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Abstract

High levels of  phenotypic  variation in resistance appears to be nearly ubiquitous across natural host

populations.  Molecular  processes  associated  with  this  variation  in  nature  are  still  poorly  known,

although theory predicts resistance to evolve at specific loci driven by selection associated with the

response to pathogen. Nucleotide-binding leucine-rich repeat (NLR) genes play an important role in

pathogen recognition,  downstream defense responses and defense signaling.  Identifying the natural

variation in NLRs has the potential to increase our understanding of how NLR diversity is generated

and maintained, and how to manage disease resistance. Here, we sequenced the transcriptomes of five

different  Plantago  lanceolata genotypes  when  inoculated  by  the  same  strain  of  obligate  fungal

pathogen  Podosphaera plantaginis.  A  de  novo transcriptome  assembly  of  RNA-sequencing  data

yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space completeness of 66.5%,

suggesting a high-quality assembly. The gene expression data showed highly varying responses where

each plant genotype demonstrated a unique expression profile in response to the pathogen, regardless

of the resistance phenotype. Analysis on the conserved NB-ARC domain demonstrated a diverse NLR

repertoire in P. lanceolata consistent with the high phenotypic resistance diversity in this species. We

find evidence of selection generating diversity at some of the NLR loci. Jointly, our results demonstrate

that phenotypic resistance diversity results from a crosstalk between different defense mechanisms. In

conclusion,  characterizing  the  architecture  of  resistance  in  natural  host  populations  may  shed

unprecedented light on the potential of evolution to generate variation.
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INTRODUCTION

Parasitism is perhaps the most common life-style on Earth  (Weinstein & Kuris, 2016), and parasitic

species,  including pathogens,  play  an important  role  in  shaping biodiversity  in  natural  populations

(Kursar  et  al.,  2009;  Bever,  Mangan,  &  Alexander,  2015).  Despite  this,  relatively  little  is  still

understood  of  the  molecular  mechanisms  that  enable  hosts  and  parasites  to  coexist  in  natural

populations. The threats imposed by pathogens on humans and on managed food production systems

have motivated research that aims to predict where pathogens will occur and how risks of infection

evolve (Koff, 1992; Woolhouse, Taylor, & Haydon, 2001; Gilligan, 2002). Pathogens can only occur

where they have susceptible hosts, and hence, resistance diversity is the key determinant of disease

dynamics.  Thus,  our  ability  to  understand how diversity  in  resistance  is  generated  and maintained

underlies our ability to predict and prevent disease emergence and epidemics. In agriculture increasing

the diversity of crops - even from a monoculture to a mixture of two cultivars - has been shown to

reduce disease levels significantly (Zhu et al., 2000; Mundt, 2002b). Natural host populations typically

support  diversity  in  resistance  phenotypes  (Salvaudon,  Giraud,  &  Shykoff,  2008;  Laine,  Burdon,

Dodds, & Thrall,  2011), and limited data available to date show that increasing resistance diversity

decreases disease risk also in the wild (Jousimo et al., 2014a).

Hosts and pathogens are assumed to coevolve through Red Queen dynamics, where the

pathogen overcomes host’s defenses and the host in turn responds with new counter-defenses (Jaenike,

1978;  Hamilton,  1980).  Theory  predicts  such reciprocal  coevolutionary  selection  to  be  a  powerful

mechanism for maintaining diversity in both host and parasite populations, as the selection rate for

resistance  depends  on  the  frequency  of  parasite  alleles,  and  vice  versa,  in  a  negative  indirect

frequency‐dependent manner  (Leonard, 1977; Bergelson, Kreitman, Stahl, & Tian, 2001). There are

numerous examples of pathogens overcoming host resistance mechanisms, both from agriculture and

from the wild (Mundt, 2002a, 2014). While evidence of resistance evolving under pathogen attack in
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the wild is scarce (Laine, 2006), there is ample support for coevolution from local adaptation studies

where  parasite/host  fitness  is  measured  in  sympatry  vs.  allopatry  (Greischar  &  Koskella,  2007;

Hoeksema & Forde,  2008).  To date,  a  handful  of  ground-breaking studies  have demonstrated  that

fluctuations in resistance and infectivity in natural systems match the predictions of coevolutionary

selection (Decaestecker et al., 2007; Gómez & Buckling, 2011; Thrall et al., 2012).  

The  interaction  between  plants  and  their  pathogens  is  mediated  by  complex  defense

mechanisms having several layers. Thick and waxy cell walls form the first mechanical defense barrier

against  pathogen  invasion  (Miedes,  Vanholme,  Boerjan,  &  Molina,  2014).   Next,  the  pathogen-

associated molecular patterns (PAMPs) trigger the so-called PAMP-triggered immunity (PTI) response,

aimed at stopping the pathogen infection even before it begins. If the pathogen overcomes these first

two defense layers, effector triggered immunity (ETI) is initiated, involving either direct or indirect

recognition of pathogen virulence factors (effector proteins)  (Jones & Dangl, 2006). After pathogen

recognition  a  multitude  of  different  signaling  pathways,  including  production  of  reactive  oxygen

species, elevated Ca2+ and MAP kinases lead to activation of plant defenses. These defenses include the

induction  of  stress  hormones  salicylic  acid,  jasmonic  acid  and  ethylene,  as  well  as  extensive

transcriptional re-programming ultimately resulting in the production of defensive compounds, such as

antimicrobial secondary metabolites, chemicals and enzymes. As the final line of defence plants may

activate the hyper-sensitive response, programmed cell death, to rapidly kill the cells surrounding the

infection,  thus  preventing  the  spread  to  nearby  tissues  (Coll,  Epple,  &  Dangl,  2011;  Egorov  &

Odintsova, 2012). 

Many of the proteins involved in intracellular pathogen recognition belong to nucleotide-

binding–leucine-rich repeat (NLR) protein family (Monteiro & Nishimura, 2018). They are involved in

recognition of the pathogen’s effector proteins both directly and indirectly, as well as in triggering the

plant  immune responses  (Meunier  & Broz,  2017).  NLRs have also been shown to be involved in
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signaling  and transcript  regulation  (Chisholm,  Coaker,  Day,  & Staskawicz,  2006;  Jones  & Dangl,

2006).  Moreover,  NLRs play an important  role in local  adaptation and habitat  expansion of plants

(Thrall et al., 2012; Stam, Silva-Arias, & Tellier, 2019). The antagonistic interaction between plant

NLR and pathogen effector proteins is considered to have a profound effect on the evolution of both

organisms, shaping their genomes and gene repertoire  (Upson, Zess, Bialas, Wu, & Kamoun, 2018).

