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Abstract

How to choose the optimization criterion of the objective function is an impor-

tant issue for uncertain optimal control. The Hurwicz criterion is a flexible opti-

mization criterion attempting to find the intermediate area between the extremes

posed by the optimistic and pessimistic criteria. Based on uncertainty theory, in this

paper, we establish a new uncertain optimal control model with jump by making

use of Hurwicz criterion to optimize an uncertain objective function. By applying

Bellman’s principle of optimality, the principle of optimality for the proposed model

is presented and then the equation of optimality is derived. Finally, an example is

given to show the the effectiveness of the results obtained.
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1 Introduction

In the past decades, optimal control of systems with jumps have received a lot of interest

from many engineers and economists. This kind of optimal control problem has a practical

background in engineering, economics and management, especially in financial market.

Some rare events or catastrophes or machine failures, have a great influence on how the
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biological, physical or other system evolves. The stochastic differential equations driven

by both Brownian motions and Poisson processes have become increasing popular for

modelling the stochastic jump diffusion systems in various areas. Since Merton
1

first

investigated the optimal control problem of consumption and investment with random

poisson jumps in 1971, the study on optimal control of stochastic jump diffusion system

has been made considerable advances both in theory and application. Some studied results

can be seen in
2, 3, 4, 5, 6

and the references therein.

The state evolution of dynamic control systems with jumps usually are disturbed by

many indeterministic factors. In general, the probability theory is an effective tool for

dealing with these indeterminacy. However, a fundamental premise of realistic appli-

cations of probability theory is that there must be sufficient available sample data to

estimate probability distribution of indeterminate event. For many systems in real life,

the sample size usually is too small or even no sample such as bridge strength, oil filed

reserves and the price of a new stock. In this case, we can’t estimate a probability distri-

bution by means of statistics and have to consult some domain experts to evaluate their

belief degree that each indeterministic event will occur. Liu
7

found probability theory

is no longer valid for describing belief degree. In order to rationally deal with the inde-

terminacy, an uncertainty theory was founded by Liu
8

in 2007 and refined by Liu
9

in

2010.

Based on the uncertainty theory, Zhu
10

first proposed and dealt with an uncertain

optimal control problem without jump in which the expected value operator was used to

optimize the uncertain objective function. An equation of optimality as a counterpart

of HJB equation was obtained by employing dynamic programming. Then, by means of

Zhu’s equation of optimality, Xu and Zhu
11

, Yan and Zhu
12

studied uncertain bang-bang

optimal control models. Chen and Zhu
13

discussed the uncertain optimal control problem

with time-delay. Yao and Qin
14

, Li and Zhu
15

investigated the uncertain linear quadratic

control problem. Yang and Gao
16

studied an uncertain differential game. Taking the

influence of some external extreme events or noises on uncertain dynamic systems into

account, Deng and Zhu
17, 18, 19, 20

further studied some expected value models of optimal

control problem for uncertain dynamic systems with jump and the equations of optimality

were derived.

How to choose the optimization criterion of the objective function is an important
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issue for uncertain optimal control. In fact, there are many optimization criteria such as

expected value, optimistic value, pessimistic value, and Hurwicz criterion. We can’t say

which of these criteria is better or worse because they are suitable for different specific

situations and specific problems. The expected value criterion is a traditional one in the

sense of the weighted average. Both the optimistic criterion and the pessimistic criterion

are extreme criteria. The Hurwicz criterion can also be called optimism coefficient method,

designed by economics professor Leonid Hurwicz
21

in 1951. It is a more complex and

more flexible optimization criterion attempting to find the intermediate area between the

extremes posed by the optimistic and pessimistic criteria. Hurwicz criterion incorporates

a measure of both by assigning a certain percentage weight to optimism and the balance to

pessimism. By changing a coefficient denoting the optimism degree, the Hurwicz criterion

actually becomes various criteria. The optimistic value criterion and the pessimistic value

criterion are its two special cases.

In 2013, Sheng and Zhu
22

established an optimistic value model of uncertain optimal

control without jump by making use of the optimistic value criterion to optimize the un-

certain objective function. Afterward, Yan and Zhu
23

studied bang-bang control model

with optimistic value criterion for uncertain switched systems. Li, Zhu and Chen
24

dis-

cussed approximating uncertain optimal control problems under optimistic value criterion

by applying the piecewise optimisation method. Further, Deng and Chen
25, 26, 27

investi-

gated optimistic value models of uncertain optimal control with jump. Besides, Sheng,

Zhu and Hamalainen
28

proposed an uncertain optimal control model without jump under

Hurwicz criterion.

The purpose of this paper is to further study the uncertain optimal control problem

with jumps under Hurwicz criterion, where dynamic systems are modelled by a type of

uncertain differential equation driven by canonical process and V jump uncertain process.

To the best of our knowledge, this problem has not been investigated in the literature

and remains open. The remainder of this paper proceeds as follows. Some concepts and

theorems in uncertainty theory are reviewed in Section 2. In Section 3, we establish a

new uncertain optimal control model with jump by making use of Hurwicz criterion to

optimize an uncertain objective function and give the principle of optimality. In Section

4, we derive the equation of optimality of proposed model. Section 5 gives a conclusion.

Final Section is Appendix, in which an estimation for the α-pessimistic value of aη + bη2
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if η is a V -jump uncertain variable (α ∈ (0, 1)) is given.

