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Abstract

In this paper, we prove a local equivariant index theorem for sub-signature operators which generalizes
Weiping Zhang’s index theorem for sub-signature operators.
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1. Introduction

The Atiyah-Singer index Theorem ([1] [2]) gives a cohomological interpretation of the Fredholm index
of an elliptic operator. The Atiyah-Bott-Segal-Singer index formula, which called the equivariant index
theorem, is a generalization with group action of the Atiyah-Singer index theorem, was first direct proved
by Patodi, Gilkey, Atiyah-Bott-Patodi partly by using invariant theory [3][4]. This theorem generalizes
the Atiyah-Singer index theorem and the Atiyah-Bott fixed point formula for elliptic complexes, which is a
generalization of the Lefschetz fixed point formula. In [5], Berline and Vergne gave a heat kernel proof of
the Atiyah-Bott-Segal-Singer index formula. Moreover, Lafferty, Yu and Zhang [6] presented a simple and
direct geometric proof of the equivariant index theorem for an orientation-preserving isometry on an even
dimensional spin manifold by Clifford asymptotics of heat kernel. Furthermore, Ponge and H. Wang gave a
different proof of the equivariant index formula by the Greiner’s approach to the heat kernel asymptotics [7].
In [8], in order to prove family rigidity theorems, Liu and Ma proved the equivariant family index formula.
In [9], Y. Wang gave another proof of the local equivarint index theorem for a family of Dirac operators by
the Greiner’s approach to the heat kernel asymptotics. In [10], using the Greiner’s approach to the heat
kernel asymptotics, Y. Wang proved the equivariant Gauss-Bonnet-Chern formula and gave the variation
formulas for the equivariant Ray-Singer metric, which are originally due to J. M. Bismut and W. Zhang [11].

In parallel, Freed [12] considered the case of an orientation reversing involution acting on an odd di-
mensional spin manifold and gave the associated Lefschetz formulas by the K-theretical way. In [13], Wang
constructed an even spectral triple by the Dirac operator and the orientation-reversing involution and com-
puted the Connes-Chern character for this spectral triple. In [14], Liu and Wang proved an equivariant odd
index theorem for Dirac operators with involution parity and the Atiyah-Hirzebruch vanishing theorems for
odd dimensional spin manifolds. In [15] and [16], Zhang introduced the sub-signature operators and proved
a local index formula for these operators. By computing the adiabatic limit of eta-invariants associated
to the so-called sub-signature operators, a new proof of the Riemann-Roch-Grothendieck type formula of
Bismut-Lott was given in [17] and [18]. The motivation of the present article is to prove a local equivariant
index formula for sub-signature operators.

This paper is organized as follows: In Section 2, we recall some background on sub-signature operators.
In Section 3.1, we prove a local equivariant index formula for sub-signature operators in even dimension. In
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Section 3.2, we prove a local equivariant odd dimensional index formula for sub-signature operators with an
orientation-reversing involution.

2. The sub-signature operators

In this section, we give the standard setup (also see Section 1 in [15]). Let M be an oriented closed
manifold of dimension n. Let E be an oriented sub-bundle of the tangent vector bundle TM . Let gTM be
a metric on TM . Let gE be the induced metric on E. Let E⊥ be the sub-bundle of TM orthogonal to E

with respect to gTM . Let gE
⊥

be the metric on E⊥ induced from gTM . Then (TM, gTM ) has the following
orthogonal splittings

TM = E ⊕ E⊥, (2.1)

gTM = gE ⊕ gE
⊥
. (2.2)

Clearly, E⊥ carries a canonically induced orientation. We identify the quotient bundle TM/E with E⊥.
Let Ω(M) =

⊕n
0 Ωi(M) =

⊕n
0 Γ(∧i(T ∗M)) be the set of smooth sections of ∧(T ∗M). Let ∗ be the

Hodge star operator of gTM . Then Ω(M) inherits the following inner product

〈α, β〉 =

∫
M

α ∧ ∗β, α, β ∈ Ω(M). (2.3)

We use gTM to identify TM and T ∗M . For any e ∈ Γ(TM), let e∧ and ie be the standard notation for
exterior and interior multiplications on Ω(M). Let c(e) = e ∧−ie, ĉ(e) = e ∧+ie be the Clifford actions on
Ω(M) verifying that

c(e)c(e′) + c(e′)c(e) = −2〈e, e′〉gTM , (2.4)

ĉ(e)ĉ(e′) + ĉ(e′)ĉ(e) = 2〈e, e′〉gTM , (2.5)

c(e)ĉ(e′) + ĉ(e′)c(e) = 0. (2.6)

Denote k = dimE. Let {f1, · · · , fk} be an oriented (local) orthonormal basis of E. Set

ĉ(E, gE) = ĉ(f1) · · · ĉ(fk), (2.7)

where ĉ(E, gE) does not depend on the choice of the orthonormal basis. Let

ε = Id∧even(T∗M) − Id∧odd(T∗M)

be the Z2-grading operator of

∧(T ∗M) = ∧even(T ∗M)⊕ ∧odd(T ∗M).

