A local equivariant index theorem for sub-signature operators

Kaihua Bao?®, Jian Wang®, Yong Wang®*

@School of Mathematics, Ineer Mongolia University for Nationalities, TongLiao, 028005, PR China
bSchool of Science, Tiangin University of Technology and Education, Tiangin, 300222, P.R.China
¢School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P.R.China

Abstract

In this paper, we prove a local equivariant index theorem for sub-signature operators which generalizes
Weiping Zhang’s index theorem for sub-signature operators.
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1. Introduction

The Atiyah-Singer index Theorem ([1] [2]) gives a cohomological interpretation of the Fredholm index
of an elliptic operator. The Atiyah-Bott-Segal-Singer index formula, which called the equivariant index
theorem, is a generalization with group action of the Atiyah-Singer index theorem, was first direct proved
by Patodi, Gilkey, Atiyah-Bott-Patodi partly by using invariant theory [3][4]. This theorem generalizes
the Atiyah-Singer index theorem and the Atiyah-Bott fixed point formula for elliptic complexes, which is a
generalization of the Lefschetz fixed point formula. In [5], Berline and Vergne gave a heat kernel proof of
the Atiyah-Bott-Segal-Singer index formula. Moreover, Lafferty, Yu and Zhang [6] presented a simple and
direct geometric proof of the equivariant index theorem for an orientation-preserving isometry on an even
dimensional spin manifold by Clifford asymptotics of heat kernel. Furthermore, Ponge and H. Wang gave a
different proof of the equivariant index formula by the Greiner’s approach to the heat kernel asymptotics [7].
In [8], in order to prove family rigidity theorems, Liu and Ma proved the equivariant family index formula.
In [9], Y. Wang gave another proof of the local equivarint index theorem for a family of Dirac operators by
the Greiner’s approach to the heat kernel asymptotics. In [10], using the Greiner’s approach to the heat
kernel asymptotics, Y. Wang proved the equivariant Gauss-Bonnet-Chern formula and gave the variation
formulas for the equivariant Ray-Singer metric, which are originally due to J. M. Bismut and W. Zhang [11].

In parallel, Freed [12] considered the case of an orientation reversing involution acting on an odd di-
mensional spin manifold and gave the associated Lefschetz formulas by the K-theretical way. In [13], Wang
constructed an even spectral triple by the Dirac operator and the orientation-reversing involution and com-
puted the Connes-Chern character for this spectral triple. In [14], Liu and Wang proved an equivariant odd
index theorem for Dirac operators with involution parity and the Atiyah-Hirzebruch vanishing theorems for
odd dimensional spin manifolds. In [15] and [16], Zhang introduced the sub-signature operators and proved
a local index formula for these operators. By computing the adiabatic limit of eta-invariants associated
to the so-called sub-signature operators, a new proof of the Riemann-Roch-Grothendieck type formula of
Bismut-Lott was given in [17] and [18]. The motivation of the present article is to prove a local equivariant
index formula for sub-signature operators.

This paper is organized as follows: In Section 2, we recall some background on sub-signature operators.
In Section 3.1, we prove a local equivariant index formula for sub-signature operators in even dimension. In
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Section 3.2, we prove a local equivariant odd dimensional index formula for sub-signature operators with an
orientation-reversing involution.

2. The sub-signature operators

In this section, we give the standard setup (also see Section 1 in [15]). Let M be an oriented closed
manifold of dimension n. Let E be an oriented sub-bundle of the tangent vector bundle TM. Let ¢”™ be
a metric on TM. Let ¢¥ be the induced metric on E. Let E+ be the sub-bundle of TM orthogonal to E
with respect to g7™. Let gEL be the metric on E+ induced from g7*. Then (T M, g7M) has the following
orthogonal splittings

TM = E® E*, (2.1)
€
g =g o4 . (2-2)
Clearly, E+ carries a canonically induced orientation. We identify the quotient bundle TM/E with E*.

