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Abstract

Let M be an R—module. If every essential submodule of M has a g-
supplement in M, then M is called an essential g-supplemented (or briefly eg-supplemented)
module. If every essential submodule has ample g-supplements in M, then
M is called an amply essential g-supplemented (or briefly amply eg-supplemented)
module. In this work, some properties of these modules are investi-
gated. It is proved that every factor module and every homomorphic
image of an amply eg-supplemented module are amply eg-supplemented.
Let M be a projective and eg-supplemented module. Then every finitely
M —generated R—module is amply eg-supplemented.
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1 INTRODUCTION

Throughout this paper all rings are associative with identity and all modules
are unital left modules.

Let R be aring and M be an R—module. We denote a submodule N of M by
N < M. Let M be an R—module and N < M. If L = M for every submodule L
of M such that M = N+ L, then N is called a small (or superfluous) submodule



of M and denoted by N < M. A submodule N of an R -module M is called
an essential submodule, denoted by N < M, in case K N N # 0 for every
submodule K # 0, or equvalently, NN L = 0 for L. < M implies that L = 0.
Let M be an R—module and K be a submodule of M. K is called a generalized
small (briefly, g-small) submodule of M if for every essential submodule T" of M
with the property M = K +T implies that T'= M, we denote this by K <, M
(in [11], it is called an e-small submodule of M and denoted by K <. M). It
is clear that every small submodule is a generalized small but the converse is
not true generally. Let M be an R—module and U,V < M. If M =U +V
and V is minimal with respect to this property, or equivalently, M = U + V
and UNV <« V, then V is called a supplement of U in M. M is said to be
supplemented if every submodule of M has a supplement in M. M is said to be
essential supplemented (briefly, e-supplemented) if every essential submodule of
M has a supplement in M. Let M be an R—module and U < M. If for every
V < M such that M = U + V, U has a supplement V' with V' < V, we say
U has ample supplements in M. M is said to be amply supplemented if every
submodule of M has ample supplements in M. M is said to be amply essential
supplemented (briefly, amply e-supplemented) if every essential submodule of
M has ample supplements in M. Let M be an R—module and U,V < M. If
M=U+V and M =U + T with T' < V implies that T = V| or equivalently,
M=U+Vand UNV <, V, then V is called a g-supplement of U in M. M is
said to be g-supplemented if every submodule of M has a g-supplement in M.
Let M be an R—module and U < M. If for every V' < M such that M = U+V,
U has a g-supplement V'with V' < V', we say U has ample g-supplements in
M. M is said to be amply g-supplemented if every submodule of M has ample
g-supplements in M. The intersection of maximal submodules of an R-module
M is called the radical of M and denoted by RadM. If M have no maximal
submodules, then we denote RadM = M. The intersection of essential maximal
submodules of an R-module M is called a generalized radical (briefly, g-radical)
of M and denoted by Rad,M (in [11], it is denoted by Rad.M). If M have
no essential maximal submodules, then we denote RadsM = M. Let M be an
R—module and K <V < M. We say V lies above K in M if V/K < M/K.

More details about (amply) supplemented modules are in [2], [10] and [12].
More details about (amply) essential supplemented modules are in [7] and [8].
More informations about g-small submodules and g-supplemented modules are
in [3], [4] and [5].

Lemma 1.1 Let M be an R -module and K < N < M. If K is a general-
1zed small submodule of N, then K is a generalized small submodule in every
submodule of M which contains N .

Proof. See [3, Lemma 1 (2)]. m

Lemma 1.2 Let M be an R -module. Then RadsM = ZL<<QM L.

Proof. See [3, Lemma 5 and Corollary 5. m



Lemma 1.3 The following assertions are hold.
(1) If M is an R—module, then Rm <4 M for every m € RadyM.
(2) If N < M, then RadyN < Rad,M.

Proof. See [4, Lemma 3|. =

2 ESSENTIAL g-SUPPLEMENTED MODULES

Definition 2.1 Let M be an R—module. If every essential submodule of M has
a g-supplement in M, then M is called an essential g-supplemented (or briefly
eg-supplemented) module. (See [0])

Definition 2.2 Let M be an R—module and X < M. If X is a g-supplement
of an essential submodule of M, then X is called an eg-supplement submodule
in M. (See [6])

Lemma 2.3 Let M be an R—module, V' be an eg-supplement submodule in M
and K <g M. Then KNV <, V.