Set
τ(M, gE) = εĉ(E, gE). (2.8)

It is easy to check

τ(M, gE)2 = (−1)
k(k+1)

2 . (2.9)

Let
∧±(T ∗M, gE) =

{
ω ∈ ∧∗(T ∗M), τ(M, gE)ω = ±ω

}
the (even/odd) eigen-bundles of τ(M, gE) and by Ω±(M, gE) the corresponding set of smooth sections. Let
δ = d∗ be the formal adjoint operator of the exterior differential operator d on Ω(M) with respect to the
inner product (2.3). Set

DE =
1

2

(
ĉ(E, gE)(d + δ) + (−1)k(d + δ)ĉ(E, gE)

)
. (2.10)
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Then we can check

DEτ(M, gE) = −τ(M, gE)DE , (2.11)

D∗E = (−1)
k(k+1)

2 DE , (2.12)

where D∗E is the formal adjoint operator of DE with respect to the inner product (2.3). Set

D̃E = (
√
−1)

k(k+1)
2 DE .

From (2.11), D̃E is a formal self-adjoint first order elliptic differential operator on Ω(M) interchanging
Ω±(M, gE).

Definition 2.1. The sub-signature operator D̃E,+ with respect to (E, gTM ) is the restriction of D̃E on
Ω+(M, gE).

If we denote the restriction of D̃E on Ω−(M, gE) by D̃E,−, then

D̃∗E,± = D̃E,∓.

Recall that E is the subbundle of TM and that we have the orthogonal decomposition (2.1) of TM and the

metric gTM . Let PE (resp. PE
⊥

) be the orthogonal projection from TM to E(resp. E⊥). Let ∇TM be the
Levi-Civita connection of gTM . We will use the same notation for its lift toΩ(M). Set

∇E = PE∇TMPE , (2.13)

∇E
⊥

= PE
⊥
∇TMPE

⊥
. (2.14)

Then ∇E(resp.∇E⊥) is a Euclidean connection on E(resp.E⊥), and we will use the same notation for its
lifting on Ω(E∗)(resp. Ω(E⊥,∗)). Let S be the tensor defined by

∇TM = ∇E +∇E
⊥

+ S.

Then S takes values in skew-adjoint endomorphisms of TM , and interchanges E and E⊥. Let {e1, · · · , en}
be an oriented(local) orthonormal base of TM . To specify the role of E, set {f1, · · · , fk} be an oriented
(local) orthonormal basis of E. We will use the greek subscripts for the basis of E. Then by Proposition
1.4 in [15], we have

Proposition 2.2. The following identity holds,

D̃E = (
√
−1)

k(k+1)
2

(
ĉ(E, gE)(d + δ) +

1

2

∑
i

c(ei)(∇TMei ĉ(E, gE))
)
. (2.15)

Similar to Lemma 1.1 in [15], we have

Lemma 2.3. For any X ∈ Γ(TM), the following identity holds,

∇TMX ĉ(E, gE) = −ĉ(E, gE)
∑
α

ĉ(S(X)fα)ĉ(fα). (2.16)

Let ∆TM , ∆E be the Bochner Laplacians

∆TM =

n∑
i

(∇TM,2
ei −∇TM∇TMei ei

), (2.17)

∆E =

k∑
i

(∇E,2ei −∇
E
∇Eeiei

). (2.18)

LetK be the scalar curvature of (M, gTM ). LetRTM (resp., RE , RE
⊥

) be the curvature of∇TM (resp.,∇E , ∇E⊥).
Let {h1, · · · , hn−k} be an oriented(local) orthonormal base of E⊥. Now we can state the following Lich-
nerowicz type formula for D̃2

E . From Theorem 1.1 in [15], we have
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Theorem 2.4. [15] The following identity holds,

D̃2
E = −∆TM +

K

4
+

1

8

∑
1≤i,j≤n

∑
1≤α,β≤k

〈RE(ei, ej)fβ , fα〉c(ei)c(ej)ĉ(fα)ĉ(fβ)