2 Preliminary

In this section, we will review some basic concepts and theorems in uncertainty theory 8.

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ ∈ L is called an event.

A set function M defined on the σ-algebra L over Γ is called an uncertain measure if it

satisfies M{Γ} = 1, M{Λ} + M{Λc} = 1 for any Λ ∈ L, and M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi} for

every countable sequence of events {Λi}. The triplet (Γ, L,M) is said to be an uncertainty

space. An uncertain variable is a function ξ from an uncertainty space (Γ, L,M) to the

set of real numbers such that for any Borel set of real numbers, the set {ξ ∈ B} = {γ ∈
Γ| ξ(γ) ∈ B} is an event. An uncertain variable ξ may be described by its uncertainty

distribution Φ: < → [0, 1] which is defined by Φ(x) = M{ξ ≤ x}. The expected value

of ξ is defined by E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr−

∫ 0

−∞M{ξ ≤ r}dr provided that at least one

of the two integrals is finite. The variance of ξ is V [ξ] = E[(ξ − E[ξ])2]. The uncertain

variables ξ1, ξ2, ..., ξm are said to be independent if M{
m⋂
i=1

{ξi ∈ Bi}} = min
1≤i≤m

M{ξi ∈ Bi},

for any Borel set B1, B2, · · · , Bm of real numbers.

Definition 2.1 . (Liu
8
) Let ξ be an uncertain variable, and α ∈ (0, 1]. Then ξsup(α) =

sup{r|M{ξ ≥ r} ≥ α} is called the α-optimistic value to ξ; and ξinf(α) = inf{r|M{ξ ≤
r} ≥ α} is called the α-pessimistic value to ξ.

Theorem 2.1 . (Liu
8, 9

) Let ξ and η be are independent uncertain variables and α ∈
(0, 1]. Then we have

(i) if c ≥ 0, then (cξ)sup(α) = cξsup(α) and (cξ)inf(α) = cξinf(α);

(ii) if c < 0, then (cξ)sup(α) = cξinf(α) and (cξ)inf(α) = cξsup(α);

(iii) (ξ + η)sup(α) = ξsup(α) + ηsup(α), (ξ + η)inf(α) = ξinf(α) + ηinf(α).

Theorem 2.2 . (Sheng and Zhu
22

) Let ξ be a normal uncertain variable N(0, σ), for

any real number a, and any small enough ε > 0 and α ∈ (0, 1),

(1) if b > 0, then

(aξ + bξ2)sup(α) ≥
√

3|a|σ
π

ln
1− α
α

+ b

(√
3σ

π
ln

1− α
α

)2

, (2.1)
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(aξ + bξ2)sup(α) ≤
√

3|a|σ
π

ln
1− α + ε

α− ε
+ b

(√
3σ

π
ln

2− ε
ε

)2

. (2.2)

(2) if b < 0, then

(aξ + bξ2)sup(α) ≥
√

3|a|σ
π

ln
1− α− ε
α + ε

+ b

(√
3σ

π
ln

2− ε
ε

)2

, (2.3)

(aξ + bξ2)sup(α) ≤
√

3|a|σ
π

ln
1− α
α

+ b

(√
3σ

π
ln

1− α
α

)2

. (2.4)

(3) if b = 0, then

(aξ + bξ2)sup(α) =

√
3|a|σ
π

ln
1− α
α

. (2.5)

Definition 2.2 . (Deng and Zhu
17

) An uncertain process Vt is said to be a V jump

process with parameters r1 and r2 (0 < r1 < r2 < 1) for t ≥ 0 if

(i) V0 = 0,

(ii) Vt has stationary and independent increments,

(iii) every increment Vs+t − Vs is a Z jump uncertain variable Z(r1, r2, t), whose uncer-

tainty distribution is

Ψ(x) =



0, if x < 0

2r1

t
x, if 0 ≤ x <

t

2

r2 +
2(1− r2)

t

(
x− t

2

)
, if

t

2
≤ x < t

1, if x ≥ t.

(2.6)

Let Vt be a V jump uncertain process, and η = ∆Vt = Vt+∆t−Vt. Then for any α ∈ (0, 1),

it follows from the definition of α-optimistic value and α-pessimistic value that

ηsup(α) =



(
1− α

2(1− r2)

)
∆t, if 0 < α < 1− r2

∆t

2
, if 1− r2 ≤ α < 1− r1

1− α
2r1

∆t, if 1− r1 ≤ α < 1

(2.7)
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and

ηinf(α) =



α

2r1

∆t, if 0 < α ≤ r1

∆t

2
, if r1 < α ≤ r2(

1− 1− α
2(1− r2)

)
∆t, if r2 < α < 1,

(2.8)

respectively.