NLRs usually form large tandemly arrayed gene families and hence questions regarding their origins

and evolutionary history have been under active research in both plants and animals  (Borrelli et al.,

2018; Andolfo et al., 2019). The numbers of identified NLRs differ substantially within and between

plant families  (Baggs, Dagdas, & Krasileva, 2017), for example  Arabidopsis thaliana (Arabidopsis)

contains between 165 to 251 NLRs (Shao et al., 2016; Van de Weyer et al., 2019) and crop species

such as wheat, barley, rice, tomato and potato contain 1560, 224, 438,137 and 309 NLRs, respectively

(Sarris, Cevik, Dagdas, Jones, & Krasileva, 2016; Steuernagel et al.,  2020). In  A. thaliana  there is

evidence of widespread positive selection in the core NLRs shared among accessions, especially in the

canonical NLR domains (Van de Weyer et al., 2019), while a pioneering study on wild tomato revealed

high NLR diversity with a small subset of NLRs driving local adaptation to pathogens (Stam, Scheikl,

&  Tellier,  2016;  Stam  et  al.,  2019).  In  planta  and  bioinformatics  studies  have  assigned  specific

functions  to  plant  NLR domains.  The  NB-ARC domain  is  present  in  all  NLRs and  considered  a

regulatory domain (Takken, Albrecht, & Tameling, 2006) determining whether the protein is active or

inactive (Takken & Goverse, 2012). Other canonical domains include Toll/interleukin-1 receptor (TIR),

coiled coil (CC), RPW8-like coiled-coil (CCR), and their presence defines the sub-category of the NLR

(TNL, CC, or CCR , respectively) (Van de Weyer et al., 2019). Additionally, the NLRs contain several

leucine-rich repeats (LRRs) which have evolved to detect specific pathogens.

A current  key challenge  in  molecular  ecology is  to  understand the  role  of  pathogen-

imposed selection on generating NLR diversity. Exploring the breadth of plant NLR natural variation
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can increase our understanding of how NLR diversity is generated and maintained, and to establish a

toolbox  of  deployable  disease  resistance  traits  (Monteiro  &  Nishimura,  2018).  In  natural  plant

populations,  neither  pathogen  epidemiology  nor  host  resistance  is  under  human  management,  in

contrast to agricultural systems where disease is managed both via resistance breeding and fungicides.

Hence, natural populations can offer unique insights into the processes generating NLR diversity. Our

study is focused on the interaction between Plantago lanceolata and its fungal pathogen Podosphaera

plantaginis.  Previous  studies  have  detected  considerable  phenotypic  variation  in  P.  lanceolata

resistance against P. plantaginis (Laine, 2004); diversity is shown to accumulate in the well-connected

populations across the landscape (Hockerstedt, Siren, & Laine, 2018), and has a direct negative impact

on disease dynamics  (Jousimo et al., 2014b). Moreover, there is evidence of on-going coevolution in

this interaction (Laine, 2005, 2006, 2008). 

Here, we carried out a controlled experiment where five  P. lanceolata genotypes were

inoculated with the same P. plantaginis strain, in order to characterize the transcriptional responses and

regulatory pathways activated in response to the inoculation, . We assembled a de novo transcriptome

for  P.  lanceolata and  used  it  to  characterize  the  transcriptional  responses  in  both  resistant  and

susceptible  phenotypes.  We then studied the NLR repertoire  in  P. lanceolata, looking for signs of

selection among the NLRs. Reliable  de novo assembly of NLR transcripts is difficult due to highly

repetitive  nature  of  the  LRR domains,  and  we  therefore  limited  the  evolutionary  analysis  on  the

conserved NB-ARC domains. Each plant genotype demonstrated a unique gene expression profile in

response to the pathogen, revealing a diverse NLR repertoire in P. lanceolata, consistent with the high

phenotypic resistance diversity uncovered in earlier studies.
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MATERIALS AND METHODS

Study system and plant and fungal material

Ribwort plantain, Plantago lanceola L., is a perennial monoecious plant that reproduces both sexually

by wind pollination and clonally by producing side rosettes  (Sagar & Harper, 1964).   Podosphaerea

plantaginis (Castagne; U. Braun and S. Takamatsu) (Erysiphales, Ascomycota) is a specialist obligate

biotroph infecting P. lanceolata.  As all powdery mildews, it requires living host tissue throughout its

life  (Bushnell, 2002), and completes its life cycle as localized lesions on host leaves. Infected plants

suffer  significant  stress,  and  infection  may  increase  host  mortality  (Laine,  2004).  The  interaction

between  P.  lanceolata and  P.  plantaginis is  strain-specific  suggesting  gene-for-gene  type  control

(Thompson  &  Burdon,  1992;  Laine,  2004,  2007).  In  some  cases the  host  can  mitigate  pathogen

reproduction;  the  putative  resistance  mechanism  includes  two  steps,  recognition  of  the  attacking

pathogen and then blocking its growth (Laine, 2004) - the following infection outcome depends on both

host and pathogen genotypes (Laine, 2004, 2007).         

In resistant interactions no infection develops, while in susceptible interactions there is

considerable  variation  in  pathogen  development,  depending  on  both  host  and  pathogen  genotype

(Laine,  2007).  An inoculation protocol where conidia  from small  colonies  or individual  chains are

placed on detached leaves  or  intact  leaves  of  plants  yields  a  robust  characterization  of resistance-

susceptibility phenotype. In resistant phenotype no pathogen growth is detected following inoculation,

or the plant shows rapid cell death around inoculum source, whereas in susceptible phenotype infection

is  detected  following inoculation.  From an earlier  large  inoculation  study consisting  of  2944 host

genotype–pathogen genotype combinations (Hockerstedt et al., 2018), we selected three genotypes (IDs

193_2, 2818_3 and 2818_6, named Res1, Res2 and Res3 here after)  that were resistant against all

tested pathogen strains, and two genotypes (IDs 313_6, 1553_5, named Sus1 and Sus2 here after) that
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were  susceptible to all tested pathogen strains. The selected genotypes were cloned into six plants each

as described in Laine (2004).  

