorithm

[image: ]

Figure 13      Beamforming using SMI algorithm

[image: ]

Figure 14      Beamforming using RLS algorithm



It is clear from the Figure 11, Figure 12, Figure 13 and Figure 14 that the nulls were created in the specific direction of the interferers with good null depth for LMS, NLMS, SMI and RLS. Both LMS and NLMS algorithms are able to iteratively update the weights to force deep nulls towards interferers and achieve maximum towards desired signal. It has seen that NLMS nulls are deep around dB whereas LMS is around dB. Alternatively, Fig.13 and Fig. 14 show that the SMI algorithm is able to update the weights blockwise to force deep nulls towards interferers and achieve maximum towards desired signal. Moreover, both for SMI and RLS the nulls have been placed in exact direction of interference nulling with further deep at -100 dB and -115 dB respectively. 

comparison of null depth, beamwidth and maximum sidelobe level for varying antenna Spacing

For the variation of antenna spacing of the LMS, NLMS, SMI and RLS algorithms we have considered a fixed 20-element uniform linear array.

Figure 15, Figure 16 and Figure 17 show the variation of the pattern of desired signal and null steering with the variation of antenna spacing 0.3, 0.5 and 0.7 of wavelengths respectively. The plots indicate that if the antenna spacing increases with fixed array element 20, the antenna beamwidth remains same, but the maximum sidelobe level decreases and maximum null depth increases for all algorithms.  From Table 1, the best null depth occurs when the antenna spacing is 0.5 for all algorithm. The magnitude of null depth is highest for SMI at 0.5 spacing.


[image: ]
Figure 15    Normalized array factor plot for LMS, NLMS and SMI algorithms when element spacing is 0.3

[image: ]

Figure 16      Normalized array factor plot for LMS, NLMS, SMI and RLS algorithms when element spacing is 0.5

[image: ]
Figure 17	Normalized array factor plot for LMS, NLMS, SMI and RLS algorithms when element spacing is 0.7


Table 1   Null depth for varying Antenna Spacing 
	Algorithms
	Beam Width
(degree)
	Max. Sidelobe level (dB)
	Max. Null Depth (dB)

	LMS
	0.3
	18.21
	-10.66
	-55.1

	
	0.5
	12.032
	-10.41
	-74.84

	
	0.7
	10.318
	-10.63
	-55.53

	NLMS
	0.3
	17.181
	-13.36
	-68.87

	
	0.5
	12.032
	-12.64
	-93.34

	
	0.7
	10.318
	-13.29
	-69.42

	SMI
	0.3
	12.728
	-13.58
	-77.64

	
	0.5
	12.032
	-12.68
	-97.34

	
	0.7
	10.318
	-13.67
	-71.60

	RLS
	0.3
	12.032
	-12.58
	-93.55

	
	0.5
	12.032
	-13.53
	-113.0

	
	0.7
	10.318
	 -12.54
	-75.94




comparison of null depth, beamwidth and maximum sidelobe level for varying number of antenna elements



For the variation of array elements of the LMS, NLMS, SMI and RLS algorithms we have considered fixed element spacing at 0.5 of wavelengths. Figure 18, Figure 19 and Figure 20 show the variation of the pattern of desired signal and null steering with the variation of antenna elements 15, 20 and 25 respectively. The plot indicate that if the number of antenna elements increases with element spacing fixed at 0.5 of wavelengths, the antenna beamwidth becomes narrower with obvious reason, while the sidelobe level remains almost same.  

[image: ]
Figure 18   Normalized array factor plot for LMS, NLMS and SMI algorithms when array elements is N=15

[image: ]
Figure 19	Normalized array factor plot for LMS, NLMS and SMI algorithms when array elements is N=20

[image: ]

Figure 20   Normalized array factor plot for LMS, NLMS, SMI and SMI algorithms when array elements is N=25


Table 2   Array Performance of different algorithms with varying antenna elements 

	Algorithms
	Beam Width
  (degree)
	Max. Sidelobe level (dB)
	Max. Null Depth (dB)

	LMS
	15
	18.907
	-10.95
	-59.77

	
	20
	12.032
	-10.25
	-59.77

	
	25
	9.167
	-9.653
	-59.20

	NLMS
	15
	17.192
	-13.39
	-74.72

	
	20
	12.032
	-13.02
	-74.72

	
	25
	9.167
	-13.43
	-71.38

	SMI
	15
	18.91
	-13.69
	-81.45

	
	20
	12.032
	-12.86
	-81.45

	
	25
	9.167
	-12.00
	-77.01

	RLS
	15
	18.335
	-13.44
	-84.85

	
	20
	12.032
	-12.84
	-84.85

	
	25
	9.167
	-12.64
	-80.44



It is clear from the Table 2 that to achieve best null depth for LMS, NLMS, SMI and RLS, optimum antenna elements are required. This is due to the complex electromagnetic field interaction between the array and the different interferes. For this study we have observed, the best number is 20. 