Theorem 2.3 (Deng, You and Chen
27

) Let Vt a V jump uncertain process. Denote

η = ∆Vt, then for any real number a, b, any α ∈ (0, 1), and any ε > 0 small enough,

(1) if a ≥ 0, b ≥ 0, then

[aη + bη2]sup(α) ≥



(
1− α

2(1− r2)

)
a∆t, if 0 < α < 1− r2

a

2
∆t, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t, if 1− r1 ≤ α < 1,

(2.9)

[
aη + bη2

]
sup

(α) ≤



(
1− α

2(1− r2)

)
a∆t+ b∆t2, if 0 < α < 1− r2

a

2
∆t+ b∆t2, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t+ b∆t2, if 1− r1 ≤ α < 1,

(2.10)

(2) if a < 0, b ≥ 0, then

[aη + bη2]sup(α) ≥



αa

2r1

∆t, if 0 < α ≤ r1

a

2
∆t, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t, if r2 < α < 1,

(2.11)

[
aη + bη2

]
sup

(α) ≤



aα

2r1

∆t+ b∆t2, if 0 < α ≤ r1

a

2
∆t+ b∆t2, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t+ b∆t2, if r2 < α < 1,

(2.12)
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(3) if a ≥ 0, b < 0, then

[
aη + bη2

]
sup

(α) ≥



(
1− α

2(1− r2)

)
a∆t+ b∆t2, if 0 < α < 1− r2

a

2
∆t+ b∆t2, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t+ b∆t2, if 1− r1 ≤ α < 1,

(2.13)

[aη + bη2]sup(α) ≤



(
1− α

2(1− r2)

)
a∆t, if 0 < α < 1− r2

a

2
∆t, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t, if 1− r1 ≤ α < 1,

(2.14)

(4) if a < 0, b < 0, then

[
aη + bη2

]
sup

(α) ≥



αa

2r1

∆t+ b∆t2, if 0 < α ≤ r1

a

2
∆t+ b∆t2, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t+ b∆t2, if r2 < α < 1,

(2.15)

[aη + bη2]sup(α) ≤



αa

2r1

∆t, if 0 < α ≤ r1

a

2
∆t, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t, if r2 < α < 1.

(2.16)
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3 Uncertain optimal control model with jump under

Hurwicz criterion

In this section, we present the following uncertain optimal control model with jump under

Hurwicz criterion:

J(t,x) ≡ sup
us∈U

[λSsup(α) + (1− λ)Sinf(α)] ,

subject to

dXs = P (s,Xs,us) ds+ Q (s,Xs,us) dCs + R (s,Xs,us) dVs,

Xt = x,

(3.1)

where the vector Xs denotes a state vector of dimension n, us denotes a control vector of

dimension r subject to a constraint set U. S =
∫ T
t
L (s,Xs,us) ds + F (T,XT ), and the

function L : [0, T )×<n×<r → < is an objective function, and F : [0, T )×<n → < is the

terminal reward function. Ssup(α) = sup{S̃|M{S ≥ S̃} ≥ α} and Sinf(α) = inf{S̃|M{S ≤
S̃} ≥ α} denote the α-optimistic value and the α–pessimistic value to S, respectively. In

addition, P : [0, T )×<n×<r → <n is a vector function, Q : [0, T )×<n×<r → <n×<k

and R : [0, T )×<n×<r → <n×<k are two matrix functions. All functions mentioned are

continuous. Assume that Ct = (Ct1, Ct2 · · · , Ctk)τ and Vt = (Vt1, Vt2, · · · , Vtk)τ , where

Ct1, Ct2, · · · , Ctk are independent canonical processes, Vt1, Vt2, · · · , Vtk are independent

uncertain V -jump process, and Cti and Vtj are independent for any i, j = 1, 2, · · · , k
(i 6= j). α ∈ (0, 1) is given confidence level and λ ∈ (0, 1) is a selected coefficient denoting

the optimism degree. The symbol υτ denotes the transpose of a vector or a matrix υ.

Theorem 3.1 [Principle of optimality] For any (t,x) ∈ [0, T ) × <n, and ∆t > 0 with

t+ ∆t < T , we have

J(t,x) = sup
ut∈U

[
L (t,x,ut) ∆t+ o(∆t) + λJ (t+ ∆t,x + ∆Xt)sup (α)

+(1− λ)J (t+ ∆t,x + ∆Xt)inf (α)
]
, (3.2)

where x + ∆Xt = Xt+∆t.
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Proof. We denote the right side of (3.2) by J̃(t,x). For arbitrary u ∈ U, it follows from

the definition of J(t,x) that

J(t,x) ≥ λ

{∫ t+∆t

t

L(s,Xs,us|[t,t+∆t))ds+

∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
sup

(α)

+(1− λ)

{∫ t+∆t

t

L(s,Xs,us|[t,t+∆t))ds+

∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
inf

(α),

for any us, where us|[t,t+∆t) and us|[t+∆t,T ] are the values of control variable us restricted

on [t, t+ ∆t) and [t+ ∆t, T ], respectively.

For any ∆t > 0, by using Taylor series expansion, we get∫ t+∆t

t

L(s,Xs,us|[t,t+∆t))ds = L(t,x,u(t,x))∆t+ o(∆t).

Thus

J(t,x) ≥ L(t,x,u)∆t+ o(∆t) + λ

{∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
sup

(α)

+(1− λ)

{∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
inf

(α). (3.3)

Taking the supremum with respect to |u[t+∆t,T ] in (3.3), then we get J(t,x) ≥ J̃(t,x). On

the other hand, for all u, we have

λSsup(α) + (1− λ)Sinf(α) = f(t,x,u)∆t+ o(∆t)

+λ

{∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
sup

(α)

+(1− λ)

{∫ T

t+∆t

L(s,Xs,us|[t+∆t,T ])ds+ F (T,XT )

}
inf

(α)

≤ L(t,x,u)∆t+ o(∆t) + J (t+ ∆t,x + ∆Xt)

≤ J̃(t,x).