+
1

8

∑
1≤i,j≤n

∑
1≤s,t≤n−k

〈RE
⊥

(ei, ej)ht, hs〉c(ei)c(ej)ĉ(hs)ĉ(ht) +
1

2

∑
α

ĉ
(
(∆TM −∆E)fα

)
ĉ(fα)

+
∑
i,α

(
ĉ(S(ei)fα)ĉ(fα)∇TMei − ĉ(S(ei)∇Eeifα)ĉ(fα) +

1

2
ĉ
(
∇E(∇TMei −∇Eei )eifα

)
ĉ(fα) +

3

4
‖ S(ei)fα) ‖2

)
+

1

4

∑
i,α6=β

ĉ(S(ei)fα)ĉ(S(ei)fβ)ĉ(fα)ĉ(fβ). (2.19)

3. A local equivariant index Theorem for sub-signature operators

3.1. A local even dimensional equivariant index Theorem for sub-signature operators

Let M be a closed oriented Riemannian manifold of even dimension n and φ an orientation-preserving
isometry on M preserving the orientation. Then the smooth map φ induces a map φ̃ = φ−1,∗ : ∧T ∗xM →
∧T ∗φ(x)M on the exterior algebra bundle ∧T ∗xM . Let D̃E be the sub-signature operator. We assume that

dφ preserves E and E⊥ and their orientations, then φ̃ĉ(E, gE) = ĉ(E, gE)φ̃. Then φ̃D̃E = D̃Eφ̃. We will
compute the equivariant index

Indφ(D̃+
E) = Tr(φ̃|kerD̃+

E
)− Tr(φ̃|kerD̃−E ). (3.1)

We recall the Greiner’s approach to the heat kernel asymptotics as in [7] and [19], [21]. Define the
operator given by

(Q0u)(x, s) =

∫ ∞
0

e−sD̃
2
E [u(x, t− s)]dt, u ∈ Γc(M × R,∧T ∗M), (3.2)

maps continuously u to D′(M × R,∧T ∗M)) which is the dual space of Γc(M × R,∧T ∗M)). We have

(D̃2
E +

∂

∂t
)Q0u = Q0(D̃2

E +
∂

∂t
)u = u, u ∈ Γc(M × R,∧T ∗M)). (3.3)

Let (D̃2
E + ∂

∂t )
−1 is the Volterra inverse of D̃2

E + ∂
∂t as in [19]. Then

(D̃2
E +

∂

∂t
)Q0 = I −R1; Q0(D̃2

E +
∂

∂t
) = 1−R2, (3.4)

where R1, R2 are smoothing operators. Let

(Q0u)(x, t) =

∫
M×R

KQ0(x, y, t− s)u(y, s)dyds, (3.5)

and kt(x, y) is the heat kernel of e−tD̃
2
E . We get

KQ0(x, y, t) = kt(x, y) when t > 0, when t < 0, KQ0(x, y, t) = 0. (3.6)

Definition 3.1. The operator Q0 is called the Volterra ΨDO if
(i) Q0 has the Volterra property, i.e., it has a distribution kernel of the form KQ0

(x, y, t − s) where
KQ0(x, y, t) vanishes on the region t < 0.

(ii) The parabolic homogeneity of the heat operator Q0 + ∂
∂t , i.e. the homogeneity with respect to the

dilations of Rn × R1 given by

λ · (ξ, τ) = (λξ, λ2τ), (ξ, τ) ∈ Rn × R1, λ 6= 0. (3.7)
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In the following, for g ∈ S(Rn+1) and λ 6= 0, we let gλ be the tempered distribution defined by

〈gλ(ξ, τ), u(ξ, τ)〉 = |λ|−(n+2)
〈
gλ(ξ, τ), u(λ−1ξ, λ−2τ)

〉
, u ∈ S(Rn+1). (3.8)

Definition 3.2. A distribution g ∈ S(Rn+1) is parabolic homogeneous of degree m, m ∈ Z, if for any λ 6= 0,
we have gλ = λmg.

Let C− denote the complex halfplane {Imτ < 0} with closure C−. Then:

Lemma 3.3. [19] Let q(ξ, τ) ∈ C∞((Rn ×R)/0) be a parabolic homogeneous symbol of degree m such that:
(i) q extends to a continuous function on (Rn×C−)\0 in such way to be holomorphic in the last variable

when the latter is restricted to C−.
Then there is a unique g ∈ S(Rn+1) agreeing with q on Rn+1\0 so that:
(ii) g is homogeneous of degree m;
(iii) The inverse Fourier transform ğ(x, t) vanishes for t < 0.