Let QM) = @y Q' (M) = @, T(A(I'*M)) be the set of smooth sections of A(T*M). Let = be the
Hodge star operator of g7 . Then (M) inherits the following inner product

(@8) = [ ansB, a8ea0. (2.3)
M
We use g7M to identify TM and T*M. For any e € I'(T M), let eA and 4. be the standard notation for

exterior and interior multiplications on Q(M). Let c(e) = e A —i., é(e) = e A +i, be the Clifford actions on
Q(M) veritying that

c(e)e(e’) + c(e')c(e) = —2(e,€) yrar, (2.4)
éle)é(e’) +é(e)éle) = 2(e, ) g, (2.5)
c(e)e(e’) + ¢(e')e(e) = 0. (2.6)

Denote k = dimFE. Let {f1,---, fx} be an oriented (local) orthonormal basis of E. Set
&(B,g%) = &(fr) - e(fu), (2.7)
where ¢(E, g¥) does not depend on the choice of the orthonormal basis. Let
€ = Idpeven (7= 1) — Id poda =)
be the Z5-grading operator of
A(T* M) = NV (T* M) @ A°%(T*M).

Set
(M, g") = e(E, g"). (2:8)
It is easy to check

k(k+1)
2

(M, g")? = (1) (2.9)

Let
As(T*M, g¥) = {w € N (T*M), (M, g")w = :I:w}

the (even/odd) eigen-bundles of 7(M, g¥) and by Q. (M, g¥) the corresponding set of smooth sections. Let
d = d* be the formal adjoint operator of the exterior differential operator d on Q(M) with respect to the
inner product (2.3). Set

Dy = 2(E(E.5)(d +) + (~)H(d+ e(E.¢"). (210
2



Then we can check

Dpr(M,¢%) = —7(M,¢")Dg, (2.11)
k(k+1)

Dy =(-1)" 2 Dg, (2.12)

where D7, is the formal adjoint operator of Dy with respect to the inner product (2.3). Set

- k(k+1)

DE = (\/ 71) 2 DE.
From (2.11), Dg is a formal self-adjoint first order elliptic differential operator on Q(M) interchanging
Qi<M7 gE)

Definition 2.1. The sub-signature operator DE,+ with respect to (E,g™™) is the restriction of Dg on

Q-‘r (Ma gE) :
If we denote the restriction of Dy on Q_(M,g¥) by ﬁE,,, then
‘D*E,:t - DE’:F.
Recall that E is the subbundle of TM and that we have the orthogonal decomposition (2.1) of TM and the

metric g7™. Let PF (resp. PEL) be the orthogonal projection from TM to E(resp. E+). Let V™ be the
Levi-Civita connection of g7*. We will use the same notation for its lift toQ2(M). Set

VP = pEvTMpE (2.13)
VE' = pEIyTMpE (2.14)
Then V¥ (resp.VEl) is a Euclidean connection on E(resp.E'), and we will use the same notation for its
lifting on Q(E*)(resp. Q(E+*)). Let S be the tensor defined by
AR vl v )

Then S takes values in skew-adjoint endomorphisms of TM, and interchanges E and E*. Let {e1, - ,e,}
be an oriented(local) orthonormal base of TM. To specify the role of E, set {f1,---, fx} be an oriented
(local) orthonormal basis of E. We will use the greek subscripts for the basis of E. Then by Proposition
1.4 in [15], we have

Proposition 2.2. The following identity holds,
Dy = (V=1)"%" (&(B,g")(d+6) + % > cle)(VIME(E, g7))). (2.15)
Similar to Lemma 1.1 in [15], we have
Lemma 2.3. For any X € I'(TM), the following identity holds,
VIMA(E, o) = —&(E, g7) 3 e(S(X) fa)elfa). (2.16)

(e

Let ATM AP be the Bochner Laplacians

n

ATM _ Z(VZ;]M,Q _ VggMei)v (2.17)
k
AE — Z(veEi,Q _ vggei)_ (218)

%

Let K be the scalar curvature of (M, g7™). Let RT™™ (resp., R, REL) be the curvature of VM (resp., V| vE ).
Let {hy,--+ ,hn_r} be an oriented(local) orthonormal base of E+. Now we can state the following Lich-
nerowicz type formula for D%. From Theorem 1.1 in [15], we have
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Theorem 2.4. [15/ The following identity holds,

