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Abstract

How to choose the optimization criterion of the objective function is an impor-
tant issue for uncertain optimal control. The Hurwicz criterion is a flexible opti-
mization criterion attempting to find the intermediate area between the extremes
posed by the optimistic and pessimistic criteria. Based on uncertainty theory, in this
paper, we establish a new uncertain optimal control model with jump by making
use of Hurwicz criterion to optimize an uncertain objective function. By applying
Bellman’s principle of optimality, the principle of optimality for the proposed model
is presented and then the equation of optimality is derived. Finally, an example is
given to show the the effectiveness of the results obtained.
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1 Introduction

In the past decades, optimal control of systems with jumps have received a lot of interest
from many engineers and economists. This kind of optimal control problem has a practical
background in engineering, economics and management, especially in financial market.

Some rare events or catastrophes or machine failures, have a great influence on how the
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biological, physical or other system evolves. The stochastic differential equations driven
by both Brownian motions and Poisson processes have become increasing popular for
modelling the stochastic jump diffusion systems in various areas. Since Merton = first
investigated the optimal control problem of consumption and investment with random
poisson jumps in 1971, the study on optimal control of stochastic jump diffusion system
has been made considerable advances both in theory and application. Some studied results

3,4,5,6 .
and the references therein.

can be seen in

The state evolution of dynamic control systems with jumps usually are disturbed by
many indeterministic factors. In general, the probability theory is an effective tool for
dealing with these indeterminacy. However, a fundamental premise of realistic appli-
cations of probability theory is that there must be sufficient available sample data to
estimate probability distribution of indeterminate event. For many systems in real life,
the sample size usually is too small or even no sample such as bridge strength, oil filed
reserves and the price of a new stock. In this case, we can’t estimate a probability distri-
bution by means of statistics and have to consult some domain experts to evaluate their
belief degree that each indeterministic event will occur. Liu * found probability theory
is no longer valid for describing belief degree. In order to rationally deal with the inde-
terminacy, an uncertainty theory was founded by Liu ® in 2007 and refined by Liu ’in
2010.

Based on the uncertainty theory, Zhu " first proposed and dealt with an uncertain
optimal control problem without jump in which the expected value operator was used to
optimize the uncertain objective function. An equation of optimality as a counterpart
of HJB equation was obtained by employing dynamic programming. Then, by means of
Zhu’s equation of optimality, Xu and Zhu H, Yan and Zhu '~ studied uncertain bang-bang
optimal control models. Chen and Zhu ** discussed the uncertain optimal control problem
with time-delay. Yao and Qin 14, Li and Zhu investigated the uncertain linear quadratic
control problem. Yang and Gao " studied an uncertain differential game. Taking the
influence of some external extreme events or noises on uncertain dynamic systems into

IR pirther studied some expected value models of optimal

account, Deng and Zhu
control problem for uncertain dynamic systems with jump and the equations of optimality
were derived.

How to choose the optimization criterion of the objective function is an important



issue for uncertain optimal control. In fact, there are many optimization criteria such as
expected value, optimistic value, pessimistic value, and Hurwicz criterion. We can’t say
which of these criteria is better or worse because they are suitable for different specific
situations and specific problems. The expected value criterion is a traditional one in the
sense of the weighted average. Both the optimistic criterion and the pessimistic criterion
are extreme criteria. The Hurwicz criterion can also be called optimism coefficient method,
designed by economics professor Leonid Hurwicz ~ in 1951. It is a more complex and
more flexible optimization criterion attempting to find the intermediate area between the
extremes posed by the optimistic and pessimistic criteria. Hurwicz criterion incorporates
a measure of both by assigning a certain percentage weight to optimism and the balance to
pessimism. By changing a coefficient denoting the optimism degree, the Hurwicz criterion
actually becomes various criteria. The optimistic value criterion and the pessimistic value
criterion are its two special cases.

In 2013, Sheng and Zhu * established an optimistic value model of uncertain optimal
control without jump by making use of the optimistic value criterion to optimize the un-
certain objective function. Afterward, Yan and Zhu ** studied bang-bang control model
with optimistic value criterion for uncertain switched systems. Li, Zhu and Chen * dis-
cussed approximating uncertain optimal control problems under optimistic value criterion

25, 26, 27 . .
mvesti-

by applying the piecewise optimisation method. Further, Deng and Chen
gated optimistic value models of uncertain optimal control with jump. Besides, Sheng,
Zhu and Hamalainen * proposed an uncertain optimal control model without jump under
Hurwicz criterion.

The purpose of this paper is to further study the uncertain optimal control problem
with jumps under Hurwicz criterion, where dynamic systems are modelled by a type of
uncertain differential equation driven by canonical process and V jump uncertain process.
To the best of our knowledge, this problem has not been investigated in the literature
and remains open. The remainder of this paper proceeds as follows. Some concepts and
theorems in uncertainty theory are reviewed in Section 2. In Section 3, we establish a
new uncertain optimal control model with jump by making use of Hurwicz criterion to
optimize an uncertain objective function and give the principle of optimality. In Section

4, we derive the equation of optimality of proposed model. Section 5 gives a conclusion.