Hence, J(t,x) ≤ J̃(t,x), and then J(t,x) = J̃(t,x). Theorem 3.1 is proved.

Theorem 3.2 (Equation of optimality) Let J(t,x) be twice differentiable on [0, T ]×
<n. Then we have

−Jt = sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

(√
3

π
ln

1− α
α

)
‖ ∇xJ

τQ ‖1 +k ‖ ∇xJ
τR ‖

}
,(3.4)
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where Jt is the partial derivative of the function J(t,x) in t, ∇xJ(t,x) is the gradi-

ent of J(t,x) in x. ‖ · ‖1 and ‖ · ‖ are the 1-norm for vectors, that is, ‖ · ‖1=
k∑
i=1

|pi| and ‖ · ‖=
k∑
i=1

pi for p = (p1, p2, . . . , pk), respectively. L,P,Q,R, Jt,∇xJ de-

note L (t,x,u) ,P (t,x,u) ,Q (t,x,u) ,R (t,x,u) , Jt (t,x) ,∇xJ (t,x), respectively, and

(1) when ∇xJ
τR ≥ 0, (i) if 0 < α < 1− r2, then k = 1− α

2 (1− r2)
, (ii) if 1− r2 ≤

α < 1− r1, then k =
1

2
, (iii) if 1− r1 ≤ α < 1, then k =

1− α
2r1

;

(2) when ∇xJ
τR < 0, (i) if 0 < α ≤ r1, then k =

α

2r1

, (ii) if r1 < α ≤ r2, then

k =
1

2
, (iii) if r2 < α < 1, then k = 1− 1− α

2(1− r2)
.

Where ∇xJ
τR ≥ 0 and ∇xJ

τR < 0 mean that their all terms are non-negative and

negative, respectively.

Proof: Let Hλ
α[S] = λSsup(α) + (1− λ)Sinf(α). By Taylor expansion, we get

J(t+ ∆t,x + ∆Xt) = J(t,x) + Jt(t,x)∆t+∇xJ(t,x)τ∆Xt +
1

2
Jtt(t,x)∆t2

+
1

2
∆Xt

τ∇xxJ(t,x)∆Xt +∇xJt(t,x)τ∆Xt∆t+ o(∆t), (3.5)

where ∇xxJ(t,x) is the Hessian matrix of J(t,x) in x. Note that ∆Xt = P (t,Xt,ut) ∆t+

Q (t,Xt,ut) ∆Ct + R (t,Xt,ut) ∆Vt. Substituting equation (3.5) into equation (3.2) and

simplifying the resulting expression yields that

0 = sup
ut∈U

{
L(x,ut, t)∆t+ Jt(t,x)∆t+∇xJ(t,x)τP (t,Xt,ut) ∆t+Hλ

α [m∆Ct

+n∆Vt + ∆Ct
τA∆Ct + ∆Ct

τB∆Vt + ∆Vt
τH∆Vt] + o(∆t)

}
, (3.6)

where m = ∇xJ(t,x)τQ (t,Xt,ut)+∇xJt(t,x)τQ (t,Xt,ut) ∆t+P (t,Xt,ut)
τ ∇xxJ(t,x)

Q (t,Xt,ut) ∆t, n = ∇xJ(t,x)τR (t,Xt,ut) + ∇xJt(t,x)τR (t,Xt,ut) ∆t + P (t,Xt,ut)
τ

∇xxJ(t,x)R (t,Xt,ut) ∆t, A = 1
2
Q (t,Xt,ut)

τ ∇xxJ(t,x)Q (t,Xt,ut) ,B = Q (t,Xt,ut)
τ

∇xxJ(t,x)R (t,Xt,ut) , H = 1
2
R (t,Xt,ut)

τ ∇xxJ(t,x)R (t,Xt,ut) .

Let m = (mi)1×k,n = (ni)1×k,A = (aij)k×k,B = (bij)k×k and H = (hij)k×k. Then we

have

m∆Ct + n∆Vt + ∆Ct
τA∆Ct + ∆Ct

τB∆Vt + ∆Vt
τH∆Vt

=
k∑
i=1

(mi∆Cti + ni∆Vti) +
k∑
i=1

k∑
j=1

(aij∆Cti∆Ctj + bij∆Cti∆Vtj + hij∆Vti∆Vtj).
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Since |aij∆Cti∆Ctj| ≤ |aij|(∆Cti2 + ∆Ctj
2)/2, |bij∆Cti∆Vtj| ≤ |bij|(∆Cti2 + ∆Vtj

2)/2,

|hij∆Vti∆Vtj| ≤ |hij|(∆Vti2 + ∆Vtj
2)/2, we have

k∑
i=1

(
mi∆Cti − ei∆Cti2 + ni∆Vti − ei∆Vti2

)
≤m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt

≤
k∑
i=1

(
mi∆Cti + ei∆Cti

2 + ni∆Vti + ei∆Vti
2
)
,

where ei =
k∑
j=1

(|aij|+ |bij|/2) (> 0). It follows from the independence of Cti and Vtj(i, j =

1, 2, · · · , k) that

k∑
i=1

Hλ
α

(
mi∆Cti − ei∆Cti2 + ni∆Vti − ei∆Vti2

)
≤ Hλ

α (m∆Ct + n∆Vt + ∆Ct
τA∆Ct + ∆Ct

τB∆Vt + ∆Vt
τH∆Vt)

≤
k∑
i=1

Hλ
α

(
mi∆Cti + ei∆Cti

2 + ni∆Vti + ei∆Vti
2
)
.