Df =-ATM 4 Z > (RP(ei,e5) fp, fa)elei)cle)e(fa) e £5)

1<z gJ<n 1<a,B<k

ST 3T (RF (eneg)hus hi)eled)eles)e(hs)élhy) + % S E((ATM = ABY£,)(fa)

1<i,j<n 1<s,t<n—k «

+Z( (60 o)) VEM — (S () VE fu)( ) + (T forrn s yefo) 7)1 (e o) 7 )

+ - Z S(ei)fa)e(S(ei) fa)é(fa)e(fp)- (2.19)
diads

3. A local equivariant index Theorem for sub-signature operators

3.1. A local even dimensional equivariant index Theorem for sub-signature operators

Let M be a closed oriented Riemannian manifold of even dimension n and ¢ an orientation-preserving
isometry on M preserving the orientation. Then the smooth map ¢ induces a map ¢ = ¢=1* : ATXM —
AT (’;( x)M on the exterior algebra bundle AT M. Let Dg be the sub-signature operator. We assume that
d¢ preserves E and E' and their orientations, then ¢é(E, g¥) = &(E, g¥)$. Then ¢Dg = Dg¢. We will
compute the equivariant index

Indd,(DE) = Tr((glkerﬁg) — Tr((g‘kerﬁg)‘ (31)

We recall the Greiner’s approach to the heat kernel asymptotics as in [7] and [19], [21]. Define the
operator given by

(Qou)(z, s) = / e Dk [u(z, t — 5)|dt, ueT (M x R,AT*M), (3.2)
0
maps continuously v to D’(M x R, AT*M)) which is the dual space of T'.(M x R,AT*M)). We have
0
(DE + )QOU QO(DE + 8t)u =u, uc FC(M X Rv /\T*M)) (33)
Let (D% + 2)~! is the Volterra inverse of D% + £ as in [19]. Then
0
(D% + )Qo =1-Ry; Qo(Dy+ 815) 1 — Ry, (3.4)
where Ri, Ry are smoothing operators. Let
(Qou)(x,t) = Kqo(x,y,t — s)u(y, s)dyds, (3.5)
M xR
and k;(z,y) is the heat kernel of e~*D%. We get
Ko, (z,y,t) = ki(z,y) when t >0, whent <0, Kg,(z,y,t) =0. (3.6)

Definition 3.1. The operator Qg is called the Volterra DO if

(i) Qo has the Volterra property, i.e., it has a distribution kernel of the form Kg,(x,y,t — s) where
Kq,(z,y,t) vanishes on the region t < 0.

(ii) The parabolic homogeneity of the heat operator Qo + %, i.e. the homogeneity with respect to the
dilations of R™ x R given by

M- (6,7) = (A NT), (6,7) eR® x RY, A #0. (3.7)
4



In the following, for g € S(R"*1) and \ # 0, we let g, be the tempered distribution defined by

(ga (&) u(€m) = AT (ga (€ ), uATIEATP ), we SR, (3.8)

Definition 3.2. A distribution g € S(R™*1) is parabolic homogeneous of degree m, m € Z, if for any X # 0,
we have gy = \™g.

Let C_ denote the complex halfplane {Im7 < 0} with closure C_. Then:

Lemma 3.3. [19] Let q(§,7) € C*°((R™ x R)/0) be a parabolic homogeneous symbol of degree m such that:
(i) q extends to a continuous function on (R™ x C_)\0 in such way to be holomorphic in the last variable
when the latter is restricted to C_.
Then there is a unique g € S(R"*1) agreeing with ¢ on R"1\0 so that:
(i) g is homogeneous of degree m;
(#ii) The inverse Fourier transform g(xz,t) vanishes for t < 0.

Let U be an open subset of R”. We define Volterra symbols and Volterra ¥DOs on U x R**1\0 as
follows.