Proof. Since V is an eg-supplement submodule in M, there exists U < M such
that V is a g-supplement of U in M. Let K NV +T =V with T'< V. Then
M=U+V=U+T+KnNV,andsince KNV <K <, M and (U+T) <M,
U+T =M. By V being a g-supplement of U in M and TV, T = V. Hence
KNV, V. n

Corollary 2.4 Let M be an R—module, V' be an eg-supplement submodule in M
and K <V. Then K <4 M if and only if K <4, V. (See also |5, Lemma 2.9)])

Proof. Clear from Lemma 1.1 and Lemma 2.3. =

Corollary 2.5 Let M be an R—module and V' be an eg-supplement submodule
in M. Then Rady,V =V N RadyM. (See also [5, Theorem 2.4])

Proof. By Lemma 1.3, Rad,V < V N RadyM. Let y € V N RadyM. Then

y € V and y € RadyM. Since y € RadyM, by Lemma 1.3, Ry <, M and by

Corollary 2.4, Ry <, V. By Lemma 1.2, Ry < Rad,V and y € Rad,V. Hence

V N RadyM < RadyV. Therefore, RadyV =V N RadyM. m

We can also prove this Corollary as follows:

Proof. Since V is an eg-supplement submodule in M, there exists U < M such

that V' is a g-supplement of U in M. Here M =U +V and UNV <, V. Let

K Dbe an essential maximal submodule of V. Since UNV <, V, by Lemma
1%

12, UNV < RadyV < K. BYU = TU+K —Vm(U+K)—UmV+K—

? and U + K < M, U + K is an essential maximal submodule of M and
Rady,M < U + K. This case VN Rad,M <VNU+K)=UNV+K=K
and V N RadyM < RadyV. By Lemma 1.3, Rad,V < V N RadyM. Hence

RadyV =V N Rad,M. =




Lemma 2.6 Let M be an R—module, V be a g-supplement of U in M and
K QV. Then for T <V, T is a g-supplement of K in V if and only if T is a
g-supplement of U + K in M. (See [5, Lemma 2.5))

Lemma 2.7 Let M be an eg-supplemented module. Then every finitely M — generated
R—module is eg-supplemented. (See [6, Lemma 2.11])

3 AMPLY ESSENTIAL g-SUPPLEMENTED MOD-
ULES

Definition 3.1 Let M be an R—module. If every essential submodule of M has
ample g-supplements in M, then M is called an amply essential g-supplemented
(or briefly amply eg-supplemented) module.

Clearly, every amply essential g-supplemented module is essential g-supplemented.

Proposition 3.2 Let M be an amply eg-supplemented module. Then M /Rady M
have mo proper essential submodules.

Proof. Since M is amply eg-supplemented, then M is eg-supplemented. Then
by [6, Proposition 2.5], M/Rad,M have no proper essential submodules. m

Proposition 3.3 Let M be an amply eg-supplemented module. Then every eg-
supplement submodule in M is amply eg-supplemented.

Proof. Let V be an eg supplement submodule in M. Then there exists U < M
such that V is a g-supplement of U in M. Let V = K 4+ X with K <V
and X <V. Here M = U + K + X. Since M is amply eg-supplemented and
U+ K <M, U+ K has a g-supplement T in M such that T'< X. By Lemma
2.6, T is a g-supplement of K in V. Moreover, T' < X. Hence V is amply
eg-supplemented. =

Lemma 3.4 Let M be an amply eg-supplemented module. Then every factor
module of M is amply eg-supplemented.

Proof. Let % be any factor module of M. Let % < % and % = % + %
Then U < M and M = U + V. Since M is amply eg-supplemented, U has
a g-supplement X in M with X < V. Since K < U, by [3, Lemma 4], Xt£
is a g-supplement of % in % Moreover, X}K < % Hence % is amply eg-
supplemented. m

Corollary 3.5 FEvery homomorphic image of an amply eg-supplemented module
18 amply eg-supplemented.

Proof. Clear from Lemma 3.4. m

Lemma 3.6 If M is a w-projective and eg-supplemented module, then M is
an amply eg-supplemented module.



Proof. Let U < M, M = U +V and X be a g-supplement of U in M. Here
M=U+Xad UNX <, X. Since M is 7 -projective and M = U + V,
there exists an R -module homomorphism f: M — M such that Imf C V and
Im(1—f)cU. So,wehave M = f(M)+(1—f)(M)=fOU)+f(X)+U =
U+ f(X). Suppose that a € UN f(X). Since a € f(X), then there exists
z € X such that a = f(z). Sincea= f(z)=f(z)—z+ax=2—(1—f)(x)
and (1—f)(z) € U, we have z = a+ (1 — f)(x) € U. Thus x € UN X and
so, a = f(x) € f(UNX). Therefore, we have U N f(X) < f(UNX). Since
UNX <4 X, f(UNX) <, f(X). Hence UN f(X) <, f(X) and since
M =U+ f(X), f(X) is a g-supplement of U in M. Moreover, f(X) C V.
Therefore, M is amply eg-supplemented. =

Corollary 3.7 If M is a projective and eg-supplemented module, then M is
amply eg-supplemented.