According to Theorem 2.2 and Theorem 5.1 of Appendix A in 28, for any ε > 0 small

enough, we have

Hλ
α

(
mi∆Cti − ei∆Cti2

)
≥ λ
√

3|mi|∆t
π

ln
1− α− ε
α + ε

+
(λ− 1)

√
3|mi|∆t
π

ln
1− α + ε

α− ε

−ei

(√
3∆t

π
ln

2− ε
ε

)2

,

and

Hλ
α

(
mi∆Cti + ei∆Cti

2
)
≤ λ
√

3|mi|∆t
π

ln
1− α + ε

α− ε
+

(λ− 1)
√

3|mi|∆t
π

ln
1− α− ε
α + ε

+ei

(√
3∆t

π
ln

2− ε
ε

)2

.

It follows from Theorem 2.3 and Theorem 5.1 of Appendix that

11



(1) if ni ≥ 0 (i = 1, 2, · · · , k) and r1 + r2 < 1, then

Hλ
α

(
ni∆Vti − ei∆Vti2

)

≥


λni

(
1− α

2(1− r2)

)
∆t+ (1− λ)ni

α

2r1

∆t− ei (∆t)2 , if 0 < α < r1

ni
2

∆t− ei (∆t)2 , if r1 ≤ α < r2

λ
ni (1− α)

2r1

∆t+ (1− λ)ni

(
1− 1− α

2 (1− r2)

)
∆t− ei (∆t)2 , if r2 ≤ α < 1

and

Hλ
α

(
ni∆Vti + ei∆Vti

2
)

≤


λni

(
1− α

2(1− r2)

)
∆t+ (1− λ)ni

α

2r1

∆t+ ei (∆t)
2 , if 0 < α < r1

ni
2

∆t+ ei (∆t)
2 , if r1 ≤ α < r2

λ
ni (1− α)

2r1

∆t+ (1− λ)ni

(
1− 1− α

2 (1− r2)

)
∆t+ ei (∆t)

2 , if r2 ≤ α < 1.

(2) if ni ≥ 0 (i = 1, 2, · · · , k) and r1 + r2 ≥ 1, then

Hλ
α

(
ni∆Vti − ei∆Vti2

)

≥


λni

(
1− α

2(1− r2)

)
∆t+ (1− λ)ni

α

2r1

∆t− ei (∆t)2 , if 0 < α < 1− r2

ni
2

∆t− ei (∆t)2 , if 1− r2 ≤ α < 1− r1

λ
ni (1− α)

2r1

∆t+ (1− λ)ni

(
1− 1− α

2 (1− r2)

)
∆t− ei (∆t)2 , if 1− r1 ≤ α < 1.

and

Hλ
α

(
ni∆Vti + ei∆Vti

2
)

≤


λni

(
1− α

2(1− r2)

)
∆t+ (1− λ)ni

α

2r1

∆t+ ei (∆t)
2 , if 0 < α < 1− r2

ni
2

∆t+ ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

λ
ni (1− α)

2r1

∆t+ (1− λ)ni

(
1− 1− α

2 (1− r2)

)
∆t+ ei (∆t)

2 , if 1− r1 ≤ α < 1.

12



(3) if ni < 0 (i = 1, 2, · · · , k) and r1 + r2 < 1, then

Hλ
α

(
ni∆Vti − ei∆Vti2

)

≥


λni

α

2r1

∆t+ (1− λ)ni

(
1− α

2(1− r2)

)
∆t− ei (∆t)2 , if 0 < α < r1

ni
2

∆t− ei (∆t)2 , if r1 ≤ α < r2

λni

(
1− 1− α

2 (1− r2)

)
∆t+ (1− λ)

ni (1− α)

2r1

∆t− ei (∆t)2 , if r2 ≤ α < 1.

and

Hλ
α

(
ni∆Vti + ei∆Vti

2
)

≤


λni

α

2r1

∆t+ (1− λ)ni

(
1− α

2(1− r2)

)
∆t+ ei (∆t)

2 , if 0 < α < r1

ni
2

∆t+ ei (∆t)
2 , if r1 ≤ α < r2

λni

(
1− 1− α

2 (1− r2)

)
∆t+ (1− λ)

ni (1− α)

2r1

∆t+ ei (∆t)
2 , if r2 ≤ α < 1.

(4) if ni < 0 (i = 1, 2, · · · , k) and r1 + r2 ≥ 1, then

Hλ
α

(
ni∆Vti − ei∆Vti2

)

≥


λni

α

2r1

∆t+ (1− λ)ni

(
1− α

2(1− r2)

)
∆t− ei (∆t)2 , if 0 < α < 1− r2

ni
2

∆t− ei (∆t)2 , if 1− r2 ≤ α < 1− r1

λni

(
1− 1− α

2 (1− r2)

)
∆t+ (1− λ)

ni (1− α)

2r1

∆t− ei (∆t)2 , if 1− r1 ≤ α < 1.

and

Hλ
α

(
ni∆Vti + ei∆Vti

2
)

≤


λni

α

2r1

∆t+ (1− λ)ni

(
1− α

2(1− r2)

)
∆t+ ei (∆t)

2 , if 0 < α < 1− r2

ni
2

∆t+ ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

λni

(
1− 1− α

2 (1− r2)

)
∆t+ (1− λ)

ni (1− α)

2r1

∆t+ ei (∆t)
2 , if 1− r1 ≤ α < 1.