Final Section is Appendix, in which an estimation for the a-pessimistic value of an + bn?



if 7 is a V-jump uncertain variable (« € (0, 1)) is given.

2 Preliminary

In this section, we will review some basic concepts and theorems in uncertainty theory 8.
Let I" be a nonempty set, and £ a g-algebra over I'. Each element A € £ is called an event.
A set function M defined on the o-algebra £ over I' is called an uncertain measure if it
satisfies M{I'} = 1, M{A} + M{A°} =1 for any A € £, and M{ U A} < Z M{A;} for
every countable sequence of events {A;}. The triplet (I", £L,M) is sald to be an uncertamty
space. An uncertain variable is a function ¢ from an uncertainty space (I, £,M) to the
set of real numbers such that for any Borel set of real numbers, the set {{ € B} = {y €
['| £() € B} is an event. An uncertain variable £ may be described by its uncertainty
distribution ®: ® — [0, 1] which is defined by ®(z) = M{{ < x}. The expected value
of ¢ is defined by E[¢] = 0+Oo M{¢ > r}dr—ffoo M{¢ < r}dr provided that at least one
of the two integrals is finite. The variance of £ is V[¢] = E[({ — E[£])?]. The uncertain
variables &1, &, ..., &, are said to be independent if M{ﬁl{& € B;j}} = 1I<I11<r%n M{¢& € B},

for any Borel set By, Bs, - -+ , B,, of real numbers.

Definition 2.1 . (Liu ) Let & be an uncertain variable, and o € (0,1]. Then &qp(a) =
sup{r|M{¢ > r} > a} is called the a-optimistic value to &; and &pne(a) = inf{r|M{{ <

r} > a} is called the a-pessimistic value to €.

Theorem 2.1 . (Liu ” g) Let & and n be are independent uncertain variables and o €
(0,1]. Then we have

(i) if ¢ 2 0, then (c§)sup(cr) = cEoup(@) and (c)int() = cint(ar);

(11) if ¢ <0, then (c€)sup(a) = cEne(r) and (c€)ine(a) = cEsup();

(i13) (€ + Msup(@) = Eaup(@) + Thup(@); (€ + Mine (@) = Eine (@) + 7ine ().

Theorem 2.2 . (Sheng and Zhu 22) Let £ be a normal uncertain variable N(0,0), for
any real number a, and any small enough € > 0 and o € (0,1),
(1) if b > 0, then

(a€ + b&%)sup () >

—In
T Q@

™ (0%

\/§|a|aln1— (\/_0 1—04)2



o — €

2
(€ + bE%)qup(@) < ﬁj:"“ mi— ey (@ In 2 - 5) . (2.2)

(2) if b <0, then

2
3 l1—a— 2 —
(a€ +bE)upla) > \f?'f"’ I (% In = 8) , (2.3)
2
(a€ + bE¥) g (@) < \/§7|Ta|aln1; (an - ) . (2.4)
(8) if b= 0, then
(a€ + bE2)sup(a) = Vilao, 1-a (2.5)

s (0%

Definition 2.2 . (Deng and Zhu ") An uncertain process V; is said to be a V jump
process with parameters ry and ro (0 <r; <ry <1) fort >0 if

(i) Vo =0,

(11) Vi has stationary and independent increments,

(111) every increment Vsyy — Vs is a Z jump uncertain variable Z(ry,re,t), whose uncer-

tainty distribution is

0, if x <0
2 t
%x, z'f0§$<§
U(r) = 2.6
(z) +2(1—r2) t 'ft< oy (26)
ro+ —x— = if —<uw
2 t 27 2_
K1, if x > t.

Let V; be a V' jump uncertain process, and n = AV, = Vo, — V4. Then for any o € (0, 1),

it follows from the definition of a-optimistic value and a-pessimistic value that

( (6%
1—-—— At if0<a<1-—
( 2(1—r2>> R
At
Map() = 4 =, fl-r<a<l—r (2.7)
11—« .
At, ifl—-rm<a<l
L 2n




and

«
2 AL
27’1

At
27

Thinf (Oé) =

)an

respectively.