Definition 3.4. S*(U x R"™), m € Z , consists in smooth functions q(z,&,7) on U x R™ x R with an
asymptotic expansion q ~ Zj>0 Gm—j, where:

(i) q € C=(Ux[(R"xR)/0] is a homogeneous Volterra symbol of degreel, i.e. q; is parabolic homogeneous
of degree | and satisfies the property (i) in Lemma 2.3 with respect to the last n 4+ 1 variables;

(i1) The sign ~ means that, for any integer N and any compact K, U, there is a constant Cnkapr > 0
such that for z € K and for |€] + |7|2 > 1 we have

1020200 = >~ qm—j)(2,€,7) < Crrapr(|€] + || F)mN1PI=2E, (3.9)
J<N

Definition 3.5. ¥} (U xR), m € Z , consists in continuous operators Qo from C°(Uy xRy) to C°(Uy xRy)
such that:

(i) Qo has the Volterra property;

(i1) Qo = q(x, Dy, Dy) + R for some symbol q in S} (U x R) and some smoothing operator R.

In what follows, if Qo is a Volterra WDO, we let Kg,(z,y,t — s) denote its distribution kernel, so that
the distribution K, (z,y,t) vanishes for ¢ < 0.

Definition 3.6. Let ¢, (z,&,7) € C(U x (R""1/0)) be a homogeneous Volterra symbol of order m and let
gm € C®(U) @ S'(R"*1) denote its unique homogeneous extension given by Lemma 2.3. Then:

(i) Gm(x,y,t) is the inverse Fourier transform of g, (x,&,T) in the last n + 1 variables;

(ii) qm(x, Dy, Dt) is the operator with kernel §m(z,y — x,t).

Proposition 3.7. The following properties hold.

1) Composition. Let Q; € V{7 (U x R), j = 1,2 have symbol q; and suppose that Q1 or Qs is properly
supported. Then Q1Q2 is a Volterra WDO of order my + mo with symbol g1 0 g2 ~ > é@g‘qngqg. 2)
Parametrices. An operator @ is the order m Volterra VDO with the paramatriz P then

QP=1—-R;, PQ=1-R, (2.10)
where R1, Rs are smoothing operators.

Proposition 3.8. The differential operator D% + 0 is invertible and its inverse (ﬁ% +0;)~t is a Volterra
WDO of order —2.



We denote by M? the fixed-point set of ¢, and for a =0, --- ,n, we let M?® = Uo<a<n M2, where M is
an a-dimensional submanifold. Given a fixed-point x( in a component M?, consider some local coordinates

x = (z!, -+ ,2%) around . Setting b = n — a, we may further assume that over the range of the domain of
the local coordinates there is an orthonormal frame e1(z),- -, ep(x) of N?. This defines fiber coordinates
v = (v1,-++,vp). Composing with the map (z,v) € N®(g9) — exp,(v) we then get local coordinates
b,z vl - wb for M near the fixed point . We shall refer to this type of coordinates as tubular

coordinates. Then N?(gy) is homeomorphic with a tubular neighborhood of M?. Set iy : M® — M
be an inclusion map. Since d¢ preserves E and EL, considering the oriented (local) orthonormal basis

{fla"' 7fk7h17"' ,hn,k}, set

_ (exp(L1) 0
o= (00 0
where Ly € so(k) and Ly € so(n — k)
Let .
-~ 1 RM /47‘1’ ¢ _1 BN?
ARM’y =det? | ——" | i p(RN") i=det 3 (1 — ¢Ne ). 3.11
(RM") = de (Smh(RW/M)), vo(RNY) = det™3(1 — ¢Ve 50 (3.11)

The aim of this section is to prove the following result.