13



Therefore, (1) if n ≥ 0, where ni ≥ 0 (i = 1, 2, · · · , k) and r1 + r2 < 1, then we get

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≥



√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < r1

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t− g (ε)
k∑
i=1

ei (∆t)
2 , if r1 ≤ α < r2

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ (1− α)

2r1

+ (1− λ)

(
1− 1− α

2 (1− r2)

)] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if r2 ≤ α < 1,

(3.7)

and

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≤



√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < r1

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t+ g (ε)
k∑
i=1

ei (∆t)
2 , if r1 ≤ α < r2

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ (1− α)

2r1

+ (1− λ)

(
1− 1− α

2 (1− r2)

)] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if r2 ≤ α < 1,

(3.8)

where h1 (λ, α, ε) = λ ln 1−α−ε
α+ε

+(λ− 1) ln 1−α+ε
α−ε , h2 (λ, α, ε) = λ ln 1−α+ε

α−ε +(λ− 1) ln 1−α−ε
α+ε

and g (ε) =
(√

3
π

ln 2−ε
ε

)2

+ 1.
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(2) if n ≥ 0, where ni ≥ 0 (i = 1, 2, · · · , k) and r1 + r2 ≥ 1, then we get

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≥



√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < 1− r2

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ (1− α)

2r1

+ (1− λ)

(
1− 1− α

2 (1− r2)

)] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r1 ≤ α < 1,

(3.9)

and

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≤



√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < 1− r2

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ (1− α)

2r1

+ (1− λ)

(
1− 1− α

2 (1− r2)

)] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r1 ≤ α < 1,

(3.10)
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(3) if n < 0, where ni < 0 (i = 1, 2, · · · , k) and r1 + r2 < 1, then we have

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≥



√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ
α

2r1

+ (1− λ)

(
1− α

2(1− r2)

)] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < r1

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t− g (ε)
k∑
i=1

ei (∆t)
2 , if r1 ≤ α < r2

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− 1− α

2 (1− r2)

)
+

(1− λ) (1− α)

2r1

] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if r2 ≤ α < 1,

(3.11)

and

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≤



√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ
α

2r1

+ (1− λ)

(
1− α

2(1− r2)

)] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < r1

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t+ g (ε)
k∑
i=1

ei (∆t)
2 , if r1 ≤ α < r2

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− 1− α

2 (1− r2)

)
+

(1− λ) (1− α)

2r1

] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if r2 ≤ α < 1,

(3.12)
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(4) if n < 0, where ni < 0 (i = 1, 2, · · · , k) and r1 + r2 ≥ 1, then we have

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≥



√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ
α

2r1

+ (1− λ)

(
1− α

2(1− r2)

)] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < 1− r2

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

√
3h1 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− 1− α

2 (1− r2)

)
+

(1− λ) (1− α)

2r1

] k∑
i=1

ni∆t

−g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r1 ≤ α < 1,

(3.13)

and

Hλ
α (m∆Ct + n∆Vt + ∆Ct

τA∆Ct + ∆Ct
τB∆Vt + ∆Vt

τH∆Vt)

≤



√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ
α

2r1

+ (1− λ)

(
1− α

2(1− r2)

)] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 0 < α < 1− r2

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+
1

2

k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r2 ≤ α < 1− r1

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− 1− α

2 (1− r2)

)
+

(1− λ) (1− α)

2r1

] k∑
i=1

ni∆t

+g (ε)
k∑
i=1

ei (∆t)
2 , if 1− r1 ≤ α < 1.

(3.14)

Then by Equation (3.6), we know that
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(1) If n ≥ 0 and r1 + r2 < 1, applying Inequality (3.8), for ∆t > 0, if 0 < α < r1,

there exists a control u ≡ uε,∆t such that

−ε∆t≤L∆t+ Jt∆t+∇xJ
τP∆t+Hλ

α [m∆Ct + n∆Vt + ∆Ct
τA∆Ct + ∆Ct

τB∆Vt

+∆Vt
τH∆Vt] + o(∆t)

≤L∆t+ Jt∆t+∇xJ
τP∆t+

√
3h2 (λ, α, ε)

π

k∑
i=1

|mi|∆t+

[
λ

(
1− α

2(1− r2)

)

+ (1− λ)
α

2r1

] k∑
i=1

ni∆t+ g (ε)
k∑
i=1

ei (∆t)
2 + o(∆t). (3.15)

Dividing both sides of the inequality (3.15) by ∆t, and taking the supremum with respect

to u, we derive

−ε≤ Jt + sup
ut∈U

{
L+∇xJ

τP +

√
3h2 (λ, α, ε)

π
‖ ∇xJ

τQ ‖1 +

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

]
‖ ∇xJ

τR ‖
}

+ l1 (ε,∆t) + l2(∆t) (3.16)

since
k∑
i=1

ni →‖ ∇xJ
τR ‖,

k∑
i=1

|mi| →‖ ∇xJ
τQ ‖1 as ∆t → 0, where l1(ε,∆t) =

g (ε)
k∑
i=1

ei =
[(√3

π
ln

2− ε
ε

)2

+ 1
] k∑
i=1

k∑
j=1

(
|aij| +

|bij|
2

)
∆t → 0, l2(∆t) =

o(∆t)

∆t
→ 0

as ∆t→ 0. Letting ∆t→ 0 and then ε→ 0 results in

0≤ Jt + sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

√
3

π
ln

1− α
α
‖ ∇xJ

τQ ‖1 +

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

]
‖ ∇xJ

τR ‖
}

(3.17)

if ∇xJ
τR ≥ 0 and 0 < α < r1.