Ho<a<nr
ifT1<Oé§T2

(2.8)

ifro <a <1,

Theorem 2.3 (Deng, You and Chen 27) Let Vi a V' jump uncertain process. Denote

n = AV, then for any real number a, b, any o € (0,1), and any € > 0 small enough,

(1) if a > 0,b> 0, then

( (0
1——— ) aAt, if0 1-—
( 2(1_r2))a , if0<a< ro
a/ .
[6”7 + bT/Q]sup(a) Z §Ata Zf 1 — T S a < 1 — T (29)
1 —
U-ajay, iflorm<a<l,
\ 27"1
( -2 alAt + AL, if0<a<1-—r
2(1 — 1) ’ 2
[an +b*] (@) < §M+hAﬁ, ifl-rm<a<l-r  (210)
1_
ﬂAt—l—bAtz, ifl—m <a<l,
\ 27”1
(2) if a <0,b>0, then
(%At, if0<a<mr
27"1
Cl/ .
[an + blap(a) > { 585 fr<as<r (2.11)
11—«
1— —— | aAt, i <a<l
L ( 2(1—7"2))& ) Zf?“g « )
(YA bAE, ifo<a<n
27‘1
a 9 .
on-+ ], (@) < { 5+, fnsasn @)
Lo LT N AL BAE, i <a<1
- | a T e
2(1—15) A ’
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(3) if a>0,b <0, then

( e
1l — ——— JaAt+bA%, if0<a<1-—
< 2(1—T2)>a "  YO0<a "
[an +b*] (@) > %At+bAt2, ifl—ry<a<l-—r
(1-0a)a 2 -
I UAE+ AL, ifl—-m<a<l,
\ 27°1
( e
1-— At, if0<a<1-—
( 2(1_T2>>a ,if « T
a .
[an+bn2]sup(a)§ EAt’ ifl—ry<a<l-—mr
1
(I—a)a,, florm<a<l,
\ 27‘1

(4) if a < 0,b <0, then

[an + an] sup (o) >

\

[0”7 + b772]sup(a) < §At’

;‘—“At YN ifo<a<r
1
gAt + DAL, ifri <a<r

l -«
1 — ———— | aAt + bA, | 1
( 2(1_r2))a + , ifrg <a <1,

(XA
27’1

a

if0<a<nr

ifry < a<rg

11—«
1—————]aAt, ifrs <a<l.
\ ( 2(1_r2>)a if ro < «

(2.13)

(2.14)

(2.15)

(2.16)



3 Uncertain optimal control model with jump under

Hurwicz criterion

In this section, we present the following uncertain optimal control model with jump under
Hurwicz criterion:

(

J(t,x) = sup [ASsup(a) + (1 — X)Sine(a)] ,
u,eU
) subject to (3.1)
dXs =P (5, X, uy) ds + Q (s, X, us) dCs + R (5, X, ug) dV,
Xt =X,

\

where the vector X, denotes a state vector of dimension n, u, denotes a control vector of
dimension r subject to a constraint set U. S = ftTL (s,Xs,us)ds + F (T,X7), and the
function L : [0,7) x R" x ™ — R is an objective function, and F': [0,T) x R™ — R is the
terminal reward function. Sy,(ar) = sup{S|M{S > S} > a} and Si,s(a) = inf{S|M{S <
S } > a} denote the a-optimistic value and the a—pessimistic value to S, respectively. In
addition, P : [0,7) x R x R" — R" is a vector function, Q : [0,T) x R" x " — R" x R*
and R : [0,T) x R" x R" — R" x R¥ are two matrix functions. All functions mentioned are
continuous. Assume that C; = (Cy1,Cia- -+ ,Cy)” and Vy = (Vi1, Vg, -+, Vig)", where
Cy1,Cha, - -+, Cy are independent canonical processes, Vi, Vig, -+, Vi are independent
uncertain V-jump process, and C;; and V;; are independent for any 4,7 = 1,2,--- ,k
(1 # 7). a € (0,1) is given confidence level and X\ € (0,1) is a selected coefficient denoting

the optimism degree. The symbol v™ denotes the transpose of a vector or a matrix v.

Theorem 3.1 [Principle of optimality] For any (t,x) € [0,T) x R", and At > 0 with
t+ At <T, we have
J(t,x) = sup |L(t,x,u;) At + o(At) + AJ (t + At, x + AXy) (@)
u:€U

H(1 = N (t+ AL x + AXY), (o) ] (3.2)

where x + AX; = Xyia¢-



Proof. We denote the right side of (3.2) by J(t,x). For arbitrary u € U, it follows from
the definition of J(¢,x) that

t+At T
J(t, X) > A {/ L(S, Xs, u5|[t’t+At))d3 + / L(S, Xs, u5|[t+At7T])dS + F(T, XT)} (Oé)
t t

+At sup

t+AL T
+(1 - )\) {/ L(Sa X, us‘[t,t—i—At))dS + / L(37 X, us‘[t—O—At,T})dS + F(T, XT)} (04)7
t t

+At inf

for any ug, where us|[t7t+m) and us\[HAt,T] are the values of control variable u, restricted
on [t,t + At) and [t + At, T, respectively.