Let U be an open subset of Rn. We define Volterra symbols and Volterra ΨDOs on U × Rn+1\0 as
follows.

Definition 3.4. SmV (U × Rn+1), m ∈ Z , consists in smooth functions q(x, ξ, τ) on U × Rn × R with an
asymptotic expansion q ∼

∑
j≥0 qm−j , where:

(i) ql ∈ C∞(U×[(Rn×R)/0] is a homogeneous Volterra symbol of degree l, i.e. ql is parabolic homogeneous
of degree l and satisfies the property (i) in Lemma 2.3 with respect to the last n+ 1 variables;

(ii) The sign ∼ means that, for any integer N and any compact K, U, there is a constant CNKαβk > 0

such that for x ∈ K and for |ξ|+ |τ | 12 > 1 we have

|∂αx ∂
β
ξ ∂

k
τ (q −

∑
j<N

qm−j)(x, ξ, τ)| ≤ CNKαβk(|ξ|+ |τ | 12 )m−N−|β|−2k. (3.9)

Definition 3.5. Ψm
V (U×R), m ∈ Z , consists in continuous operators Q0 from C∞c (Ux×Rt) to C∞(Ux×Rt)

such that:
(i) Q0 has the Volterra property;
(ii) Q0 = q(x,Dx, Dt) +R for some symbol q in SmV (U × R) and some smoothing operator R.

In what follows, if Q0 is a Volterra ΨDO, we let KQ0
(x, y, t − s) denote its distribution kernel, so that

the distribution KQ0(x, y, t) vanishes for t < 0.

Definition 3.6. Let qm(x, ξ, τ) ∈ C∞(U × (Rn+1/0)) be a homogeneous Volterra symbol of order m and let
gm ∈ C∞(U)⊗ S′(Rn+1) denote its unique homogeneous extension given by Lemma 2.3. Then:

(i) q̆m(x, y, t) is the inverse Fourier transform of gm(x, ξ, τ) in the last n+ 1 variables;
(ii) qm(x,Dx, Dt) is the operator with kernel q̆m(x, y − x, t).

Proposition 3.7. The following properties hold.
1) Composition. Let Qj ∈ Ψ

mj
V (U × R), j = 1, 2 have symbol qj and suppose that Q1 or Q2 is properly

supported. Then Q1Q2 is a Volterra ΨDO of order m1 + m2 with symbol q1 ◦ q2 ∼
∑

1
α!∂

α
ξ q1D

α
x q2. 2)

Parametrices. An operator Q is the order m Volterra ΨDO with the paramatrix P then

QP = 1−R1, PQ = 1−R2 (2.10)

where R1, R2 are smoothing operators.

Proposition 3.8. The differential operator D̃2
E + ∂t is invertible and its inverse (D̃2

E + ∂t)
−1 is a Volterra

ΨDO of order −2.
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We denote by Mφ the fixed-point set of φ, and for a = 0, · · · , n, we let Mφ =
⋃

0≤a≤nM
φ
a , where Mφ

a is

an a-dimensional submanifold. Given a fixed-point x0 in a component Mφ
a , consider some local coordinates

x = (x1, · · · , xa) around x0. Setting b = n− a, we may further assume that over the range of the domain of
the local coordinates there is an orthonormal frame e1(x), · · · , eb(x) of Nφ

z . This defines fiber coordinates
v = (v1, · · · , vb). Composing with the map (x, v) ∈ Nφ(ε0) → expx(v) we then get local coordinates
x1, · · · , xa, v1, · · · , vb for M near the fixed point x0. We shall refer to this type of coordinates as tubular
coordinates. Then Nφ(ε0) is homeomorphic with a tubular neighborhood of Mφ. Set iMφ : Mφ ↪→ M
be an inclusion map. Since dφ preserves E and E⊥, considering the oriented (local) orthonormal basis
{f1, · · · , fk, h1, · · · , hn−k}, set

dφx0 =

(
exp(L1) 0

0 exp(L2)

)
, (3.10)

where L1 ∈ so(k) and L2 ∈ so(n− k)
Let

Â(RM
φ

) = det
1
2

(
RM

φ

/4π

sinh(RMφ/4π)

)
; νφ(RN

φ

) := det−
1
2 (1− φNe−R

Nφ

2π ). (3.11)

The aim of this section is to prove the following result.