On the other hand, by Equation (3.6) and Inequality (3.7), applying the similar pro-

cess, we can get

0≥ Jt + sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

√
3

π
ln

1− α
α
‖ ∇xJ

τQ ‖1 +

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

]
‖ ∇xJ

τR ‖
}

(3.18)
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if ∇xJ
τR ≥ 0 and 0 < α < r1.

Combining Inequalities (3.17) and (3.18), we can obtain

−Jt = sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

√
3

π
ln

1− α
α
‖ ∇xJ

τQ ‖1 +

[
λ

(
1− α

2(1− r2)

)
+ (1− λ)

α

2r1

]
‖ ∇xJ

τR ‖
}

(3.19)

if ∇xJ
τR ≥ 0 and 0 < α < r1.

By applying the similar process, we can derive

−Jt = sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

√
3

π
ln

1− α
α
‖ ∇xJ

τQ ‖1 +
1

2
‖ ∇xJ

τR ‖

}
(3.20)

if ∇xJ
τR ≥ 0 and r1 ≤ α < r2, and

−Jt = sup
ut∈U

{
L+∇xJ

τP + (2λ− 1)

√
3

π
ln

1− α
α
‖ ∇xJ

τQ ‖1 +

[
λ (1− α)

2r1

+ (1− λ)

(
1− 1− α

2 (1− r2)

)]
‖ ∇xJ

τR ‖
}

(3.21)

if ∇xJ
τR ≥ 0 and r2 ≤ α < 1. Thus we derive the equation of optimality for ∇xJ

τR ≥ 0

and r1 + r2 < 1.

(2) Similarly, results can be obtained for ∇xJ
τR ≥ 0 and r1 + r2 ≥ 1 or n < 0.

(3) If condition n ≥ 0 or n < 0 are not been satisfied, namely ni > 0, nj < 0(i 6=
j, i, j = 1, 2, · · · , k), by using the similar process, the equation of optimality can also be

derived. Thus the theorem 3.2 is proved.

4 Example

In this section, an example is presented to illustrate the effectiveness of results obtained.

Consider the following optimal control problem for an uncertain system with jump under

Hurwicz criterion:

J(0,x0) ≡ sup
us∈U

[λSsup(α) + (1− λ)Sinf(α)] ,

subject to

dx1(t) = u1(t)x1(t)dt+ σ1u1(t)x1(t)dC1 + δ1u1(t)x1(t)dV1,

dx2(t) = u2(t)x2(t)dt+ σ2u2(t)x1(t)dC2 + δ2u2(t)x2(t)dV2,
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where S =
∫∞

0

1

2
e−γt

[
u2

1(t)x2
1(t) + u2

2(t)x2
2(t)
]
dt and γ denotes the constant discount rate.

It follows from the equation of optimality (3.2) that

−Jt = sup
u

{
1

2
e−γt(u2

1x
2
1 + u2

2x
2
2) + u1x1Jx1 + u2x2Jx2 + (2λ− 1)

√
3

π
ln

1− α
α

(|σ1u1x1Jx1|

+ |σ2u2x2Jx2|) + k (δ1u1x1Jx1 + δ2u2x2Jx2)

}
= max

u
L (u1, u2) , (4.1)

where L(u1, u2) represents the term in the braces. Next we solve the Eq.(4.1). Without

loss of generality, assuming that σi, ui, xi > 0 (i = 1, 2), then

(1) if Jx1 ≥ 0, Jx2 ≥ 0, the optimal control u1, u2 satisfies

∂L(u1, u2)

∂ui
= e−γtuix

2
i + xiJxi + (2λ− 1)

√
3

π
ln

1− α
α

σixiJxi + kδixiJxi = 0

(i = 1, 2). (4.2)

or

ui =
k̃ie

γt

xi
Jxi , (4.3)

where k̃i = −1− (2λ− 1)

√
3

π
ln

1− α
α

σi − kδi.
Substituting (4.3) into (4.1), we have

−2eγtJt =
(
k̃2

1 + 2k̃1 + 2σ1k̃1(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃1δ1

)(
eγtJx1

)2

+
(
k̃2

2 + 2k̃2 + 2σ2k̃2(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃2δ2

)(
eγtJx2

)2
. (4.4)

We conjecture that J(t, x) =
1

2
e−γt(ax2

1 + bx2
2). Then Jx1 = ae−γtx1, Jx2 = be−γtx2 and

Jt = −1

2
γe−γt(ax2

1 + bx2
2). Substituting them into (4.4) yields

γ(ax2
1 + bx2

2) =
(
k̃2

1 + 2k̃1 + 2σ1k̃1(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃1δ1

)(
ax1

)2

+
(
k̃2

2 + 2k̃2 + 2σ2k̃2(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃2δ2

)(
bx2

)2
. (4.5)
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We find then that:

a=
γ

k̃2
1 + 2k̃1 + 2σ1k̃1(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃1δ1

,

b=
γ

k̃2
2 + 2k̃2 + 2σ2k̃2(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃2δ2

. (4.6)