Theorem 3.9. ( Local Equivariant Sub-Signature Index Theorem. Even Dimension)
Let o € M?, then

lim Str [§(20) Ky (w0, 6(z0))| = (\/%)%2%{2(RM¢)V¢(RN¢)M [dett (cosh(f—: )
xdet (Sinig;ri _L;Qr“)>Pf(R;j: - %)} }(G’O) (o), (3.12)

L L
where Ly € so(k), Ly € so(n — k) and Pf(% — %) denotes the Pfaffian of (R:; - %)

Next we give a detailed proof of Theorem 3.9. Let Q = (D% + 9;)~'. For z € M? and t > 0 set

Io(w,t) := ¢(x)~* /zv¢( )(b(exva)KQ(expwv,epr(gb’(x)v),t)dv. (3.13)

Here we use a trivialization over A(T*M) about the tubular coordinates. Using the tubular coordinates, we
have

o) = [ 32,0 6(w. 00K (e vi . (x)us ) (3.14)
lv|<e
Let i _ _
M (036, v m) 1= Bl 0) T, ) g (1,016,057, (3.15)

We mention the following result

Proposition 3.10. [7] Let Q € W (M x R,A(T*M)), m € Z. Uniformly on each component M

Ig(,t) ~ > t~GFHEIID () as t =07, (3.16)
=0
where Iég(x) is defined by
. UO‘ o T M Vv
@)= Y /J (av qg[(%]_Q;+‘a|) (z,0;0, (1 — ¢/ (z))v; 1)dv. (3.17)

|| <m—[%]4+2j5



Similar to Theorem 1.2 in [8] and Section 2 (d) in [24], we have
(VD)% [ Strc[e(E.gP (. ota) |

_ / St (B, 97)K s 4.,y (, 6(a), 1)) da. (3.18)

[N

Str, [pexp(—tD%)]

m\w

We will compute the local index in this trivialization. Let (V| ¢) be a finite dimensional real vector space
equipped with a quadratic form. Let C(V, ¢) be the associated Clifford algebra, i.e., the associative algebra
generated by V' with the relations v-w+w-v = —2¢(v,w) for v,w € V. Let {e1,- -+ ,en} be an orthomormal
basis of (V, q), let C(V, q)®C(V, —q) be the grading tensor product of C(V,q) and C(V, —q), and A*VRA*V
be the grading tensor product of A*V and A*V. Define the symbol map:

o :C(V,q)@C(V,—q) = NV& A" V; (3.19)

where a(c(ej,) clej,) ®1) = et A ANelt @1, o(1 ®é(ej,) - é(ej)) = 1® e A--- Aédt. Using the
interior multiplication ¢(e;) : A*V — A*7!V and the exterior multiplication £(e;) : A*V — A*TIV | we

define representations of C(V, ¢q) and C(V, —q) on the exterior algebra:
c:C(V,q) = End AV, e; — c(ej) : e(e;) — tlej); (3.20)
¢:C(V,—q) > End AV, e; — é(ej) : e(ej) + tley). (3.21)

The tensor product of these representations yields an isomorphism of superalgebras
cwe: CO(V,q)@C(V,—q) - End AV (3.22)

which we will also denote by c. We obtain a supertrace (i.e., a linear functional vanishing on supercommu-
tators) on C(V, q)®@C(V, —q) by setting Str(a) = Strgnaayv[c(a)] for a € C(V, )& (V, —q), where Strgaaay is
the canonical supertrace on EndV .
Lemma 3.11. For1<i; <---<ip, <n,1 <51 << jg<n, whenp=gq=n,

Strle(es,) -+ eles, )eles,) - ées, )] = (<) 2" (3.23)
and otherwise equals zero.

We will also denote the volume element in AVROAV by w=el A---Ae" AéLA---Aé". Fora € AVRAV,
let Ta be the coefficient of w. The linear functio(n%l)T : A\V& AV — R is called the Berezin trace. Then for
aac C(V,q)®(V,.q) , we have Strg(a) = (=1)~ 2 2"(To)(a). We define the Getzler order as follows:

1 .
deg0d; = idegat = —degz’ =1, degc(e;) =1, degé(e;) =0. (3.24)
Let @ € ¥§ (R™ x R, A*T*M) have symbol
q(x7£77_) ~ Z Qk(x7£,7_)7 (325)
k<m/

where q(z,&,7) is an order k symbol. Then taking components in each subspace AVT*M ® A'T*M of
ANT*M @ ANT* M and using Taylor expansions at z = 0 give formal expansions

olg(z, &) ~ Y olar(z, &) ~ > %0[33%(0»577)]““ (3.26)