Theorem 3.9. ( Local Equivariant Sub-Signature Index Theorem. Even Dimension)
Let x0 ∈Mφ, then

lim
t→0

Str
[
φ̃(x0)Kt(x0, φ(x0))

]
= (

1√
−1

)
k
2 2

n
2

{
Â(RM

φ

)νφ(RN
φ

)i∗Mφ

[
det

1
2

(
cosh

(RE
4π
− L1

2

))
×det

1
2

( sinh(R
E⊥

4π −
L2

2 )

RE⊥

4π −
L2

2

)
Pf
(RE⊥

4π
− L2

2

)]}(a,0)

(x0), (3.12)

where L1 ∈ so(k), L2 ∈ so(n− k) and Pf
(
RE
⊥

4π −
L2

2

)
denotes the Pfaffian of

(
RE
⊥

4π −
L2

2

)
.

Next we give a detailed proof of Theorem 3.9. Let Q = (D̃2
E + ∂t)

−1. For x ∈Mφ and t > 0 set

IQ(x, t) := φ̃(x)−1
∫
Nφx (ε)

φ(expxv)KQ(expxv, expx(φ′(x)v), t)dv. (3.13)

Here we use a trivialization over ∧(T ∗M) about the tubular coordinates. Using the tubular coordinates, we
have

IQ(x, t) =

∫
|v|<ε

φ̃(x, 0)−1φ̃(x, v)KQ(x, v;x, φ′(x)v; t)dv. (3.14)

Let
q
∧(T∗M)
m−j (x, v; ξ, ν; τ) := φ̃(x, 0)−1φ̃(x, v)qm−j(x, v; ξ, ν; τ). (3.15)

We mention the following result

Proposition 3.10. [7] Let Q ∈ Ψm
V (M × R,∧(T ∗M)), m ∈ Z. Uniformly on each component Mφ

a

IQ(x, t) ∼
∑
j≥0

t−(
a
2+[m2 ]+1)IjQ(x) as t→ 0+, (3.16)

where IjQ(x) is defined by

I
(j)
Q (x) :=

∑
|α|≤m−[m2 ]+2j

∫
vα

α!

(
∂αv q

∧(T∗M)
2[m2 ]−2j+|α|

)∨
(x, 0; 0, (1− φ′(x))v; 1)dv. (3.17)
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Similar to Theorem 1.2 in [8] and Section 2 (d) in [24], we have

Strτ [φ̃exp(−tD̃2
E)] = (

√
−1)

k
2

∫
M

Strε

[
ĉ(E, gE)kt(x, φ(x))

]
dx

= (
√
−1)

k
2

∫
M

Strε[ĉ(E, g
E)K(D̃2

E+∂t)−1(x, φ(x), t)]dx. (3.18)

We will compute the local index in this trivialization. Let (V, q) be a finite dimensional real vector space
equipped with a quadratic form. Let C(V, q) be the associated Clifford algebra, i.e., the associative algebra
generated by V with the relations v ·w+w ·v = −2q(v, w) for v, w ∈ V . Let {e1, · · · , en} be an orthomormal
basis of (V, q), let C(V, q)⊗̂C(V,−q) be the grading tensor product of C(V, q) and C(V,−q), and ∧∗V ⊗̂∧∗ V
be the grading tensor product of ∧∗V and ∧∗V . Define the symbol map:

σ : C(V, q)⊗̂C(V,−q)→ ∧∗V ⊗̂ ∧∗ V ; (3.19)

where σ(c(ej1) · · · c(ejl) ⊗ 1) = ej1 ∧ · · · ∧ ej1 ⊗ 1, σ(1 ⊗ ĉ(ej1) · · · ĉ(ejl)) = 1 ⊗ êj1 ∧ · · · ∧ êj1 . Using the
interior multiplication ι(ej) : ∧∗V → ∧∗−1V and the exterior multiplication ε(ej) : ∧∗V → ∧∗+1V , we
define representations of C(V, q) and C(V,−q) on the exterior algebra:

c : C(V, q)→ End ∧ V, ej 7→ c(ej) : ε(ej)− ι(ej); (3.20)

ĉ : C(V,−q)→ End ∧ V, ej 7→ ĉ(ej) : ε(ej) + ι(ej). (3.21)

The tensor product of these representations yields an isomorphism of superalgebras

c⊗ ĉ : C(V, q)⊗̂C(V,−q)→ End ∧ V (3.22)

which we will also denote by c. We obtain a supertrace (i.e., a linear functional vanishing on supercommu-
tators) on C(V, q)⊗̂C(V,−q) by setting Str(a) = StrEnd∧V [c(a)] for a ∈ C(V, q)⊗̂(V,−q), where StrEnd∧V is
the canonical supertrace on EndV .