Inoculation experiment

Two-month old plantlets (five genotypes with three replicates, total of 15 plants) were inoculated with

P. plantaginis strain Lammi_3 by brushing spores gently with a fine paintbrush onto six test leaves and

two positive control leaves. In the control set the genotypes were mock inoculated by brushing leaves

without mildew spores. The treated leaves were marked with a piece of masking tape.  Inoculated and

mock-inoculated plant clones were placed in two separate growth chambers (Panasonic MLR-352) at

20 ± 2 °C (day) and 16 ± 2 °C (night) with 16:8 light-darkness (L:D) photoperiod, and were randomly

organized  to  minimize  potential  variation  in  microclimatic  conditions.  Two  inoculated  or  mock-

inoculated leaves were collected from every plant at 24, 48 and 72 hours post inoculation (hpi), snap

frozen in liquid nitrogen, and stored in glassine bags in -80 °C until RNA extraction. Positive control

leaves  were  screened  until  14  days  post  inoculation  to  confirm  the  plant  phenotype,  resistant  or

susceptible. Viability of spores used in the experiment was confirmed by inoculating detached leaves of

a susceptible genotype.

RNA extraction 

Altogether 0.2 g of frozen leaf material was ground in lysing buffer (2% CTAB, 2% PVP K-30, 100

mM Tris-HCl pH 8.0, 2 M NaCl, 25 mM EDTA), with  β-MeOH (200 µl/10ml) added in prior to use

(Chang, Puryear,  & Cairney, 1993).  Thoroughly vortexed solution was extracted twice with equal

volume of acid phenol-chloroform-isoamyl-OH (ph 4.5). Prior to precipitation, 160 µl of 10M LiCl was

added and samples were kept on ice overnight, followed by 30 min centrifugation (10000 rpm) in +4

°C. Pellets were dissolved in 500 µl of 65 °C SSTE (1M NaCl, 0.5% SDS, 10 mmTris-HCl pH 8.0,
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1mM EDTA) and RNA was extracted  twice  with  chloroform-Isoamyl  alcohol  (24∶1).  After  EtOH

precipitation and 70% wash, the pellets were dissolved in 40 µl H2O and RNA quantity and quality

were checked using NanoDrop (Thermo Fischer Scientific). Potential contamination of genomic DNA

was removed using DNase I (Thermo Fischer Scientific) and samples were then reverse-transcribed to

cDNA using iScript™ cDNA Synthesis Kit (Bio-Rad) according to the manufacturer's instructions.

Selecting the time point for RNA-Seq using Quantitative real-time PCR (qPCR)

The most  informative  time point  for RNA sequencing was selected by studying the expression of

selected  marker  genes  using  qPCR.  Three  inoculated  and  mock-inoculated  clones  of  two  plant

genotypes (resistant 193_2.1 and susceptible 1553_5.1) were sampled at three time points (24, 48 and

72  hours  post  inoculation),  resulting  in  12  samples.  The  time  points  were  decided  based  on  the

literature, and taking into consideration that the development time of P. plantaginis is relatively slow

compared to agricultural powdery mildews (Green, Carver, & Gurr, 2002; Laine, 2007). Primers were

designed with Primer3 (Rozen & Skaletsky, 1999) based on previously in situ sequenced transcriptome

of P. lanceolata (unpublished data) and known disease-induced genes in Arabidopsis. We tested seven

putative disease-induced genes (Supplementary File 1). Amplification efficiencies (E) of the primer

pairs were determined with five dilutions (1 : 1, 1 : 4, 1 : 24, 1 : 124, 1 : 624) of template cDNA, where

E = 10-1/slope. Three technical replicates, one water control and a plate control sample were included in

a 384-well plate with 10 μL volume, using C1000™ Thermal Cycler (Bio-Rad). All samples were

tested for genomic DNA contamination with -RT controls prior to qPCR. Each reaction had 1 μL of the

1:4 diluted cDNA, 5 μL of SYBR® Green containing master mix (iQ™ SYBR® Green Supermix for

qPCR; Bio-Rad), 3 μL of nuclease-free water and 0.5 μL (10 µm) of each primer. The cycle conditions

were one cycle at 95°C for 3 min, 40 cycles at 95°C for 10 s, 60°C 30 s, and ending with melting curve

analysis. From the candidate set, Elongation factor_CL4, GADPH_28221 and Actin_34737 displayed a
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stable  expression  across  the  samples  with  geNorm  and  were  selected  as  reference  genes  for

normalization (Supplementary File 1). Relative expression (CNRQ) and normalization was calculated

in qBase+ 3.2. 

RNA sequencing (RNA-Seq)

Several studies of gene expression induced by powdery mildew in host plants have found the highest

number of differentially expressed genes in later time points  (Li et al., 2016; Li, Dong, et al., 2019;

Polonio et al., 2019). Accordingly, the qPCR demonstrated elevated levels of marker genes at time

point  72 h post inoculation  (hpi;  Supplementary  Figure 1)  and was selected  for  RNA sequencing.

Illumina paired-end sequencing (NextSeq 500) was carried out in the Institute of Biotechnology of the

University of Helsinki with 78-base forward reads and 74-base reverse reads, with library insert size of

200 bases. The reads were trimmed and low quality reads were removed using Trimmomatic (Bolger,

Lohse, & Usadel, 2014), resulting in an average library size of 14.6 million reads. 

Transcriptome assembly

After combining all libraries, a de novo assembly was carried out using Trinity (Grabherr et al., 2011),

SOAPdenovo-Trans (k-mer sizes 39, 41)  (Xie et al.,  2014) and Oases (k-mer sizes 39, 43 and 47)

(Schulz, Zerbino, Vingron, & Birney, 2012). The contigs were filtered with EvidentialGene (Gilbert,

2013), and the okayset and okayalt outputs were combined and clustered using RapClust (Srivastava,

Sarkar, Malik, & Patro, 2016). A representative transcript for each cluster was obtained using Lace

(Davidson, Hawkins, & Oshlack, 2017). To remove contamination, the resulting contigs were queried

against NCBI non-redundant protein database (Pruitt, Tatusova, & Maglott, 2007) using BLAST; only

the transcripts with a best hit in plant kingdom were retained. The transcripts mapping to ribosomal

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220



genes and having ambiguous sites (Ns) were removed. Minimum read coverage of three was used for

all the assemblies. 

Differential gene expression analysis 

All libraries (30 in total) were mapped to the transcriptome assembly using kallisto  (Bray, Pimentel,

Melsted,  & Pachter,  2016) with 100 bootstrap  replicates.   The averages  of  bootstrap replicates  of

Transcript per Million (TPM)  (Li, Ruotti,  Stewart, Thomson, & Dewey, 2010) values were used as

counts. The count tables were imported to R by tximport package (Soneson, Love, & Robinson, 2015).

