Superscript
-: Average value
References
- Alamolhoda, F.; Shamiri, A.; Hussain, M. A.; Zarghami, R.;
Sotudeh-Gharebagh, R.; Mostoufi, N., Detection of Agglomeration by
Analysis of Vibration Signatures in a Pilot-Scale fluidized Bed
Reactor of Propylene Polymerization, Int. J. of Chem. Reactor Eng.,
2019, 17, 2.
- Chmelar, J.; Matuska, P.; Gregor, T.; Bobak, M.; Fantinel, F.; Kosek,
J., Softening of polyethylene powders at reactor conditions, Chem.
Eng. J., 2013, 228, 907-916.
- Datta, S.; Sarkar, P.; Chavan, P. D.; Saha, S.; Sahu, G.; Sinha, A.
K.; Saxena, V. K., Agglomeration behaviour of high ash Indian coals in
fluidized bed gasification pilot plant, Applied Thermal Eng., 2015,
86, 222-228.
- Elled, A. L.; Åmand, L. E.; Steenari, B. M., Composition of
agglomerates in fluidized bed reactors for thermochemical conversion
of biomass and waste fuels, Fuel 2013, 111, 696-708.
- Montes, A.; Ghiasi, E.; Tran, H.; Xu, C., Study of bed materials
agglomeration in a heated bubbling fluidized bed (BFB) using silica
sand as the bed material and KOH to simulate molten ash, Powder
Technol., 2016, 291, 178-185.
- Zhong, Y.; Wang, Z.; Guo, Z.; Tang, Q., Prevention of
agglomeration/defluidization in fluidized bed reduction of Fe2O3 by
CO: The role of magnesium and calcium oxide, Powder Technol., 2013,
241, 142-148.
- Ye M.; Li H.; Zhao Y.; Zhang T.; Liu Z., MTO process development: The
key of mesoscale studies, Advances in Chem. Eng., 2016, 47: 279-335
- Geldart, D., Types of gas fluidization, Powder Technol., 1973, 7,
285-292.
- Botterill, J. S. M., Teoman, Y. and Yuregir, K. R., The effect of
operating temperature on the velocity of minimum fluidization, bed
voidage and general behaviour, Powder Technol., 1982, 31, 101-110.
- Lucas, A., Arnaldos, J., Casal, J. and Puigjaner, L., High temperature
incipient fluidization in mono and polydisperse systems, Chem. Eng.
Comm., 1986, 41, 121-132.
- Lettieri, P.; Newton, D.; Yates, J. G., High temperature effects on
the dense phase properties of gas fluidized beds, Powder Technol.,
2001, 120, 34-40.
- Cui, H.; Chaouki, J., Inter-particle forces in high temperature
fluidization of Geldart A particles, China Particuology, 2004, 2,
113-118.
- Shabanian, J.; Chaouki, J., fluidization characteristics of a bubbling
gas–solid fluidized bed at high temperature in the presence of
inter-particle forces, Chem. Eng. J., 2016, 288, 344-358
- Raso, G.; Damore, M.; Formisani, B.; Lignola, P. G., The Influence of
Temperature on the Properties of the Particulate Phase at Incipient
fluidization, Powder Technol., 1992, 72, 71-76.
- Formisani, B.; Girimonte, R.; Mancuso, L., Analysis of the
fluidization process of particle beds at high temperature, Chem. Eng.
Sci., 1998, 53, 951-961.
- Chirone R.; Poletto M.; Barletta D.; Lettieri, P., The effect of
temperature on the minimum fluidization conditions of industrial
cohesive particles, Powder Technol., 2020, 362, 307–322.
- Makkawi, Y. T.; Wright, P. C., fluidization regimes in a conventional
fluidized bed characterized by means of electrical capacitance
tomography, Chem. Eng. Sci., 2002, 57, 2411-2437.
- Du, B.; Warsito, W.; Fan, L.-S., ECT studies of the choking phenomenon
in a gas-solid circulating fluidized bed, AIChE J., 2004, 50,
1386-1406.
- Li, X.; Jaworski, A. J.; Mao, X., Bubble size and bubble rise velocity
estimation by means of electrical capacitance tomography within
gas-solids fluidized beds, Measurement, 2018, 117, 226-240.
- Guo, Q.; Meng, S.; Zhao Y.; Ma, L.; Wang D.; Ye M.; Yang W.; Liu, Z.,
Experimental verification of solid-like and fluid-like states in the
homogeneous fluidization regime of Geldart A particles, Ind. Eng.
Chem. Res., 2018, 57, 2670−2686.
- Ye M.; Luo Q.; Meng S.; Zhang T.; and Liu Z., An electrical
capacitance tomography sensor withstanding high temperature and its
fabrication method, Chinese Patent: ZL201510623768.9, 25 Sept. 2015.
- Ye M.; Guo Q.; Meng S.; Zhang T.; and Liu Z., An electrical
capacitance tomography sensor withstanding high temperature, Chinese
Patent: ZL201510967356.7, 18 Dec. 2015.
- Huang, K.; Meng, S.; Guo, Q.; Ye, M.; Shen, J.; Zhang, T.; Yang, W.;
Liu, Z., High-temperature electrical capacitance tomography for
gas–solid fluidized beds, Meas. Sci. Technol., 2018, 29, 104002.