Lemma 3.11. For 1 ≤ i1 < · · · < ip ≤ n,1 ≤ j1 < · · · < jq ≤ n, when p = q = n,

Str[c(ei1) · · · c(ein)ĉ(ei1) · · · ĉ(ein)] = (−1)
n(n+1)

2 2n (3.23)

and otherwise equals zero.

We will also denote the volume element in ∧V ⊗̂∧V by ω = e1∧· · ·∧en∧ ê1∧· · ·∧ ên. For a ∈ ∧V ⊗̂∧V ,
let Ta be the coefficient of ω. The linear functional T : ∧V ⊗̂ ∧ V → R is called the Berezin trace. Then for
a a ∈ C(V, q)⊗̂(V, .q) , we have Strs(a) = (−1)

n(n+1)
2 2n(Tσ)(a). We define the Getzler order as follows:

deg∂j =
1

2
deg∂t = −degxj = 1, degc(ej) = 1, degĉ(ej) = 0. (3.24)

Let Q ∈ Ψ∗V (Rn × R,∧∗T ∗M) have symbol

q(x, ξ, τ) ∼
∑
k≤m′

qk(x, ξ, τ), (3.25)

where qk(x, ξ, τ) is an order k symbol. Then taking components in each subspace ∧jT ∗M ⊗ ∧lT ∗M of
∧T ∗M ⊗ ∧T ∗M and using Taylor expansions at x = 0 give formal expansions

σ[q(x, ξ, τ)] ∼
∑
j,k

σ[qk(x, ξ, τ)](j,l) ∼
∑
j,k,α

xα

α!
σ[∂αx qk(0, ξ, τ)](j,l). (3.26)

The symbol xα

α! σ[∂αx qk(0, ξ, τ)](j,l) is the Getzler homogeneous of k + j − |α|. Therefore, we can expand
σ[q(x, ξ, τ)] as

σ[q(x, ξ, τ)] ∼
∑
j≥0

q(m−j)(x, ξ, τ), q(m) 6= 0, (3.27)

where q(m−j) is a Getzler homogeneous symbol of degree m− j.
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Definition 3.12. The integer m is called as the Getzler order of Q. The symbol q(m) is the principal Getzler
homogeneous symbol of Q. The operator Q(m) = q(m)(x,Dx, Dt) is called the model operator of Q.

Let e1, . . . , en be an oriented orthonormal basis of Tx0M such that e1, · · · , ea span Tx0M
φ and ea+1, · · · , en

span Nφ
x0

. This provides us with normal coordinates (x1, · · · , xn) → expx0
(x1e1 + · · · + xnen). Moreover

using parallel translation enables us to construct a synchronous local oriented tangent frame e1(x), ..., en(x)
such that e1(x), · · · , ea(x) form an oriented frame of TMφ

a and ea+1(x), · · · , en(x) form an (oriented) frame
Nτ (when both frames are restricted to Mφ). This gives rise to trivializations of the tangent and exterior
algebra bundles. Write

φ′(0) =

(
1 0
0 φN

)
= exp(Aij), (3.28)

where Aij ∈ so(n).
Let ∧(n) = ∧∗Rn be the exterior algebra of Rn. We shall use the following gradings on ∧(n)⊗̂ ∧ (n),

∧(n)⊗̂ ∧ (n) =
⊕

1 ≤ k1, k2 ≤ a
1 ≤ l1, l2 ≤ b

∧k1,l1(n)⊗̂ ∧k2,l2 (n), (3.29)

where ∧k,l(n) is the space of forms dxi1 ∧ · · · ∧ dxik+l with 1 ≤ i1 < · · · < ik ≤ a and a+ 1 ≤ ik+1 < · · · <
ik+l ≤ n. Given a form ω ∈ ∧(n)⊗̂∧(n), denote by ω(k1,l1),(k2,l2) its component in ∧(n)(k1,l1)⊗̂∧(k2,l2)(n). We

denote by |ω|(a,0),(a,0) the Berezin integral |ω(∗,0),(∗,0)|(a,0),(a,0) of its component ω(∗,0),(∗,0) in ∧(∗,0),(∗,0)(n).
Let A ∈ Cl(V, q)⊗̂Cl(V,−q), then

Str[φ̃A] = (−1)
n
2 2n(−1

4
)
b
2 det(1− φN )|σ(A)|((a,0),(a,0))

+(−1)
n
2 2n

∑
0≤l1<b,0≤l2≤b

|σ(φ̃)((0,l1),(0,l2))σ(A)((a,b−l1),(a,b−l2))|(n,n). (3.30)

In order to calculate Str[φ̃A], we need to consider the representation of |σ(φ̃)((0,b),(0,l2))σ(A)((a,0),(a,b−l2))|(n,n).
Let the matrix φN equal

φN =



A a
2+1

. . . 0
. . .