3k Jik,ax

The symbol £ ,a[@o‘qk(o €,7)]UY is the Getzler homogeneous of k + j — |a|. Therefore, we can expand

olg(z,&,7)] as
JC 67 Zq(m -7) 1‘ 57 ) q(m) 7é Oa (327)

7>0

where ¢(,,— ;) is a Getzler homogeneous symbol of degree m — j.
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Definition 3.12. The integer m is called as the Getzler order of Q. The symbol q(,,) is the principal Getzler
homogeneous symbol of Q. The operator Qmy = q(m)(x, Dy, Dy) is called the model operator of Q.

Let ey, ..., e, be an oriented orthonormal basis of T,,, M such that ey, - - - , e, span TIOM¢ andegi1, - ,€p
span N;f’o . This provides us with normal coordinates (x1,---,2,) — exp,, (rle; + -+ + a"e,). Moreover
using parallel translation enables us to construct a synchronous local oriented tangent frame e (), ..., e, (z)
such that ey (), , e,(z) form an oriented frame of TM? and e,y 1(z),- -+ ,e,(z) form an (oriented) frame
N7 (when both frames are restricted to M?). This gives rise to trivializations of the tangent and exterior

algebra bundles. Write

60 =( g g ) =enis) (3.29

where A;; € so(n).
Let A(n) = A*R™ be the exterior algebra of R™. We shall use the following gradings on A(n)® A (n),

AR)® A (n) = o AR ()& AR (), (3.29)
1<k, ka<a
1<1i,l3<b

where /\k’z(n) is the space of forms da™ A --- Adz'»+ with 1 <i; < ---<ip<aanda+1<ip < ---<

i1 < n. Given a form w € A(n)@A(n), denote by wkin):(k2.12) jts component in A(n)Fr) @AF2:12) (n), We

denote by |w|(®:(@:0) the Berezin integral |w©):(+0)|(2.0).(a.0) of its component w(*0)(+0) in A(+0),(+0) (),
Let A € CI(V,q)®CI(V,—q), then

Str[&A] = (—1)%2"(—3)%0[(%(1 _ ¢N)|O.(A)|((a,0)7(a70))

+(—1)22" Z |07() ((©:11):(0:02)) g ( 4)((@b=1),(@,b=l2))|(n.n) (3.30)
0<11 <b,0<I2<b

In order to calculate Str[¢A], we need to consider the representation of |o(¢)((0:):(0:42)) 5 ( A)((a:0).(a:b=12)) | (nn)
Let the matrix ¢~ equal

Asp

o = . Auyy = COS'H%_H sinfs 4 A — co§9% sinfz '
: Tz —sinfayy cosfay; )7 72 —sinfn  cosfz
O 2 2 2

Ay
(3.31)
From Lemma 3.2 in [20], then
Lemma 3.13. We have
7 Line 1 A A
¢ = (3)° 11 {(1 + cost;) — (1 — cosj)c(ez;j—1)c(e2;)c(e2j-1)é(ez;)
J=2%+1
—|—sin9j (C(€2j71)c(€2j) — 6(62]‘,1)@(62]‘))} . (332)



Then we obtain

o(@) @000 — ()T o T |~ (1~ costy)elenj—1)elez;)éles;1)éles;)

j=5+1

((0,b),(0,12))
+sind; (C(ezj—l)c(e2j) ] }

1 . (0,12)
- (5) a+1 N---Ne U{ H |: 1 — cosf; ) (62j_1) (62J) + sinf; :| } :
J=5+1
1 n—a n 0 9 9 (07l )
= (5) 2 e A e”o’{ j1:[+1 2sin EJ [COS§ _ SIH?]C(eQJ 1)6(6%)} } 2
-2

= (2)z e““/\~~~/\e”det5(1f¢N)J{exp(fi Z Aijé(ei)é(e

1<i,j<n

= (7)%ea+1 A A endet%(l — QSN)U{eXp( — i Z (Ll)”é(fl)é(fj)

1<i,j<k

_i 2 (Lz)k“)kJrjé(hi)é(hj))}(0’l2).