For any At > 0, by using Taylor series expansion, we get
t+At
/ L<S7 XS7 u5|[t7t+At))d8 = L(t, X, u(t, X))At + O(At)
t
Thus

T
J(t,x) > L(t,x,u)At 4+ o(At) + A {/ L(s, X, us|yaem)ds + F(T, XT)} ()
t

+At sup

+(1=X) {/HN L(s, X, Us|p+ae,m)ds + F(T, XT)} f(a). (3.3)

Taking the supremum with respect to [wjyas77 in (3.3), then we get J(¢,x) > J(t,x). On

the other hand, for all u, we have
ASsup (@) + (1 — N)Sing(0) = f(t,x,u)At + o(At)

T
_'_)\ {/ L(S, Xs; us|[t+At7T])dS + F(T, XT)} (Oé)
t+At sup

T
+(1-=2X) {/ L(s, X, s |jt4at,m)ds + F(T, XT)} (o)
t+At inf
< L(t,x,u)At + o(At) + J (t + At, x + AX,)

< J(t,x).
Hence, J(t,x) < J(t,x), and then J(t,x) = J(t,x). Theorem 3.1 is proved.

Theorem 3.2 (Equation of optimality) Let J(t,x) be twice differentiable on [0,T] x
R™. Then we have

—Jy=sup {L—i—VxJTP—i- (22 —1) (éln Lo
«

ur €U T

> | VI™Q [l +k || VIR H}(SM)



where Jy is the partial derivative of the function J(t,x) in t, ViJ(t,x) is the gradi-

ent of J(t,x) in x. || - |1 and || - || are the I-norm for vectors, that is, || - |1=
k k
Z|p2| and || : ||: sz fOTp = (p17p27"'7pk>7 T€3P€thely~ L7P7Q7R> Jtava de'
i=1 i—1

n;te L (t7 X, U) ) p (t) Xj u) ) Q (tv X, 11) ’ R (tu X, U) ) Jt <t7 X) ) va (t) X)7 Tespectively, and

(1) when VxJ 'R >0, (i) if 0 < a < 1—rs, thenk::1—2(+), (ii) if 1 — 15 <
1 1-
a<1l-—rg, thenk:§, (i) if 1 —r; <a <1, then k = 5 a;
(!

«

, (1) if 1 < a < rq, then
27”1

(2) when ViJ'R < 0, (i) if 0 < o < 1y, then k =
1—a

2(1 — 7"2) '

Where VyJ'R > 0 and V<J R < 0 mean that their all terms are non-negative and

1
k‘:§, (11i) if ro < a < 1, then k=1 —

negative, respectively.
Proof: Let H)[S] = ASgup(a) + (1 — X)Sine(@). By Taylor expansion, we get
1
J(t+ At,x + AXy) = J(t,x) + Ji(t,x) At + V. J(t,x)"AX, + 5Jw(t, x) At?

1
+§AXtTVxxJ(t, X)AXt + Vth<t, X)TAXtAt + O(At), (35)

where VyJ(t,x) is the Hessian matrix of J(¢,x) in x. Note that AXy = P (¢, Xy, u;) At+
Q (¢, X4, uy) AC, + R (¢, Xy, uy) AV,. Substituting equation (3.5) into equation (3.2) and

simplifying the resulting expression yields that

0= sup {L(x,us,t)At + Jy(t,x)At + Vi J (£,x)"P (t, X, w;) At + H) [mAC,

weU
+nAV, + AC,”AAC, + AC,BAV, + AV,"HAV,] + o(At)}, (3.6)
where m = V, J(t,x)"Q (¢, Xy, uy) + Vi Ji (£, x)7Q (¢, Xy, uy) At + P (¢, Xy, uy)" Vi J (8, X)
Q (t, Xy, wy) At, n = Vi J(t,x)"R (¢, Xy, wy) + Vi i (£, x)"R (¢, Xy, wy) At + P (¢, Xy, uy)"
Vaxd (6, %)R (¢, Xp,up) At, A =1Q (6, X, wy)" Vi J (£, x)Q (8, X, uy) , B = Q (¢, X¢, uy)"
Vixd (6, %)R (£, Xy, 1), H= 3R (t, X, u)" Ve J (£, x)R (£, X, 1) -
Let m = (m;)1xk, 0 = (1) 15k, A = (@) kxis B = (bij)kxi and H = (h;;)kxk. Then we

have

mACt + nAVt + ACtTAACt + ACtTBAVt + AVtTHAVt

k k k
=1

i=1 j=1

10



Since ‘aijACtiACtﬂ < \aij|(ACt7;2 + ACtj2)/2, |bZJACtlA‘/t]| < |blj‘<ACt12 + A%jQ)/Q,
|hij AV AV | < his|(AV,® + AV;;?) /2, we have

k
Z (miACti — e, ACy + AV — GZAVQZQ)
=1

S mACt -+ nAVt -+ ACtTAACt -+ ACtTBAVt -+ AVtTHAVt

.

< (miACy; + e;AC,” +niAVy + ¢,AV,?)