Principal Component Analysis was carried out using DESeq2 and visualized with rgl package (Adler,

Nenadic,  & Zucchini,  2017) for  3D plot  and  ggplot2  (Wickham H,  2016) for  2D plots.  DESeq2

package (Love, Huber, & Anders, 2014) was used for differential expression analysis at genotype and

phenotype levels (Res, Sus and Res_vs_Sus), with adjusted p-value of 0.1 as a threshold for significant

differential expression, as also recommended by DESeq2. To maximize the number of true positive

transcripts, no fold change cut-off was used.

 Redundancy analysis of the count data

Vegan  package  (Oksanen  et  al.,  2018)  was  used  for  redundancy  analysis  (RDA).  Statistical

significance  was  tested  with  a  permutation  test  (permtest)  with  10,000  permutations.  The  genes

significantly contributing to the RDA axes were identified using cut-off of three standard deviations

(corresponding to two-tailed p-value = 0.0027 in Z-test). The overlap among gene sets was analyzed

using venn package in R (Dusa, 2018). 
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Annotation and gene ontology (GO) analysis

For functional annotation of the transcripts, blastp  (Camacho et al., 2009) was used to find the best

match among Arabidopsis representative set of proteins  (Berardini et  al.,  2015), available at TAIR

server  (ftp://ftp.arabidopsis.org/home/tair/Proteins/TAIR10_protein_lists/).  Due  to  the  low sequence

similarities between Plantago and Arabidopsis, the best match was selected with no similarity cut-off.

The functional annotation and gene ontology (GO) category assignment of the best Arabidopsis hit

(downloaded from ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/) was then transferred

to the P. lanceolata query transcript. 

GO enrichment analysis was carried out using piano software (Varemo, Nielsen, & Nookaew, 2013),

with log2 fold changes and false discovery rate (FDR) adjusted P-values imported from DESeq2 results.

For threshold-based GO enrichments,  GOAtools was used  (Klopfenstein et  al.,  2018). To focus on

signaling responses, the responses and signaling sub-branches of the Biological Process category were

selected. The GO enrichments were plotted using R with fold change values obtained from the piano

package. The GO enrichment of RDA loadings was carried out with piano software  (Varemo et al.,

2013) using RDA loadings as gene level statistics and plotted in R.

Prediction of candidate NLRs 

The candidate  NLRs in the reference transcriptome were predicted using NLR-Parser  (Steuernagel,

Jupe, Witek, Jones, & Wulff, 2015). The highest scoring domain found per reading frame per transcript

was picked and screened manually. The transcripts were filtered out if the ORF was too short, if the

start and stop codons were missing, or if BLAST queries did not return hits to NCBI non-redundant

database.  To  account  for  partial  or  miss-assemblies,  we performed  an  online  search  for  NB-ARC

domain in NCBI Web CD Search Tool (Lu et al., 2020), and selected the transcripts with a complete
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NB-ARC domain. Both protein and nucleotide sequences of these domains were extracted from the

NLR transcripts and used in subsequent analyses. 

In order to identify the NB-ARC domains contributing to the separation of the phenotypes

(resistant vs. susceptible),  the complete NLR transcripts  were replaced with the complete NB-ARC

domains in the transcriptome and the reads were remapped using kallisto. Next, RDA analysis was

carried  out  on  NB-ARC domains  with  vegan  package,  using  significance  cut-off  of  one  standard

deviation. The results were visualized using vegan package. Differential expression was assessed from

TPM-normalized values (Wilcoxon test with Benjamini-Hochberg correction) and results were plotted

using ggplot2 in R.

For evolutionary analysis of the NB-ARC domains,  Antirrhinum majus L. (snapdragon)

(Li, Zhang, et al., 2019) was used as outgroup, since it is the most recently diverged plant where full

genome assembly is available. NLR transcript prediction and extraction of transcripts with complete

NB-ARC domains in snapdragon was carried out using the protocol described above for  Plantago.

Multiple sequence alignment of the complete NB-ARC domains was carried out using MAFFT, and the

phylogenetic tree was estimated using RAxML version 8 (Stamatakis, 2014). Confidence was assessed

with  100  bootstrap  trees  estimated  with  PROTGAMMAAUTO  option.  The  tree  was  cut  with

ClusterPicker  (Ragonnet-Cronin  et  al.,  2013) with  90  percent  initial  threshold  and  main  support

threshold for clusters and genetic distance of 0.2 with gap option into clusters. For an ancestral state,

the  most  common  snapdragon  protein  hit  among  BLAST queries  with  the  cluster  sequences  was

selected and added to the cluster. The gene tree produced by ClusterPicker was visualized with ggtree

package (Yu et al., 2017) in R. For all the analyses with NB-ARC domains, the putative Arabidopsis

ortholog was selected with BLAST query of the full transcript against the TAIR database.

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283



Neutrality test (dN/dS and H statistic)

Multiple sequence alignment of the clusters from ClusterPicker was carried out using MAFFT and gene

tree was estimated with FastTree, followed by reverse-transcription of the aligned sequences. For each

alignment,  the dN/dS ratios (ratio between non-synonymous mutations  and synonymous mutations)

were calculated using PAML software  (Yang, 2007), ratio >1 was used as an indicator of putative

positive selection. Per base dN/dS ratios were also calculated since, due to functional constraints on

conserved protein domains, it is much more likely that certain regions in a gene are under selective

pressure rather than the whole gene. 

Fay & Wu’s H statistic (Fay & Wu, 2000) was calculated by aligning the Plantago reads

to the reference transcriptome assembly containing NB-ARC domains with BWA (Li & Durbin, 2009)

and using  ANGSD  (Korneliussen,  Albrechtsen,  & Nielsen,  2014) to  calculate  H statistic  within  a

sliding window of three nucleotides. H values less than -3 were chosen to signify positive selection and

more than 1 purifying selection, respectively. The H statistic along NB-ARC domains  were plotted in

R. 

The nucleotide diversity (π) and Watterson theta (θ), were calculated by averaging the per

base pi and theta from ANGSD over each transcript and over the whole transcriptome.

RESULTS

Inoculation experiment and qPCR

A schematic overview of the experiment design is shown in Figure 1a. We detected powdery mildew

spores growing on the inoculated, susceptible plant clone leaves on day 14 post inoculation. None of

the mock-inoculated or inoculated resistant plant clones showed visible disease symptoms at that time.

Gene expression  of  the  marker  genes  varied  considerably  in  the  susceptible  inoculated  plants  and
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showed elevated levels only at time point 72 h post inoculation (Supplementary Figure 1). This time

point  was  then  chosen  for  further  analysis.  The  qPCR-based  expression  values  of  tested  NLR

transcripts showed low concordance with RNAseq expression (Supplementary Table 1).