Proof. Clear from Lemma 3.6. m

Lemma 3.8 Let M be a w-projective R—module. If every essential submodule
of M is B; equivalent to an eg-supplement submodule in M, then M is amply eg-
supplemented. (The definition of 6; relation and some properties of this relation are in [9])

Proof. By [6, Lemma 2.13], M is eg-supplemented. Then by Lemma 3.6, M is
amply eg-supplemented. m

Corollary 3.9 Let M be a projective R—module. If every essential submodule
of M is B; equivalent to an eg-supplement submodule in M, then M is amply
eg-supplemented.

Proof. Clear from Lemma 3.8. m

Corollary 3.10 Let M be a w-projective R—module. If every essential submod-
ule of M is 8% equivalent to an eg-supplement submodule in M, then M is amply
eg-supplemented. (The definition of 8* relation and some properties of this relation are in [1])

Proof. Clear from Lemma 3.8. m

Corollary 3.11 Let M be a m-projective R—module. If every essential sub-
module of M lies above an eg-supplement submodule in M, then M is amply
eg-supplemented.

Proof. Clear from Corollary 3.10. m

Corollary 3.12 Let M be a projective R—module. If every essential submodule
of M is 3 equivalent to an eg-supplement submodule in M, then M is amply
eg-supplemented.

Proof. Clear from Corollary 3.10. m



Corollary 3.13 Let M be a projective R—module. If every essential submod-
ule of M lies above an eg-supplement submodule in M, then M is amply eg-
supplemented.

Proof. Clear from Corollary 3.12. =

Lemma 3.14 Let A be a finite index set and {My}, be a family of projective
R—modules. If M)y is eg-supplemented for every X € A, then @©& My is amply
AEA

eg-supplemented.

Proof. Since M, is eg-supplemented for every A € A, by [6, Corollary 2.8],
@ M) is eg-supplemented. Since M) is projective for every A € A, by [10, 18.1],
AEA

@ M) is projective. Since @ M, is projective and eg-supplemented, by Corol-
€A AEA

lary 3.7, @& M) is amply eg-supplemented. m
AEA

Corollary 3.15 Let M be a projective R—module. If M is eg-supplemented,
then M™) is amply eg-supplemented for every finite index set A.

Proof. Clear from Lemma 3.14. =

Corollary 3.16 Let M be a projective R—module. If M is eg-supplemented,
then every finitely M — generated R—module is amply eg-supplemented.

Proof. Let N be a finitely M —generated R—module. Then there exist a
finite index set A and an R—module epimorphism f : M®) — N. Since
M is projective and eg-supplemented, by Corollary 3.15, M) is amply eg-
supplemented. Then by Corollary 3.5, IV is amply eg-supplemented. =

Lemma 3.17 Let M be an R—module. If every submodule of M is eg-supplemented,
then M is amply eg-supplemented.

Proof. Let U < M and M =U+V with V < M. Since U I M, UNV QV.
By hypothesis, V is eg-supplemented. Then U NV has a g-supplement X in V.
By this, V=UNV+Xand UNX=UNVNX <K, X. Then M=U+V =
U+UNV+X=U+XandUNX <4 X. Moreover, X < V. Hence M is
amply eg-supplemented. ®

Proposition 3.18 Let R be any ring. Then every R—module is eg-supplemented
if and only if every R—module is amply eg-supplemented.

Proof. (=) Let M be any R—module. Since every R—module is eg-supplemented,
every submodule of M is eg-supplemented. Then by Lemma 3.17, M is amply
eg-supplemented.

(<) Clear. m



Proposition 3.19 Let R be a ring. The following assertions are equivalent.

(i) R is eg-supplemented.

i1) p R is amply eg-supplemented.

iit) Bvery finitely generated R—module is eg-supplemented.

i) Fuvery finitely generated R—module is amply eg-supplemented.

Proof. (i) <= (ii) Clear from Corollary 3.7, since gR is projective.

(1) = (i4i) Clear from Lemma 2.7.
(#31) = (iv) Let M be a finitely generated R—module. Since every finitely

generated R—module is eg-supplemented, rpR is eg-supplemented. Then by
Corollary 3.16, M is amply eg-supplemented.

(tv) = (¢) Clear. m
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