=1

k
where e; = Z (|ai;] + 1bi51/2) (> 0). It follows from the independence of Cy; and Vi, (i, j =
=1
1,2,--- k) that

k
Z Hé‘ (miACti — e, AC,” + n; AV — €iAVti2>
i=1

S H(;\ (mACt + nAVt + ACtTAACt + ACtTBAVt + AVtTHAVt)
k
<> H) (miACy + eACy + AV + e,AV,%) .
i=1
According to Theorem 2.2 and Theorem 5.1 of Appendix A in 28, for any € > 0 small

enough, we have

MW3mAt, 1—a—e (A—=1)V3m|At, 1—a+e
In + In
T o+ e ™

2
(\/gAt 2 — 5)
—e; In ,

Hé (mlACn — eiACtiQ) 2
o — &

™ 9

and

> (miACti —i—eiACm-Q) < M/3|m;| At In l—a+e N (A — 1)V/3|m;|At In l—a—-c¢

T o — € T o+ €

2
+e; <\/§At 1n2_8> .

™ 9

It follows from Theorem 2.3 and Theorem 5.1 of Appendix that

11



(1)ifn; >0 (i=1,2,--- k) and r; + o < 1, then

and

v

IN

HC)Q (le'AVtz‘ - ez'AVtz'2)
.

H) (nz‘AVti + €iAVm'2)

a

(2)ifn; >0 (i=1,2,---,k) and r; + 75 > 1, then

HQ (niAVti - eiAV;Ez?)

v

and

p

Q Q 2

1-— 7”2)
—At —e; (At)?,
A (;; DAL+ (1= N, (1 - ﬁ) At — e (A)?,

Ho): (nlAV}Z + ez‘A‘/m‘z)
(

IA

« (67 2

An; (1 2(1—7’2))At+(1 )\)nz2rlAt+eZ(At) :

5At+ez (At)?,
)

n(l—a l-—a

>\ 2(1—7”2)

2T1

At (1= Am 1~

12

(07 « 2
/\m (1 2= 7"2)) At + (1 —N) n22r1 At —e; (At)”,
%At — e (A2,
n; (1 —a) -« 9
\ A o At + (1= X)n; (1 I 7‘2)> At —e; (AL)”,

( « a 9
(1 VAt (1= N At e (A

)\nz( 2(1—7’2)) t+( )\)mer t+e; (At)”,

DNt 4 e (A1)

% (1= ) i

n; — — 2

A At (1 =N [1— ——L At ¢ (AD?,

\ 2 (1= < 2(1—r2)) e (Ad)

) At +e; (A1),

fo<a<nr
ifry <a<mr

ifro <a<l1

f0<a<mr
ifr <a<ry

ifry <a<l1.

fo<a<l—ry
fl-r<a<l-nr

ifl—rm<a<l.

fo<a<l—ry
fl-r<a<l-nr

fl—-r <a<l.



(3)ifn; <0 (i=1,2,--- k) and r; + ro < 1, then

H) (le'AVtz‘ - ez'AVtz'2)

«

( a

(e}
A A+ (1= Ny (11— —
Mo (@ =Nn ( 2(1 — 1)

%At —ei (A1),

An; (1—%) At+(1- )

) At —e; (AL)?,

v

n; (1 — «)
2T1

and

Hﬁ (nz‘AVti + €iAVm'2)
( «

(8]
An;— At 1—-MNn; (11—
nQT1 + ( )n(

IN

%At +e; (A1),

An; (1-%) At +(1- )

(4)ifn; <0 (i=1,2,--- ,k) and r; +ry > 1, then

(&1

\

HQ (niAVti - eiAV;Ez?)

(oAt (1= A (1= 2 ) At e (A
"o " 2(1—ry) st
> DAL e (A2,
y 1 (1-a)
-« n; (1 —« 9
;[ 1— ——— AL+ (1 = \) —————=At —e; (At)”,
\ ( 2(1 _7’2)) ( ) 21y (A1)
and
Ho): (nlAV}Z + ez‘A‘/m‘z)
( a 9

IA

%At Fei (AL,

l—« n; (1 — «)

At +e; (A1),

13

At — e; (At)?

fo<a<mr
ifry <a<mr

, ifry <a< 1.

f0<a<mr
ifr <a<ry

, ifry <a< 1

fo<a<l—ry
fl-r<a<l-nr

ifl—rm<a<l.

fo<a<l—ry
fl-r<a<l-nr

fl—-r <a<l.



Therefore, (1) if n > 0, where n; > 0(i = 1,2,--- ,k) and r; + ry < 1, then we get

H) (mAC, +nAV, + AC,"AAC, + AC,"BAV, + AV,"HAV,)

\/_hl A\ o, ) Z' |At—|—[ (1—2(1_r2)> (1= 2r1};nzAt

k

_9()Z€i(At)2 fo<a<nr
k
3hy (N, a, € )

2 \/—1% Z [m| At + anAt )izle,- (A ifrp <a<ry (3.7)
V3hi (A, €) AM1l—a)
TZ|ml|At+{2—Tl—i—(l—)\) (1 0-r, )}anAt

k
—9(5)Z€z’ (At)?, ifro<a<l,
\ i=1
and

H)\ (mACt + nAVt + ACtTAACt + ACtTBAVt + AVtTHAVt)