Transcriptome assembly and expression analysis

The pooled  assembly  contained  altogether  1,315,458 transcript  models,  which  were  then  clustered

using EvidentialGene pipeline into 86,648 transcripts. The resulting transcriptome was of high quality,

since the Busco score of universal single-copy genes  (Seppey, Manni, & Zdobnov, 2019) was 87%

(including complete and fragmented genes), but the high proportion of duplicated gene models (46.3%)

suggested the presence of many splice variants and allelic variants. Subsequent careful clustering and

filtering (see M&M) resulted in 24,332 high quality non-redundant transcripts with an average length

of  1,858 bases.  The procedure reduced the Busco score to  66.5%, but  clearly removed the allelic

variants, as only 2% of gene models remained duplicated (Supplementary Table 2). The filtered gene

models had mostly low expression counts and therefore were of low biological  significance to the

experiment. 

On  average,  75  %  of  the  transcriptome  data  mapped  to  the  de  novo assembly

(Supplementary Table 3).  The mean  nucleotide diversity (π) and Watterson theta (θ) were 0.068 and

0.077, respectively, over the whole transcriptome.

Principal Component Analysis (PCA) of TPM normalized gene expression data showed a

clear  grouping by genotype (Figure 1g) along the  first  three  PCs. These first  three  PCs explained

altogether 53 percent of the total variation,  illustrating that genotype is the main contributor to the

variation between samples. The inoculation treatment had a smaller but marked effect, as was clearly

demonstrated in genotype-specific PCA plots (Figure 1 b to f). For example, in resistant R1 and R2
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genotypes the variation explained by PC1 was 65 and 52 percent, respectively, and clearly separated

the inoculated and control plants (Figure 1 b and c). 

Differential gene expression analysis

The PCA analyses showed marked differences between the gene expression profiles of the genotypes

and their responses to the inoculation. Similarly, high genotype-specific variation was observed in the

differential expression between mildew inoculated and mock-inoculated plants. The R1 genotype had

the highest number of differentially expressed (DE) transcripts (3803), from which about 2000 had

absolute log2 fold change greater than one.  On the other hand, the S2 genotype had the lowest number

of  DE transcripts,  43,  with  only  20  having  absolute  log2 fold  change  greater  than  one  (Table  1;

Supplementary Table 4).

Redundancy Analysis (RDA)

To study the effect sizes and their statistical significance, we carried out multivariate regression using

Redundancy Analysis (RDA). The genotype and phenotype (resistant versus susceptible) effects were

highly significant (P = 0.001 and P = 0.004), describing 35 % and 9 % of the overall variation (Table

2).  The  effect  of  inoculation  alone  was  not  significant  (P  =  0.238),  but  the  combined  effects  of

genotype-by-inoculation and phenotype-by-inoculation were (P = 0.001 and P = 0.048, respectively),

suggesting genotype-specific response profiles. Accordingly, the RDA plots displayed clear separation

when using genotype and phenotype as a covariate but not with inoculation treatment alone (Figures

2a, b and c).  Venn diagrams of the genes contributing to the separation in the RDA demonstrate that

while 87 genes contribute significantly to separation according to genotype, only 7 genes contribute

directly  to  the  phenotypic  variation  and 109 genes  to  the  joint  effect  of  phenotype-by-inoculation

(Figures 2 d and e).  
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Gene ontology (GO) analysis based on differential expression

We next looked for common pathways among the differentially expressed transcripts in all plants using

GO enrichment  analysis  of  the  differentially  expressed  genes.  The  contrast  in  expression  profiles

between  the  genotypes  was  also  visible  in  the  GO  analysis (Figure  3;  Supplementary  Figure  2;

Supplementary Table 5). This may be due to differences in plant defense responses or manipulation of

the plant defense mechanisms by the pathogen. 

To  explore  molecular  underpinnings  between  susceptible  and resistant  genotypes,  we

searched  for  differential  activation  of  defense  response  pathways  by  identifying  the  GOs  with

decreased  average  expression  levels  in  susceptible  phenotypes  and  elevated  levels  in  resistant

phenotypes. In resistant phenotypes, genes encoding photosynthesis-related proteins (e.g. Photosystem

II antenna complex, chloroplast photosystem I/II) and NAD(P)H dehydrogenase complex had increased

transcript levels (Supplementary Figure 2). This could contribute in defense against the pathogen, as it

has  been shown that  photosynthesis  plays  an  important  role  in  plant  defense  against  biotic  stress

(Gohre,  2015).  Genes  assigned  to  photosynthesis  functions  showed  elevated  transcript  levels  in

susceptible phenotypes as well but not to the same extent. Chlorosis is a hallmark sign of powdery

mildew infection and biotrophic fungi are known to reduce photosynthetic rate and possibly damage

chloroplast  structure  (Perez-Bueno,  Pineda,  & Baron,  2019),  thus  the  upregulation  could  be  either

compensation,  plant  defense  mechanism  or  induced  by  pathogen.  Specifically,  uroporphyrinogen

decarboxylase activity (GO:0004853) was upregulated in resistant phenotypes (Supplementary Figure

2, Resistant). Involved in chlorophyll biosynthesis, it also points towards acting against the chlorosis

induced by the pathogen (Mock, Keetman, Kruse, Rank, & Grimm, 1998). 

In both susceptible phenotypes, the GO category with most decreased expression levels

was induction of programmed cell death (GO:0012502) (Supplementary Figure 2), suggesting that as a

biotrophic pathogen, P. plantaginis may be downregulating the programmed cell death to keep the host
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cells alive. However, also the resistant phenotypes showed reduced expression levels in this category,

possibly  due  to  successful  manipulation  by  the  pathogen,  and  therefore  the  comparison  between

susceptible versus resistant did not identify this process as significantly different between phenotypes

(P=0.0559). 

In  addition  to  the  shared  responses,  the  genotypes  showed  individual  enrichment  of

various  disease resistance pathways (Supplementary  Figure 2).  In susceptible  genotype 1 (S1),  the

processes  with  most  decreased  average  expression  levels  were  tripeptide  transporter  activity

(GO:0042937),  tripeptide  transport  (GO:0042939)  and  delta12−fatty  acid  dehydrogenase  activity

(GO:0016720), whereas S2 demonstrated decrease in Oxazole or thiazole biosynthetic process (GO:

0018131) and Low−affinity nitrate transport (GO:0080054 & GO:0080055). Fatty acids play a direct

role in modulating the plant defense response to pathogens (Kachroo & Kachroo, 2009), and thiazole or

thiamine has been shown to play a crucial role in activation of the defense responses, callose/lignin

deposition and stomatal closure (Zhou, Sun, & Xing, 2013).