0 . . .

An
2


, A a

2+1 =

(
cosθ a

2+1 sinθ a
2+1

−sinθ a
2+1 cosθ a

2+1

)
, An

2
=

(
cosθn

2
sinθn

2

−sinθn
2

cosθn
2

)
.

(3.31)
From Lemma 3.2 in [20], then

Lemma 3.13. We have

φ̃ = (
1

2
)
n−a

2

n∏
j= a

2+1

[
(1 + cosθj)− (1− cosθj)c(e2j−1)c(e2j)ĉ(e2j−1)ĉ(e2j)

+sinθj
(
c(e2j−1)c(e2j)− ĉ(e2j−1)ĉ(e2j)

)]
. (3.32)
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Then we obtain

σ(φ̃)((0,b),(0,l2)) = (
1

2
)
n−a

2 σ
{ n∏
j= a

2+1

[
− (1− cosθj)c(e2j−1)c(e2j)ĉ(e2j−1)ĉ(e2j)

+sinθj
(
c(e2j−1)c(e2j)

)]}((0,b),(0,l2))

= (
1

2
)
n−a

2 ea+1 ∧ · · · ∧ enσ
{ n∏
j= a

2+1

[
− (1− cosθj)ĉ(e2j−1)ĉ(e2j) + sinθj

]}(0,l2)

= (
1

2
)
n−a

2 ea+1 ∧ · · · ∧ enσ
{ n∏
j= a

2+1

2sin
θj
2

[
cos

θj
2
− sin

θj
2
ĉ(e2j−1)ĉ(e2j)

]}(0,l2)

= (
1

2
)
n−a

2 ea+1 ∧ · · · ∧ endet
1
2 (1− φN )σ

[
exp
(
− 1

4

∑
1≤i,j≤n

Aij ĉ(ei)ĉ(ej)
)](0,l2)

= (
1

2
)
n−a

2 ea+1 ∧ · · · ∧ endet
1
2 (1− φN )σ

[
exp
(
− 1

4

∑
1≤i,j≤k

(L1)ij ĉ(fi)ĉ(fj)

−1

4

∑
1≤i,j≤n−k

(L2)k+i,k+j ĉ(hi)ĉ(hj)
)](0,l2)

. (3.33)

Next we calculate |σ(A)|((a,0),(a,b−l2)). In the following, we shall use the following “curvature forms”:
R′ := (Ri,j)1≤i,j≤a, R′′ := (Ra+i,a+j)1≤i,j≤b. Let

Ṙ =
1

4

∑
1≤α,β≤k

〈REfα, fβ〉ĉ(fα)ĉ(fβ),

R̈ =
1

4

∑
1≤s,t≤n−k

〈RE
⊥
hs, ht〉ĉ(hs)ĉ(ht);

and

˜̇R =
1

4

∑
1≤α,β≤k

〈(RE − L1)fα, fβ〉ĉ(fα)ĉ(fβ),

˜̈R =
1

4

∑
1≤s,t≤n−k

〈(RE
⊥
− L2)hs, ht〉ĉ(hs)ĉ(ht).

By (2.19), let F = D̃2
E , we get

Proposition 3.14. The model operator of F is

F(2) = −
n∑
r=1

(
∂r +

1

8

∑
1≤i,j,l≤n

〈RTM (ei, ej)el, er〉ylei ∧ ej
)2

+
1

8

∑
1≤i,j≤n

∑
1≤α,β≤k

〈RE(ei, ej)fβ , fα〉ei ∧ ej ĉ(fα)ĉ(fβ)

+
1

8

∑
1≤i,j≤n

∑
1≤s,t≤n−k

〈RE
⊥

(ei, ej)ht, hs〉ei ∧ ej ĉ(hs)ĉ(ht). (3.34)

From the representation of F(2), we get the model operator of ∂
∂t + D̃2

E is ∂
∂t + F(2). And we have

(
∂

∂t
+ F(2))KQ(−2)

(x, y, t) = 0. (3.35)

Similar to Lemma 2.9 in [7], we get
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Lemma 3.15. Let Q ∈ Ψ(−2)(Rn × R,∧(T ∗M)) be a parametrix for (F(2) + ∂t)
−1. Then

(1) Q has Getzler order -2 and its model operator is (F(2) + ∂t)
−1.