Comparison of error for LMS and NLMS algorithms for the variation of antenna spacinG


The LMS and NLMS mean square error comparison is given by varying the array spacing (0.3  to 0.7) with fixed array elements 20 and optimum step size parameter and are shown in Figure 21 and Figure 22.
 
[image: ]
Figure 21  LMS error plotting for different antenna elements spacing  

In case of LMS it is clear that when the array element spacing varies 0.3, 0.5, 0.7  respectively, it takes 150, 100 and 50 samples (iterations) to converge. If array spacing increases simultaneously quicker convergence occurs with increased error. Similarly, in case of NLMS it is clear that when the array spacing is 0.3, 0.5, 0.7   respectively,  it takes 100, 75 and 50 samples to converge. If we compare LMS error with NLMS, it is noticed that the LMS has less error but takes more time to converge than NLMS. 

[image: ]
Figure  22    NLMS error plotting for for different antenna elements spacing  

Comparison of error for LMS and NLMS algorithms for the variation of antenna elements


Another LMS and NLMS error comparison is made by varying its array elements with fixed element spacing at 0.5. The results obtained for both LMS and NLMS are shown in Figure 23 and Figure 24.
[image: ]
Figure 23   LMS error plotting for different number of array elements 

[image: ]
Figure 24   NLMS error plotting for the different number of array elements

Similarly, in case of LMS it is observed that when the array elements are 15, 20 and 25 respectively, it takes 200, 150 and 60 iterations while that of NLMS it takes130, 100 and 50 iterations to converge. Comparing LMS error with NLMS, it is observed that with increase of array elements, NLMS converges faster with increased error. LMS takes more samples to converge but error is less than that of NLMS.

SMI error for the variation of antenna spacing

The SMI error comparison is made taking fixed block size =1
From Figure 25 it can be observed that if the element spacing increases from 0.3 to 0.5, optimum error occurs. Therefore, we can say 0.5 is the best antenna spacing value for optimization of antenna array. Also if we compare these with LMS and NLMS error SMI error is less.

[image: ]
Figure 25  SMI error with different  antenna spacing 

SMI error for the variation of antenna elements





From Figure 26 it can be observed that if the array elements increase from 15 to 20 the error tends to increase from  toand if it is further increases from 20 to 25 the error tends to increase from to. Also if we compare these with LMS and NLMS error SMI error is less.
[image: ]
Figure26   SMI error for different array elements 

RLS error for the variation of antenna spacing

From Figure 27 is the error for 0.3 to 0.7 antenna spacing, there is no major variation of error. 

[image: ]

Figure 27    RLS error with different antenna spacing 

RLS error for the variation of antenna elements

From Figure 28 it can be observed that if the antenna elements are increased from 15, 20 and 25 there is no major variation of error in RLS. Also if we compare these with LMS, NLMS and SMI error, RLS error is more but it converges within 10 samples. Therefore, it is very fast and better than other three algorithms.

[image: ]
Figure 28   RLS error for varied array elements 
Comparative Performance Analysis of LMS, NLMS, SMI and RLS algorithms in light of Adaptive Array 
Table 3 enumerates the comparative performance analysis of all the four algorithms in term of maximum null depth, maximum side lobe level and error.

Table 3   Summary of observations

	Algorithms
	LMS
	NLMS

	SMI

	RLS

	Max. Null Depth (dB)

	Variation of Element Spacing
	0.3
	-55.1
	-68.87
	-77.64
	-93.55

	
	
	
0.5
	     -74.84
	   -93.55
	     -97.34
	-113.0

	
	
	0.7
	-55.53
	-69.42
	-71.60
	-75.94

	
	Variation of Antenna Elements
	15
	-59.77
	-74.72
	-81.45
	-84.85

	
	
	20
	-59.77
	-74.72
	-81.45
	-84.85

	
	
	25
	-59.20
	-71.38
	-77.01
	-80.44

	Max. Sidelobe level (dB)

	Variation of Element Spacing
	
0.3
	
-10.66
	
-13.36
	
-13.58
	
-12.85

	
	
	
0.5
	
-10.41
	
-12.64
	
-12.68
	
-13.53

	
	
	
0.7
	
-10.63
	
-13.29
	
-13.67
	
-12.54

	
	Variation of Antenna Elements
	
15
	
-10.95
	
-13.93
	
-13.69
	
-13.44

	
	
	
20
	
-10.25
	
-13.02
	
-12.86
	
-12.84

	
	
	
25
	
-9.653
	
-13.43
	
-12.00
	
-12.64

	Error

	Variation of Element Spacing
	
0.3
	
1.9
	
1.4
	

1.6
	
4

	
	
	
0.5
	
1.1
	
1.2
	

0.55
	
4

	
	
	
0.7
	
         1.3
	
1.5
	
0.63
	
4

	
	Variation of Antenna Elements
	
15
	
1.1
	
1.0
	
0.51
	
4

	
	