\/_hgx\ozg Z' ‘AH[ (1_2(1—7~2)) (1—-X\ ZTI];nlAt

+g (e )i i (At)? if0<a<nr

< ‘fh? Z|m,|m+ anAH—g Z (A ifr <<y (3.8)
R ) [0 (1 1] S
+9(e) zk:e (At)?, ifry <a <1,

where hy (A, ) = )\lnz%+(/\ —1)In =2 by (N ae) = Aln 2224 (A — 1) In ===
and g (¢) = <\/7§ ln%) + 1.
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(2) if n >0, where n; > 0(i =1,2,--- k) and r; + ro > 1, then we get

HA (mAC; + nAVt + AC,"AAC; + AC,/BAV, + AV,”HAV,)
\/_hl A, @, €) « « b
A l— — 1— ) — A
Zy i t+{ ( 2(1_T2)>+( A)%};nz t

Zel At fo<a<l—ry

MZ; AL+ = anAt

> k (3.9)
—g(e)Zei(At)Q, fl-rm<a<l-n
i=1
V3hi (A, 0,) o A(1-a)
k
—g(e)> i (At), ifl—rm<a<l,
L i=1
and
H (mACt +nAV, + ACtTAACt + AC,"BAV, + AV,"HAV,)
\/_hg A, @, €) [ < « > ]
At + l— —— niAt
Z’ | 2(1—7“2) 7”1 zzl:
Zel At fo<a<l—ry
fhg Ao, ) 1o
Zy \At+§;niAt
< k = (3.10)
—i—g(e)Zei(At)z, fl-rm<a<l-n
Vs (L, 2) & A1 —a) I —a
- ;]ml\ t+[ o +( )\)( 201y )] an t
k
—i—g(E)Zei(At)z, ifl—rm <a<l,
L i=1

15



(3)if n < 0, where n; < 0(i =1,2,--- ,k) and 7 + 5 < 1, then we have

and

H (mACt +nAV, + ACJAACt + AC,"BAV, + AV,"HAV,)

\/_hl A @, €) a
ZI |At+[ o T (1= 2) (1— =) )]anm
k
_g”Zei(Atﬂ it0<a<r
i=1
3hi (A, o, €) k .
= fl(ﬂ . Zlmz|At+ anAt Zlei(At)2,1fT1§a<T2(3.11)
V3hi (A, a,€) 1—a (1-\)(1-a)
- Z|mz|At+[( 2(1_T2))+ o }Z At
k
—g(2) ) _ei(At), ifry <a<1,

\ i=1

H)\ (mACt + nAVt + ACtTAACt + ACtTBAVt + AVtTHAVt)

\/_hZ A ae) Z| \At+{ 5y H(1=Y) (1— ST )}Z”At

+9()Z .(At)Q f0<a<mr

k
< \/_hQ ZlmllAH ZnZAHg Z (A i < a <1 (3.12)
\/_h2 I—a \ (1= (1—a)
A A
Z'm" “H 2(1—r2>>+ " ]Z t
k
+g(e)> e (At)? if ry << 1,
\ =1
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(4) if n < 0, where n; < 0(i =1,2,--- k) and 71 + 5 > 1, then we have

H (mACt +nAV, + AC,"AAC, + AC,"BAV, + AV,"HAV,)

fh”‘”z; \At+[)\2—rl+(1—)\)(1_ 1_T2)]Z”@At

Zel At fo<a<l—ry

MZ; A+ = anAt

> % (3.13)
—g(e)Zei(At)Q, ifl—ry<a<l-nr
i=1
V3hi (A, i, €) i 1—« (1—=2X)
— JAL+ (A1 — AN
S (1 g ) + A }Zn
k
—g(e)> e (At)* ifl—rm<a<l,
L i=1
and
H (mACt +nAV, + ACtTAACt + AC,"BAV, + AV,"HAV,)
fhg A a,¢€)
At+ [ A—+(1=N)(1- AN
Z’ | +{2T1+( )( 1—7”2)}2%
Zel At fo<a<l—ry
k
h /\ 1
Viha (a:) Zy mil At + 5y miAt
< N =1 (3.14)
—i—g(e)Zei(At)z, fl-ro<a<l-—mr
i=1
V3hy (A, €) i l—a (1=X)(1—-a)
—_— AL+ (A1 — At
T ;’m\ +[ ( 2(1—r2))+ 2r1 }Zn
k
—i—g(E)Zei(At)z, ifl—rm <a<l.