1<i,j<n—k

(3.33)

Next we calculate |o(A)|((#:0):(e:0=12)) " In the following, we shall use the following “curvature forms”:

R = (Rij)i<ij<ar B = (Rati,a+j)i<i <o Let

R=g Y (REfu fe(fa)e)
1<a,B<k
B=t Y (R e heho)e(h):
4 1<s,t<n—k
and
h=1 S (R~ L) f)elfa)élfs),
1<a,B<k
Rl S (R Lo h)elh).
1<s,t<n—k

By (2.19), let F = D%, we get
Proposition 3.14. The model operator of F is

- 1 S
= *Z (ar+ g Z <RTM(6iaej)elaer>ylez /\ej)2
r=1

1<4,5,l<n
L1 S Y (RE(en ) s fa)el Ade(fa)elfs)

8
1<i,5<n 1<a,B<k

b ST S (RF (e eh o)t A(h,)ehe)

1<4,j<n 1<s,t<n—k

From the representation of F(s), we get the model operator of ‘9 ; + D2 is dt + F(2). And we have

0

(8t + F ))KQ(—Q)(x7y7t) =0.

Similar to Lemma 2.9 in [7], we get

(3.34)

(3.35)



Lemma 3.15. Let Q € V2(R™ x R, A(T*M)) be a parametriz for (Fo) + 0;)~'. Then
(1) Q has Getzler order -2 and its model operator is (F(g) + ;)L
(2) For all t > 0,

k.
(V=1)2&(E, g")I(p 4 +0,)-1 (0, 1)

(VD) 5e(E, gF) Unt)™2 o i,)det_%(l — Ve " Yexp(t(R+ R)).  (3.36)

det? (1 — ¢N) (sinh(tg

By}

Similar to Lemma 3.6 in [9]. we have

Lemma 3.16. Q € Y§,(R" x R,A(T*M)) has the Getzler order m and model operator Q. Then as
t— 0%

(1) allg(0, 1)) = O(t* ), if m—jis odd.

(2) allo(0, ]9 = O =7 ) Iy (0, )0 + O(F*52), if m — j is even.

In particular, for m = —2 and j = a and a is even we get

j—m—a—1
2

olIg(0,4)] (@0 (@b=t)) — [ (0, 1)(@0(ab=l2) 4 O(¢3), (3.37)

With all these preparations, we are going to prove the local even dimensional equivariant index theorem
for sub-signature operators. Substituting (3.33), (3.36) into (3.30), we obtain

lim Str. [3(20)(V=1)$&(E, g%) (0,1 (w0, )]
= (_1)%2"(%)%(4ﬂ)_%(\/—71)% ‘A\(RM¢)V¢(RN¢)U[6(]01) ... é(fk)exp(;{ + é)] ’((a,O),n)
o~ . . . E
= AR i e (o - 51)
sin REL — L - 2 a,
(B = (R 1y o
T4 T2

Where we have used the algebraic result of Proposition 3.13 in [22] , and the Berezin integral in the right
hand side of (3.38) is the application of the following lemma.

Lemma 3.17. Let Ly € so(k), La € so(n — k), we have
o [e(f1) - - e fr)exp(R + R)] 1)

= (=1)"7"det? (cosh(iRE ) b ) )det (Z’:,};ERE z;;;)m(}zw; LQ). (3.39)

Proof. In order to compute this differential form, we make use of the Chern root algorithm (see [9]). Assume
that n = dimM and k = dimF are both even integers. As in [5], let Ly € so(k), Ly € so(n — k), we write

HONEN OB

RE—L1: 7REL—LQ:
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Then we obtain

1Y R - L NS = 5 Y (R~ L) far S)e(fa)E )
1<a,B<k 1<a<B<k
= % Z 0;¢(f2-1)e(f25); (3.41)
1<j<&
DY BT Db hehh) = 5 ST ARE Lo h)élh)e(h)
1<s,t<n—k 1<s<t<n—k
- % S dré(hor1)e(ha). (3.42)
1<i<nzk