Tripeptide  transport  includes  also  nitrate  transporters.  Interestingly,  powdery  mildew

causative agent Erysiphe necator elevates the expression levels of nitrate transporters in grapevine and

Arabidopsis  (Pike et al., 2014), possibly to acquire nutrients from the host. In addition to decreased

levels of the GO categories related to nitrate transport in both S1 and S2, we identified homolog of

Arabidopsis  nitrate  transporter  (AtNRT1.5)  to  be  upregulated  after  inoculation  in  susceptible  vs

resistant  comparison.  In  Arabidopsis,  the  protein  is  responsible  for  nitrate  transport  from roots  to

shoots, and in this context suggests towards manipulation of host nutrient distribution by the pathogen.

Nitrogen, nitrates and their transport to different tissues in the plant during the pathogen infection could

be the “silver bullet” of the plant defense (Mur, Simpson, Kumari, Gupta, & Gupta, 2017). In general,

tripeptide transport also plays an important role for defense against biotic and abiotic stress (Karim et
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al., 2007), suggesting a reason for the decreased expression of the tripeptide transporters as a whole in

the susceptible phenotypes.  

In resistant phenotypes,  the glucosyltransferase (GO:0050284) upregulation in R1 is a

possible  sign  of  early  preparation  for  pathogen  response  (Le  Roy,  Huss,  Creach,  Hawkins,  &

Neutelings,  2016), and in R2 genotype,  the activation of NADH dehydrogenase complex assembly

(GO:0010258) has been shown to be involved in defense signaling (Wallstrom et al., 2014). 

Gene ontology (GO) analysis based on Redundancy Analysis (RDA)

To look for biological processes differentially activated between the phenotypes or the treatments, we

calculated the average RDA loadings of the genes in each of the GO categories and tested for their

statistical  significance.  Genes  contributing  to  the  separation  between  inoculation  and control  were

enriched for ABA and cytokine signaling, primary metabolism and chloroplast activity (Supplementary

Figure 3). ABA induces resistance to powdery mildew in barley (Wiese, Kranz, & Schubert, 2004), and

repression of ABA biosynthesis as well as genes regulated by ABA, such as cold/dehydration/salinity

responsive genes, are associated with mildew resistance in nonhost plants in general  (Jensen et al.,

2008). Cytokinin suppresses programmed cell death and plays a role in the synthesis and maintenance

of chlorophyll (Walters & McRoberts, 2006) (Supplementary Figure 3). Additionally, cytokinin levels

regulate  cell  division  together  with  auxin.  Interestingly,  in  Arabidopsis,  Golovinomyces  orontii

inoculation induced cell cycle related genes and endoreduplication, possibly due to increased metabolic

demands of the pathogen (Chandran, Inada, Hather, Kleindt, & Wildermuth, 2010). On the other hand,

Choi, Choi, Lee, Ryu, and Hwang (2011) have shown that plant based cytokinins systematically induce

plant resistance against pathogens by cytokinin and salicylic acid signaling.  

Genes associated with the differences between the phenotypes showed GO enrichments

for kinase activity, carbohydrate metabolism, plant cell wall organization, photosystem II and response
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to cold GO categories (Supplementary Figure 3), whereas the genes contributing to the differences

between  genotypes  were  enriched  for  tryptophan  metabolism,  plant  cell  wall  and  chloroplast

(Supplementary  Figure  3).  In  Arabidopsis  (Chandran et  al.,  2010),  the  expression  of  cold/drought

responsive genes were decreased together with ABA biosynthesis after inoculation with  G. orontii.

Together with the observed induction of ABA during inoculation, this suggests that the phenotypes

may differ in how strongly ABA activates its targets such as cold responsive genes. 

Different responses to infection are visible in the genotype-by-inoculation effect. Overall,

the enriched GOs show a clear activation of defense responses in general, and defense responses to

fungi in particular (e.g. regulation of immune response, regulation of defence response; Supplementary

Figure  3),  illustrating  that  the  genes  in  these processes  differ  in  their  transcription  levels  between

genotypes.  The  GO category  with  highest  positive  average  of  RDA loadings  (and therefore,  high

contribution  to  separation)  is  aldose  1−epimerase  activity  (GO:0004034)  which,  may  be  activated

because of the mechanical damage inflicted by the pathogen and results  in methanol emission and

priming  of  the  non-infected  leaves  (Sheshukova et  al.  (2017).  Next,  hydrogen peroxide  metabolic

process  and salicylic  acid  mediated  signaling  pathway are  both  well-established  pathogen-induced

defense mechanisms  (Kuniak & Urbanek, 2000; Hua, 2009; Niu & Liao,  2016; Sheshukova et al.,

2017), further demonstrating the activation of the defense processes due to the pathogen infection. The

GO category with most negative average RDA loadings is RNA splicing, via endonucleolytic cleavage

and ligation (GO:0000394). It is becoming increasingly clear that plants use alternative RNA splicing

extensively as a means to respond to their environment and defend against pathogens (Staiger, Korneli,

Lummer, & Navarro, 2013; Shang, Cao, & Ma, 2017). Within the signaling-specific GOs (Figure 4b)

the genotype-by-experiment effect showed the  increased transcript levels of jasmonic acid (JA) and

abscisic acid signaling (as expected, (Yang et al., 2019)), again in a genotype-specific manner. Further

inspection of putative orthologs of marker genes for different hormonal signaling pathways showed
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increased transcript levels of auxin biosynthesis and signaling, as well as differences in the increased

transcript levels of JA signaling and NLR signaling through EDS1 ortholog (Supplementary Table 6). 

The most significant contributor to phenotype-by-experiment is photosystem II activity

(Supplementary Figure 3), as several GO terms from this category showed significant enrichments. The

GO  category  with  highest  average  RDA  loadings  for  phenotype-by-inoculation  is  oligopeptide

transmembrane  transporter  activity  (GO:0035673).  The  perception  and  transduction  of  fungal

oligopeptides will trigger multiple defense responses (Nürnberger et al., 1994; Hahlbrock et al., 1995).

Multitude of photosynthetic processes were also enriched; their role in defense was discussed above.

The  categories  with  most  negative  average  loadings  were  response  to  fungus,  and  cytokinin

biosynthetic process (GO:0009691). 