\

i=1

Then by Equation (3.6), we know that

17



(1) If n > 0 and r; + ro < 1, applying Inequality (3.8), for At > 0, if 0 < a < 7y,

there exists a control u = u. a; such that

—eAt< LAt + J,At + Vo J PAt + H) [mAC; + nAV, + AC,”AAC, + AC,"BAV,
+AV,"HAV,] + o(At)

\/_hg )\ a, 5 Q
< T _——
LAt + J At + Vi J PAt + ————7 1~ § [mi| At + { (1 2(1 TQ))

+(1- nAt 4 g (€)Y e (A1) + o(At). (3.15)
Vi Emetrao

2rq

Dividing both sides of the inequality (3.15) by At, and taking the supremum with respect

to u, we derive

urelU 1 - T2)

3ha (A
—e < Jy + sup {L+ Vi P + w I Vil Q |1 + [A (1 - %)

+(1—N) 2%} | ViJ 'R ||} 1 (2, AL) + I (A) (3.16)

since an =l ViJ'R ||, Z|ml| = VixJ'Q |1 as At — 0, where [;(g,At) =

=1

Zez - {(-1 2;5) +1}ZZ(|%1+ | ”|>At = 0,15(At) = (AAE) 50

=1 ]—
as At —> 0. Letting At — 0 and then ¢ — 0 results in

31—
0<J, + sup L+VXJTP+(2)\—1)£111 VT QI+ M1 -
w el T a 2(1 —1my)
F(1—)) i} | ViR ||} (3.17)
27"1

VL, R>0and 0 < o < 1.
On the other hand, by Equation (3.6) and Inequality (3.7), applying the similar pro-

cess, we can get

0> J, + sup L+VXJTP+(2)\—1)£1n1_a . Y [
ur €U ™ a 2(1 _TQ)
P12 ] | ViJ'R ||} (3.18)
27”1
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IV, R>0and 0 < a < 1.
Combining Inequalities (3.17) and (3.18), we can obtain

T ST

L+VeJ P+ (2X—1)
s
(%
+(1—-X) —1 | VxJ'R H} (3.19)
27’1

—J; = sup
ur€lU

Ve JR>0and 0 < @ < 1.

By applying the similar process, we can derive

V3. 1—a
—1In
T «Q

ur €U

1
—Jy = sup {L +VxJP+(2\—1) | ViJ7Q |1 +5 | V<J'R ||} (3.20)

if VixJTR >0 and r; < a < ry, and

\/§ l1—«
—1In
T «Q

Al —a)
27’1

—J, = sup {L + Vo P+ (20 — 1)

ur €U

| V.7Q | + [

(1= <1 - ﬁ)} | ViJ'R H} (3.21)

if ViJTR > 0 and r, < a < 1. Thus we derive the equation of optimality for V,J"R > 0
and r; + 1y < 1.

(2) Similarly, results can be obtained for VyJ"R >0 and 7y +7r2 > 1 or n < 0.

(3) If condition n > 0 or n < 0 are not been satisfied, namely n; > 0,n; < 0(i #
Jyi,7 =1,2,--+ k), by using the similar process, the equation of optimality can also be

derived. Thus the theorem 3.2 is proved.

4 Example

In this section, an example is presented to illustrate the effectiveness of results obtained.
Consider the following optimal control problem for an uncertain system with jump under

Hurwicz criterion:

[ J(0,%0) = sup [ASaup(@) + (1 — A)Sins(a)],

us;€U
subject to

dxy(t) = uy (t)xy (t)dt + oyuy (t)xq (£)dCy + 61uq (t)x (£)dVA,
dxo(t) = us(t)xe(t)dt + oous(t)z1(t)dCy + dous(t)x2(t)dVa,

\
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where S = fo e 7 [ui (t)27(t) + u3(t)3(t)] dt and ~ denotes the constant discount rate.
It follows from the equation of optimality (3.2) that

\/§ 11—«

1
—Jy=sup {ée_Vt(u%x% + usx3) + w1 Iy, + usTaJp, + (2) — 1)7 In

(Joru ey Iy, |
+ |oouswady,|) + k (S1urxy Juy + dousza,,) } = max L (uy, usy), (4.1)

where L(uy,us) represents the term in the braces. Next we solve the Eq.(4.1). Without
loss of generality, assuming that oy, u;, x; > 0 (i = 1,2), then

(1) if Jy1 >0, Jyo > 0, the optimal control g, up satisfies

L 1-—
w = e"ytuix? + z;Jy, + (2N — l)ﬁ In aaixiJmi + ko J,, =0
ou; T o
(1=1,2). (4.2)
or
l;:iew
=", (43)

where = —1— (20— 1) Y31 !
(0]

— ko;.
s
Substituting (4.3) into (4.1), w e have

3,
&%

™ «

M J, = (/%% 42k + 200k (21 — 1) ¥ 2k12151) ()

«

<k2 4 2ky + 209k (21 — 1) ‘5 2kk262> (0,)%  (44)

1
We conjecture that J(t,z) = §e_vt(axf + br3). Then J,, = ae xy, J,, = be "z, and

1
Jy = —Eye_w(aﬁ + bx3). Substituting them into (4.4) yields

v(az? + brd) = (k;2 + 2ky + 201k (2) — 1)£ In
s (6]
- . . 1—
+ (k:§ + 2%y + 200ka(2) — 1)£ In
m «

—I— 2]{?];7161) (U,Jil)2

5 2kl%252) (bzy)”.  (4.5)

20



We find then that:

2
a= ,
R R R 1— R
2ok 1202 - DY 1T ks,
T o
r’y
bh— ) 4.6
o B l-a - (40
k‘Q + 2k2 + 202]?2(2)\ — 1)— In o -+ 2]€]€252
T
Therefore, the optimal control are determined, respectively, by
s — 7];?1
1— )
R R R 1— R
B2 4ok 4 200k 20— Y3 kg,
T o
k
s = = , (4.7)
k2 4 2k, + 200k (20 — 1) Y2 In ;C“ + 2k,
T

where k; = —1 — (20 — 1)~—1In
T

(3.2) that (i) if 0 < @ < 1 —7g, then k =1 —

o; — ko; (i = 1,2). And it follows from theorem

\/§ 1l -«
«Q

m, (11) 1f1—r2§a<1—7’1,then

1l -«

1
k::§;(iii)ifl—r1§a<1,thenk:: .
Tl
(2) If J,, <0, J,, <0, then applying the similar method to the above process, we can

\/§ 11—«
«Q

get result (4.7), where k; = —1 + (20 — 1)~—1In o; — ké; (i =1,2). And similarly,

K3
1
(i) if 0 < @ <7y, then k = Qi; (ii) if 1 < a <y, then k = 3 (iii) if 7o < a < 1, then
1
1 -«
k=1— ——.
2(1—7”2)

5 Conclusion

This paper explored an uncertain optimal control problem subject to an uncertain dy-
namic system with jump under Hurwicz criterion. In order to dealt with this type of
optimal control problem, the principle of optimality for proposed model was presented
based on Bellman’s principle of optimality in dynamic programming and some results in
uncertainty theory. And then a fundamental result of equation of optimality as a counter-

part of HJB equation was obtained. The essential difference between uncertain optimal
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control and stochastic optimal control is that the former is concerned with the study of
dynamic uncertain phenomena while the latter is about the study of dynamic stochas-
tic phenomena. Our model is suitable for situations where there is no sample data or
the sample data is too small or cannot afford numerous experiments to obtain statistical
data due to economic reasons or technical difficulties. In future research, the authors are
intending to continue investigating uncertain linear quadratic optimal control for uncer-
tain systems with jump under Hurwicz criterion and derive the necessary and sufficient

condition for the existence of optimal control.
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Appendix

In this section, we give an estimation for the a-pessimistic value of an + bn? if n is a

V-jump uncertain variable (« € (0, 1)).

Theorem 5.1 Let V; a V' jump uncertain process. Denote n = AV,, then for any real
number a, b, any « € (0,1), and any € > 0 small enough,

(1) ifa > 0,b> 0, then

¢ aa

Q—At, ifo<a<mr
1
a .
[an + bPlus(0) > ¢ 320 if i <a<m (5.1)

l—«a
1——— ] aAt, ifra<a<l.
| (1= ot o
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[an +bn*] ¢ (@) <

(2)if a>0,b <0, then

[an + bnﬂinf (@) =

[an + bn?Jine () <

(3) if a < 0,b >0, then

At + DAL, fo<a<nr
27"1
gAt + bAt?, ifry <a<ry
1= L2 N AL BAE, i <a< ]
- ] a T (6% .
2(1 —ry) P
TYNE 1 AL, ifo<a<mr
27“1
gAt + bAE?, ifr <a<ry
P At +bA2, ifry<a<1
- ] a T (6% .
2(1 —ry) P
(ﬂAt, if0<a<nr
27“1
a .
§At, ifri <a<mr
(1 L-a ) At, ifra<a<l
— — | aAt, ifr Q .
\ 2(1 —ry) ?

( !
1—— | adAt, if0 1—
< 2(1_T2)>a , if0<a< r9

a .
[an + an]inf(a) > §At, ifl—r<a<l-—r
1 —
(l=a)a,, ifl-r <a<l.
\ 27"1
( 11— — 2 ) aAt+bAR fo<a<l-—r
2(1 —ry) ’ 2
[an+bn?]_, (@) << %At+bAt2, ifl—ry<a<l-—m
(I1-a)a 9 :
2—At+bAt, ifl—r <a<l.
\ ™
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(4) if a < 0,b <0, then

( (6%
1 — ——— | aAt + bAE?, 1-—
< 2(1_T2)>a + , if0<a< T9
a
[an+bn?] (@) > §At+bAt2, ifl—ry<a<l-m (5.7)
1—
A=a)a,,\pae ifl-r <a<l.
. 27’1
( (e
1——— | aA ] 1—
( 2(1_r2)>a t, if0<a< 9
a .
[an + bt (@) < §At, fl—re<a<l-mn (5.8)
1 —
d-aja,, ifl-m <a<l.
\ 27“1

Proof: According to the second proposition from Theorem 2.1, if ¢ < 0, then
(€€)sup (@) = c&ine(a) and (c€)int(r) = c&up(ar). We have

[an + bnz]inf(a) = —[—an - bﬁZ]SUp(O‘)'

And then, via applying Theorem 2.3, the conclusions are easily proved.
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