Therefore, the optimal control are determined, respectively, by

u1 =
γk̃1

k̃2
1 + 2k̃1 + 2σ1k̃1(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃1δ1

,

u2 =
γk̃2

k̃2
2 + 2k̃2 + 2σ2k̃2(2λ− 1)

√
3

π
ln

1− α
α

+ 2kk̃2δ2

, (4.7)

where k̃i = −1 − (2λ − 1)

√
3

π
ln

1− α
α

σi − kδi (i = 1, 2). And it follows from theorem

(3.2) that (i) if 0 < α < 1− r2, then k = 1− α

2 (1− r2)
; (ii) if 1− r2 ≤ α < 1− r1, then

k =
1

2
; (iii) if 1− r1 ≤ α < 1, then k =

1− α
2r1

.

(2) If Jx1 < 0, Jx2 < 0, then applying the similar method to the above process, we can

get result (4.7), where k̃i = −1 + (2λ − 1)

√
3

π
ln

1− α
α

σi − kδi (i = 1, 2). And similarly,

(i) if 0 < α ≤ r1, then k =
α

2r1

; (ii) if r1 < α ≤ r2, then k =
1

2
; (iii) if r2 < α < 1, then

k = 1− 1− α
2(1− r2)

.

5 Conclusion

This paper explored an uncertain optimal control problem subject to an uncertain dy-

namic system with jump under Hurwicz criterion. In order to dealt with this type of

optimal control problem, the principle of optimality for proposed model was presented

based on Bellman’s principle of optimality in dynamic programming and some results in

uncertainty theory. And then a fundamental result of equation of optimality as a counter-

part of HJB equation was obtained. The essential difference between uncertain optimal

21



control and stochastic optimal control is that the former is concerned with the study of

dynamic uncertain phenomena while the latter is about the study of dynamic stochas-

tic phenomena. Our model is suitable for situations where there is no sample data or

the sample data is too small or cannot afford numerous experiments to obtain statistical

data due to economic reasons or technical difficulties. In future research, the authors are

intending to continue investigating uncertain linear quadratic optimal control for uncer-

tain systems with jump under Hurwicz criterion and derive the necessary and sufficient

condition for the existence of optimal control.
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Appendix

In this section, we give an estimation for the α-pessimistic value of aη + bη2 if η is a

V -jump uncertain variable (α ∈ (0, 1)).

Theorem 5.1 Let Vt a V jump uncertain process. Denote η = ∆Vt, then for any real

number a, b, any α ∈ (0, 1), and any ε > 0 small enough,

(1) if a ≥ 0, b ≥ 0, then

[aη + bη2]inf(α) ≥



αa

2r1

∆t, if 0 < α ≤ r1

a

2
∆t, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t, if r2 < α < 1.

(5.1)
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[
aη + bη2

]
inf

(α) ≤



αa

2r1

∆t+ b∆t2, if 0 < α ≤ r1

a

2
∆t+ b∆t2, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t+ b∆t2, if r2 < α < 1.

(5.2)

(2) if a ≥ 0, b < 0, then

[
aη + bη2

]
inf

(α) ≥



aα

2r1

∆t+ b∆t2, if 0 < α ≤ r1

a

2
∆t+ b∆t2, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t+ b∆t2, if r2 < α < 1.

(5.3)

[aη + bη2]inf(α) ≤



αa

2r1

∆t, if 0 < α ≤ r1

a

2
∆t, if r1 < α ≤ r2(
1− 1− α

2(1− r2)

)
a∆t, if r2 < α < 1.

(5.4)

(3) if a < 0, b ≥ 0, then

[aη + bη2]inf(α) ≥



(
1− α

2(1− r2)

)
a∆t, if 0 < α < 1− r2

a

2
∆t, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t, if 1− r1 ≤ α < 1.

(5.5)

[
aη + bη2

]
inf

(α) ≤



(
1− α

2(1− r2)

)
a∆t+ b∆t2, if 0 < α < 1− r2

a

2
∆t+ b∆t2, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t+ b∆t2, if 1− r1 ≤ α < 1.

(5.6)
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(4) if a < 0, b < 0, then

[
aη + bη2

]
inf

(α) ≥



(
1− α

2(1− r2)

)
a∆t+ b∆t2, if 0 < α < 1− r2

a

2
∆t+ b∆t2, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t+ b∆t2, if 1− r1 ≤ α < 1.

(5.7)

[aη + bη2]inf(α) ≤



(
1− α

2(1− r2)

)
a∆t, if 0 < α < 1− r2

a

2
∆t, if 1− r2 ≤ α < 1− r1

(1− α) a

2r1

∆t, if 1− r1 ≤ α < 1.

(5.8)

Proof: According to the second proposition from Theorem 2.1, if c < 0, then

(cξ)sup(α) = cξinf(α) and (cξ)inf(α) = cξsup(α). We have

[aη + bη2]inf(α) = −[−aη − bη2]sup(α).

And then, via applying Theorem 2.3, the conclusions are easily proved.
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