NLR transcripts 

To look for the variation in the plant defense arsenal we carried out an in-depth study of the resistance

NLR genes induced in the experiment. Due to highly repetitive nature of the LRR domain that causes

problems in de novo assembly from short-read RNA sequencing data, we focused the analysis on the

conserved NB-ARC domains. From the 543 candidate NLR transcripts in the full transcriptome, 210

had a complete NB-ARC domain. The inoculation did not have a significant effect on expression levels

in RDA analysis of NB-ARC domains (p = 0.13), but the genotype and phenotype both contributed

significantly (p = 9.999e-05 and P = 4e-04), explaining 55% and 15% of the variation, respectively

(Supplementary Figure 4). Based on RDA loadings, the NLR transcript with highest contribution to

resistance  phenotype was transcript2322.  A BLAST query against  Arabidopsis  revealed  this  to  be

homolog of AtRPP13 gene.  RPP13 has the highest amount of amino acid diversity in Arabidopsis and

is  involved  in  defense  against  Peronospora  parasitica (Rose  et  al.,  2004;  Hall  et  al.,  2009),  an

oomycete  causing  downy  mildew  in  Brassicaceae.  Gene  expression  analysis  of  transcript2322  in
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resistant versus susceptible phenotypes revealed that the transcript is not differentially expressed due to

inoculation,  but it  has significantly higher base expression level (p-value = 0.0003996) in resistant

phenotypes (Supplementary Figure 4). 

Clustering of the NB-ARC domains resulted in 47 clusters containing 179 sequences and

31 singletons (Figure 5). Cluster 4 with 12 sequences had the highest number of sequences. BLAST

query against Arabidopsis protein database for the longest transcript in this cluster returned a hit to

AT3G14460, a leucine rich repeat protein that also contains an adenylate cyclase catalytic core motif.

This gene is involved in adenylyl cyclase activity and signaling and its knockouts in Arabidopsis have

compromised  immune  responses  to  the  biotrophic  fungus  Golovinomyces  orontii (Bianchet  et  al.,

2019). 

Neutrality test (dN/dS and H statistic)

To  look  for  NLR  clusters  under  positive  selection,  we  analysed  dN/dS,  the  ratio  between  non-

synonymous (amino acid changing) to synonymous mutations (Figure 5). None of the NLR transcript

clusters had an ω value greater than one, which would indicate positive selection. However, site-wise

analysis of dN/dS revealed that 25 of the clusters contained a varying number of one to 58 amino acid

positions under positive selection, based on Bayes Empirical Bayes (BEB) analysis (P>95%). Cluster

14 with the highest number of loci under selection returned Arabidopsis NLR protein AT1G50180

(CAR1) as the best BLAST hit, an immune receptor which recognizes the conserved effectors AvrE

and HopAA1 (Laflamme et al., 2020). 

In  order  to  investigate  potential  selection  pressure  by  a  complementary  method,

considering the shortcomings of within population dN/dS analysis (Kryazhimskiy & Plotkin, 2008), we

also calculated Fay & Wu’s H statistics on the NLRs using NB-ARC domains for mapping the reads. A
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positive value of H indicates balancing or purifying selection, whereas high negative values indicate

positive selection in the form of selective sweeps, or drift, for example from population bottlenecks. 

We identified 27 NLR transcripts with regions having H statistics less than -3 (Figure 5;

Supplementary Figure 6; Supplementary Table 7). This set included one gene from the cluster with the

highest number of loci under selection based on dN/dS analysis, as well as the transcript2322 having

significantly elevated expression levels in the resistant vs susceptible comparison. BLAST query of the

NB-ARC domains under selection against TAIR database resulted in 16 hits to RPP13 and 3 hits to

CAR1 (Supplementary Table 7). 

DISCUSSION

Given that pathogens are prevalent  across all  ecosystems,  an individual’s  reproductive success and

survival depend on its ability to resist infection. Natural host populations have been shown to support

considerable diversity in resistance (Salvaudon et al., 2008; Laine et al., 2011), and theory predicts that

this variation is maintained by pathogen-imposed selection. However, empirical support for the role of

selection in generating resistance diversity still scarce. With recent advances uncovering the molecular

underpinnings of resistance, it is becoming increasingly feasible to study resistance also in non-model

systems. 

Gene and pathway expression patterns reveal genotype specific responses to pathogen 
inoculation 

Here, we established a high-quality de novo transcriptome assembly of P. lanceolata to investigate the

gene expression and processes activated in different plant genotypes in response to inoculation of the

same pathogen strain. In our study, all five plant genotypes showed unique gene expression patterns.

This was clearly demonstrated in the principal component analysis showing clustering by genotype,
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while the inoculated and mock-inoculated replicates remained in the same cluster. Significant variation

in gene expression patterns among plant genotypes has also been discovered in other studies (Burghardt

et  al.,  2017;  Muller,  Kersten,  Fladung,  &  Schroeder,  2019).  In  the  redundancy  analysis  (RDA),

inoculation  explains  only  4  %  of  the  total  variation,  while  genotype-by-inoculation  interactions

contribute 46 %, suggesting that the genotypes have highly unique responses to pathogen attack. While

such genotype specificity may be expected between susceptible and resistant genotypes, the split to

resistant versus susceptible phenotypes explains only 9 % of the variance, with considerable expression

pattern differences between phenotypes. Overall, the plant genotypes differ by the number, fold change

and the function of the transcripts differentially expressed in response to the pathogen. Furthermore,

even though the gene expression shows the known induction of JA, SA and ABA signaling pathways,

they also show highly varying activation patterns with JA and ABA significantly contributing to the

genotype by experiment  differences.  This suggests that plant genotypes have different strategies in

response to the same pathogen and have variation in the extent of activation of signaling pathways,

which  could  be  an  important  mechanism generating  phenotypic  resistance  diversity.  One  possible

explanation for the diverse responses is the extremely high genetic variation within the species; overall,

the transcriptome had very high Watterson  θ=0.068 and nucleotide diversity  π=0.077, suggesting

effective population sizes in the order of millions. The high genetic diversity where, on average, eight

nucleotides out of 100 differ between any two individuals,  is likely manifested also in the diverse

responses. The experimental take home message is that including multiple genotypes in experiments

and  avoiding  pooling  for  RNA-Seq  is  essential  to  uncover  variation  relevant  for  phenotypic

differentiation.

Despite genotype-specific responses, the pathways commonly induced by the pathogen

were visible in the gene expression data, including the induction of specific nitrate transport genes in
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susceptible phenotypes as well as elevated expression of photosynthesis-associated genes and related

biological  processes  taking  part  in  chloroplast  in  all  genotypes.  Powdery  mildew  fungi  have  a

contracted  carbohydrate  metabolism,  for example  they are not  able  to  degrade pectin,  an essential

component of plant cell walls  (Liang et al., 2018), whereas the lipid metabolism is intact, suggesting

that  their  main source of energy is from lipids.  Chlorosis  is another  hallmark sign of a successful

pathogen attack. In our results, elevated expression of specific nitrate transporters as well as chloroplast

processes in general suggests elevated chlorophyll biosynthesis. Together, this suggests that, at least at

the early stage of infection,  P. plantaginis may target the chloroplast lipids of  Plantago to obtain its

nutrients. However, more molecular work is needed to truly understand the photosynthetic response of

the Plantago when infected by P. plantaginis.