	
20
	
1.4
	
1.4
	
0.91
	
4

	
	
	
25
	
1.7
	
1.5
	
1.1
	
4

	
Convergence Rate
	Slow
	Medium
	Fast
	Very Fast

	
Overall Performance
	Low
	Medium
	High
	Very High


Conclusion
Though LMS, NLMS, SMI and RLS are well known adaptive algorithms for smart antenna beamforming, still there are many scopes to analyze these together in aspects of smart antenna design. In this paper, these four adaptive beamforming algorithms are taken into consideration with mathematical analysis and flow charts representations to be compared comprehensively on the basis of null depth, maximum sidelobe level, beamwidth and rate of convergence considering 20 elements linear array. The simulated results and analysis may be useful for the new researcher in this field. We investigated beamforming with multiple (five) interferer rejection and synthesizing the array patterns with deep nulls at any desired direction. A comparative table was made, based on the results by the variation of antenna elements spacing and number of array elements. It could be observed that RLS yields far better results for null depth (-115dB) when antenna spacing is varied compared to the LMS, NLMS and SMI algorithms. The best result is found at d = 0.5. The convergence rate of LMS, NLMS and SMI is much slower than RLS. The error is tested with the variation of antenna elements. NLMS is better than LMS with respect to error and faster convergence rate. Finally, SMI error with the variation of antenna elements is investigated. It is clearly observed that SMI error is much less compared to LMS and NLMS algorithms, perhaps for the block correlation approach of SMI. Though RLS error initially is more but convergence is much faster within only 15 iterations for 20 array elements. 
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Initialize value for array elements (M), Sample length (T), Block length (L), Array element spacing (d), Operating Frequency (f0), Iteration numbers (K)


Arriving angle of desired signal = θ0, Arriving angles of interfering signals = θi, 
So that,  θ0 +  θi ≤ M


Set T=L for all the samples in a single block


Set T=NL for dividing all samples into N blocks of length L and N= any integer 


Take the ‘T’ samples of the reference signal (r)  as, r= cos(2πf0t) and ‘T’ random samples for interfering signals (I) and noise (n)


Take the ‘L’ samples of the reference signal (r)  as, r= cos(2πf0t) and ‘L’ random samples for interfering signals (I) and noise (n)


Determine signal correlation matrix (RZZ) and signal correlation vector (p) for the induced signal (Z) as, Z=D+I+n
RZZ= Z.ZH/K and p= D.ZH/K


Determine signal correlation matrix (R0Z) and signal correlation vector (p0) for the induced signal (Z) as, Z=D+I+n
R0Z= Z.ZH and p0= D.ZH


Determine weights (W) as, W= RZZ-1.p


Determine weights (W0) as, W0= R0Z-1.p0


Determine output signal (y) as, y= WH.Z


Determine output signal (y0) as, y0= W0H.Z


Calculate error (ε) = |y-y0|


Determine the array factor (AF) with these update weights as, 
AF= W0H ejn2πdsinθ for θ= -π/2 to π/2 and n= 1 to M
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Initialize number of data samples (K), Forgetting factor (γ)=0.9, Noise 

variance (σ)=0.01, Weights (W)=0, Number of elements (M), Spacing (d), 

Maximum iterations= 1000

Arriving angle of desired signal=θ

0

, Arriving angle of desired signal=θ

i

, 

So that θ

0 

+ θ

i

≤ M

Calculate Noise in each array input using, R

nn

= n.n

H

/K

Create steering vectors (VS) for both signal and interference impinging on 

the array as, VS = e

(j(i-1) 2πd sinθ) 

where, i=1:M

Create array inputs without noise (x), Calculate initial correlation matrix 

(R

ZZ

) and inverse correlation matrix (R

inv

)

Update R

ZZ,

R

inv

and gain vector (g) = (R

inv

.Z) and weights (W) for each 

data as W= R
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Determine the array factor (AF), as AF= W
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jn2πd sin

θ

Is maximum iteration attend

Continue the 

process for ‘K’ 

time samples
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Initialize number of data samples (K), Forgetting factor (γ)=0.9, Noise variance (σ)=0.01, Weights (W)=0, Number of elements (M), Spacing (d), Maximum iterations= 1000


Arriving angle of desired signal=θ0, Arriving angle of desired signal=θi, 
So that θ0 + θi ≤ M


Calculate Noise in each array input using, Rnn = n.nH/K


Create steering vectors (VS) for both signal and interference impinging on the array as, VS = e(j(i-1) 2πd sinθ) where, i=1:M


Create array inputs without noise (x), Calculate initial correlation matrix (RZZ) and inverse correlation matrix (Rinv)


Update RZZ, Rinv and gain vector (g) = (Rinv .Z) and weights (W) for each data as W= RZZ-1 .g


Determine the array factor (AF), as AF= WH. e jn2πd sinθ


Is maximum iteration attend


Continue the process for ‘K’ time samples
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