Then the left hand side of (3.39) is

(n)

o (e(f1) - elfexp(fe + i)
= Jo(etr) e T ew(goetnveth) T eplghetm-etm))

(n)

1<% 1<k
N N 9 . 9 N R él . él . . (")
= U(C(f1) e(fe) 1 {COSEJ - Slngjc(fzjfﬁc(f%)} 11 [0055 - Slngc(hzlq)c(hzz)})
1<% 1<i<ngh
= (—1)%1“ cos% H sin%. (3.43)
1<j<% 1<i< gk

Now we consider the right hand side of (3.39),

07 0
(5 ) 0

(RP — L))" = (-1) . (3.44)
07 0
0 5o
0 or
2
Then
RE - I T o Y e e S
1 — L1y iyze (= _ —10; _qre T te _ j
det2 (cosh(TD = H (Z (5) ). ) = HCOShT = H 5 = Hcos§
Jj=1 p=0 J=1 j=1 j=1
(3.45)
Similarly, we have
1 sinh(u) - sin®
j=1 5
On the other hand,
n—k
RE" — L RE' _ [ b, . . = 4.
Pf(%) = T(exp(z<%h57ht>hs A }f)) = T(exp( éh?a—l A hQJ)) = 57
s<t 1<j<ngk j=1
(3.47)
Combining these equations, the proof of lemma 3.17 is complete. O

To summarize, we have proved Theorem 3.9.
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3.2. The local odd dimensional equivariant index Theorem for sub-signature operators
In this section, we give a proof of a local odd dimensional equivariant index theorem for sub-signature
operators. Let M be an odd dimensional oriented closed Riemannian manifold. Using (2.19) in Section 2,
we may define the sub-signature operators Dg. Let v be an orientation reversing involution isometric acting
on M. Set dvy preserves E and E* and preserves the orientation of E , then 77(E, g¥) = #(E, g¥)¥, where
74 is the lift on the exterior algebra bundle AT*M of ~. There exists a self-adjoint lift 7 : T'(M; A(T*M)) —
D(M;A(T*M)) of v satisfying
32 =1, Dg¥y = -3Dg. (3.48)
Now the +1 and —1 eigenspaces of 7 give a splitting
D(M;AT*M)) ZTH(M; ANT*M))ST ™ (M; AN(T*M))) (3.49)

then the sub-signature operator interchanges I't (M; A(T*M)) and I'~(M; A(T*M)), and é(E, g¥) preserves
IH(M; AN(T*M)) and T~ (M; A(T*M)).
Denotes by D, the restriction of Dg to I't (M, /\(T* )). We assume dimE = k is even, then (Dg)é(E, gF) =
é(E,gP)(Dg) and é(E, g¥) is a linear map from kerDi to kerDE.
The purpose of this section is to compute

inde(m,g2) [(D3)] = Te((E, 97 ler ) — Tr(E(E, 97 erppt)- (3.50)

By the Mckean-Singer formular, we have

indy ey (D) = /M T)$TrFe(E, g ke, () da
= | VDTGB, P K sy (2 (2). Olda. (3.51)
Let
0 —6 O
r @
<91 0) 0 6. 0
RE_L, = : JRET L, = " R
O 0 —(97% O (A 0 7911—5—1
9_% 0 anéﬂ 0
(3.52)
and )
REL_L2 n—;c— A]
Pf = —
() r:[ : (3.53)

Similar to Theorem 3.9, we get the main Theorem in this section.

Theorem 3.18. ( Local odd dimensional equivariant index Theorem for sub-signature operators )
Let xg € M7, then

lim Tr [3(20)&(E, g7)I (40,1 (%0, 1)]
—~ 1 E
)%—12%{A(RM”)V¢(RN”)¢;M [deta (cosh(R— - ﬂ))

4 2
e 50

-

Slnh

1
2
xdet REL
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