- Wang, D.; Xu, M.; Marashdeh, Q.; Straiton, B.; Tong, A.; Fan, L.-S.,
Electrical Capacitance Volume Tomography for Characterization of
Gas–Solid Slugging fluidization with Geldart Group D Particles under
High Temperatures, Ind. Eng. Chem. Res., 2018, 57, 2687-2697.
- Kanada T., Estimation of sphericity by means of statistical processing
for roundness of spherical parts, Precision Eng., 1997, 20, 117-122
- Yang, W. Q.; Peng, L., Image reconstruction algorithms for electrical
capacitance tomography, Meas. Sci. Technol., 2003, 14 (1), R1-R13
- Liu, S.; Fu, L.; Yang, W. Q., Optimization of an iterative image
reconstruction algorithm for electrical capacitance tomography, Meas.
Sci. Technol., 1999, 10 (7), L37-L39.
- Huang, K.; Meng, S.; Guo, Q.; Yang, W.; Zhang, T.; Ye, M.; Liu, Z.,
Effect of Electrode Length of an Electrical Capacitance Tomography
Sensor on Gas−Solid fluidized Bed Measurements, Ind. Eng. Chem. Res.,
2019, 58 (47), 21827-21841.
- Banaei, M.; van Sint Annaland, M.; Kuipers, J. A. M.; Deen, N. G., On
the accuracy of Landweber and Tikhonov reconstruction techniques in
gas-solid fluidized bed applications, AIChE J., 2015, 61 (12),
4102-4113.
- Grace, J. R.; Sun, G., Influence of particle size distribution on the
performance of fluidized bed reactors, The Canadian J. of Chem. Eng.,
1991, 69 (5), 1126-1134.
- Agrawal, V.; Shinde, Y. H.; Shah, M. T.; Utikar, R. P.; Pareek, V. K.;
Joshi, J. B., Estimation of Bubble Properties in Bubbling fluidized
Bed Using ECVT Measurements, Ind. Eng. Chem. Res., 2018, 57 (24),
8319-8333.
- Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis,
J. S.; Holland, D. J., Measurement of bubble sizes in fluidized beds
using electrical capacitance tomography, Chem. Eng. Sci., 2015, 126,
679-687.
- Agu, C. E.; Pfeifer, C.; Eikeland, M.; Tokheim, L.-A.; Moldestad, B.
M. E., Models for Predicting Average Bubble Diameter and Volumetric
Bubble Flux in Deep fluidized Beds, Ind. Eng. Chem. Res., 2018, 57
(7), 2658-2669.
- Shabanian, J.; Chaouki, J., Hydrodynamics of a gas–solid fluidized
bed with thermally induced inter-particle forces, Chem. Eng. J., 2015,
259, 135-152.
- Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis,
J. S.; Holland, D. J., Measurement of bubble sizes in fluidized beds
using electrical capacitance tomography, Chem. Eng. Sci., 2015, 126,
679-687.
- Xu, C.; Zhu, J. X., Effects of gas type and temperature on fine
particle fluidization, China Particuology, 2006, 4 (3-4), 114-121.
- Rhodes, M. J.; Wang, X. S.; Forsyth, A. J.; Gan, K. S.; Phadtajaphan,
S., Use of a magnetic fluidized bed in studying Geldart Group B to A
transition, Chem. Eng. Sci., 2001, 56 (18), 5429-5436.
- Ye, M.; van der Hoef, M. A.; Kuipers, J. A. M., A numerical study of
fluidization behavior of Geldart A particles using discrete particle
model, Powder Technol., 2004, 139: 129-139.
- Ye, M.; van der Hoef, M. A.; Kuipers, J. A. M., The effects of
particle and gas properties on the fluidization of Geldart A
particles, Chem. Eng. Sci., 2005, 60 (16), 4567-4580.
- Agu, C. E.; Tokheim, L.-A.; Eikeland, M.; Moldestad, B. M. E.,
Determination of onset of bubbling and slugging in a fluidized bed
using a dual-plane electrical capacitance tomography system, Chem.
Eng. J., 2017, 328, 997-1008.
- Subramani, H. J.; Mothivel Balaiyya, M. B.; Miranda, L. R., Minimum
fluidization velocity at elevated temperatures for Geldart’s group-B
powders, Experimental Thermal and Fluid Science, 2007, 32 (1), 166-173
- Rapagnà, S.; Foscolo, P.U.; Gibilaro, L.G. , The influence of
temperature on the quality of gas fluidization, Int. J. Multiph. Flow,
1994, 20, 305-313.
- Castellanos A.; Valverde, J.M. ; Quintanilla, M.A.S., The Sevilla
powder tester: a tool for characterizing the physical properties of
fine cohesive powders at very small consolidations, KONA Powder Part
J. 2004, 22 , 66–81
- Molerus O., Theory of Yield of Cohesive Powders, Powder Technol.,
1975, 12, 259-275
- Guo Q.; Meng S.; Zhao Y.; Ma L.; Wang D.; Ye M.; Yang W.; Liu Z.,
Experimental verification of solid-like and fluid-like states in the
homogeneous fluidization regime of Geldart A particles, Ind. Eng.
Chem. Res., 2018, 57, 2670−2686.
- Valverde, J. M.; Castellanos, A., Types of gas fluidization of
cohesive granular materials, Phys. Rev. E, 2007, 75, 031306.
- Girimonte, R.; Formisani B., The minimum bubbling velocity of
fluidized beds operating at high temperature, Powder Technol., 2009,
189, 74-81.