Discovery of a diverse repertoire of NLRs in P. lanceolata

NLRs play  an important  role  in  pathogen recognition  and downstream defense  responses,  defense

signaling,  as well  as activation  of hyper sensitive response  (Monteiro & Nishimura,  2018).  In our

study, a combined transcriptome of five different  Plantago genotype NLR repertoires contained 543

NLR isoforms, out of which 210 transcripts contained a complete NB-ARC domain. A majority of

these  transcripts  were  expressed  to  some  extent  in  all  five  plant  genotypes.  Presence-absence

polymorphism in a subset of NLRs has been demonstrated across Arabidopsis accessions (MacQueen

et al., 2019; Van de Weyer et al., 2019), and hence it could contribute to the slight differences in the

numbers of NLRs detected in the genotypes. 

The  NLR  transcripts  with  a  complete  NB-ARC  domain  divided  into  47  clusters  of

varying sizes, with 12 transcripts in the largest cluster. We found considerable variation in the branch

lengths among clusters, which could indicate different evolutionary rates  (Tucker, Ackerman, Eads,

Xu, & Lynch, 2013). Indeed, NLR genes are among the fastest evolving gene families in plants. They
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often form tandemly arrayed gene clusters, and this is believed to be critical for the fast pace of their

structural  and  functional  diversification  (Michelmore  &  Meyers,  1998;  Meyers,  2003).  Frequent

homologous recombination events and errors produced during the process, followed by diversifying

selection, may generate the structural diversity needed to match high effector evolution rates in the

pathogens (McDowell & Simon, 2006; Jacob, Vernaldi, & Maekawa, 2013). NLR genes are also under

evolutionary pressure resulting from inappropriate activation of cell death. If the plant cannot control

NLR-activated cell death, it leads to decreased fitness (Phadnis & Malik, 2014). In particular, we found

multiplication in the number of homologs of Arabidopsis RPP13, a gene which is involved in defense

against downy mildew (Peronospora parasitica) in Arabidopsis, as well as other defense processes and

signaling  (Bittner-Eddy,  Crute,  Holub,  &  Beynon,  2000;  Rentel,  Leonelli,  Dahlbeck,  Zhao,  &

Staskawicz,  2008),  and one of these homologs showed different  expression patterns in resistant vs

susceptible comparison.  While none of the clusters had significant dN/dS values, we found between

one and 58 loci under selective pressure in 25 of the clusters. The cluster with the highest number of

loci under selection,  cluster 14, has been suggested to be involved in  recognition of the conserved

effectors AvrE and HopAA1 (Laflamme et al., 2020) based on Arabidopsis orthologues. The H statistic

identifies the same transcripts as the dN/dS analysis (18 transcripts), plus four other NLR transcripts

that may have been under putative selection pressure. Again, the homolog of RPP13 showing high

expression values in resistant phenotypes was among the genes putatively under selective sweeps. 

Overall, we find that the NLR transcripts are differentially expressed in response to the

pathogen treatment,  and that this response varies according to genotype. Transcripts  of many NLR

genes are known to accumulate in response to defense induction or related stimuli  (Lai & Eulgem,

2018). For example, 75 of the 124 studied Arabidopsis NLR genes were found to exhibit at least two‐

fold  higher  transcript  levels  in  response  to  one  or  more  of  the  15  implemented  defence‐related
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treatments (Mohr et al., 2010). Up‐regulation of NLR transcripts after defence induction has also been

observed in other plant species, such as wheat,  Brassica rapa, soybean and rice  (Ribot et al., 2008;

Brechenmacher et al., 2015; Chen, Pang, Chen, Zhang, & Piao, 2015; Steuernagel et al., 2020). While

we were more likely to observe up-regulation of NLR expression levels in response to the pathogen

treatment, this was not consistent across transcripts and genotypes. This is in line with recent studies on

crop plants testing different genotypes in response to pathogen infection (Sari, Bhadauria, Vandenberg,

& Banniza, 2017; Sari et al., 2018; Cruz-Miralles, Cabedo-Lopez, Perez-Hedo, Flors, & Jaques, 2019).

Plants have evolved mechanisms to stabilize their basal expression levels, and to reduce the fitness

costs of an overexpressed immune response that could have more deleterious effects on plant fitness

than the infection  (Fei, Xia, & Meyers, 2013). This may explain the down-regulation of some of the

NLR transcripts we observe in both susceptible and resistant phenotypes. Future studies are needed to

determine how sensitive the detection of NLRs, and their expression patterns are to the sampling time

which in our study was 72 h post inoculation.

Conclusions

Our results are well in line with the extensive phenotypic variation and highly strain-specific disease

resistance measured in P. lanceolata in earlier studies (Jousimo et al., 2014a; Hockerstedt et al., 2018).

High levels of variation in resistance seems to be nearly ubiquitous across natural host populations that

experience  pathogen-imposed  selection  without  any  human  interference,  in  contrast  to  agricultural

systems  (Salvaudon et al.,  2008; Laine et al.,  2011).  We show that phenotypic resistance may be

generated by different mechanisms. First, we discovered a large repertoire of candidate NLRs in  P.

lanceolata. We also find evidence of selection generating diversity in a subset of the identified NLRs.

Moreover, we discovered that the genotypes have unique expression profiles in response to pathogens,
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a mechanism which may further contribute to phenotypic variation. Indeed, this high level of genetic

and expression profile  diversity  may be the key to  successful defense against pathogens in sessile

plants that lack a long lasting immune memory (Hall et al., 2009; Roux & Bergelson, 2016). Finding

different mechanisms that contribute to phenotypic resistance is nontrivial, given how effectively this

variation  may  be  utilized  to  predict  and  control  disease  epidemics  (Mundt,  2002a).  Moreover,

resistance in agricultural crops is highly prone to breakdown following pathogen adaptation, and for

many commercially important pathogens, the known effective resistance genes are becoming limited.

Wild plant  populations  are currently identified as the most promising source of genes required for

development of sustainable agriculture (Fu et al., 2019). In conclusion, characterizing the architecture

of resistance in natural host populations may yield unprecedented light on the potential of evolution to

generate variation, and it can have broad and long-lasting impacts in our food production environments.
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