(2) For all t > 0,

(
√
−1)

k
2 ĉ(E, gE)I(F(2)+∂t)−1(0, t)

= (
√
−1)

k
2 ĉ(E, gE)

(4πt)−
a
2

det
1
2 (1− φN )

det
1
2

( tR′

2

sinh( tR
′

2 )

)
det−

1
2 (1− φNe−tR

′′
)exp

(
t( ˜̇R+ ˜̈R)

)
. (3.36)

Similar to Lemma 3.6 in [9]. we have

Lemma 3.16. Q ∈ Ψ∗V (Rn × R,∧(T ∗M)) has the Getzler order m and model operator Q(m). Then as
t→ 0+

(1) σ[IQ(0, t)](j,l) = O(t
j−m−a−1

2 ) , if m− j is odd.

(2) σ[IQ(0, t)](j,l) = O(t
j−m−a−2

2 )IQ(m)(0, 1)(j,l) +O(t
j−m−a

2 ), if m− j is even.
In particular, for m = −2 and j = a and a is even we get

σ[IQ(0, t)]((a,0),(a,b−l2)) = IQ(−2)(0, 1)((a,0),(a,b−l2)) +O(t
1
2 ). (3.37)

With all these preparations, we are going to prove the local even dimensional equivariant index theorem
for sub-signature operators. Substituting (3.33), (3.36) into (3.30), we obtain

lim
t→0

Strε

[
φ̃(x0)(

√
−1)

k
2 ĉ(E, gE)I(F+∂t)−1(x0, t)

]
= (−1)

n
2 2n(

1

2
)
n−a

2 (4π)−
a
2 (
√
−1)

k
2

∣∣Â(RM
φ

)νφ(RN
φ

)σ
[
ĉ(f1) · · · ĉ(fk)exp( ˜̇R+ ˜̈R)

]∣∣((a,0),n)
= (

1√
−1

)
k
2 2

n
2

{
Â(RM

φ

)νφ(RN
φ

)i∗Mφ

[
det

1
2

(
cosh

(RE
4π
− L1

2

))
×det

1
2

( sinh(R
E⊥

4π −
L2

2 )

RE⊥

4π −
L2

2

)
Pf
(RE⊥

4π
− L2

2

)]}(a,0)

(x0). (3.38)

Where we have used the algebraic result of Proposition 3.13 in [22] , and the Berezin integral in the right
hand side of (3.38) is the application of the following lemma.

Lemma 3.17. Let L1 ∈ so(k), L2 ∈ so(n− k), we have

|σ
[
ĉ(f1) · · · ĉ(fk)exp( ˜̇R+ ˜̈R)

]
|(n)

= (−1)
n−k

2 det
1
2

(
cosh

(RE − L1

2

))
det

1
2

( sinh(R
E⊥−L2

2 )

(RE⊥ − L2)/2

)
Pf
(RE⊥ − L2

2

)
. (3.39)

Proof. In order to compute this differential form, we make use of the Chern root algorithm (see [9]). Assume
that n = dimM and k = dimE are both even integers. As in [5], let L1 ∈ so(k), L2 ∈ so(n− k), we write

RE−L1 =



(
0 −θ1
θ1 0

)
0

. . .

0
(

0 −θ− k2
θ− k2

0

)
 , RE

⊥
−L2 =



(
0 −θ̂1
θ̂1 0

)
0

. . .

0
(

0 −θ̂n−k
2

θ̂n−k
2

0

)
 .

(3.40)
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Then we obtain

1

4

∑
1≤α,β≤k

〈(RE − L1)fα, fβ〉ĉ(fα)ĉ(fβ) =
1

2

∑
1≤α<β≤k

〈(RE − L1)fα, fβ〉ĉ(fα)ĉ(fβ)

=
1

2

∑
1≤j≤ k2

θj ĉ(f2j−1)ĉ(f2j); (3.41)

1

4

∑
1≤s,t≤n−k

〈(RE
⊥
− L2)hs, ht〉ĉ(hs)ĉ(ht) =

1

2

∑
1≤s<t≤n−k

〈(RE
⊥
− L2)hs, ht〉ĉ(hs)ĉ(ht)

=
1

2

∑
1≤l≤n−k2

θ̂lĉ(h2l−1)ĉ(h2l). (3.42)

Then the left hand side of (3.39) is∣∣∣σ(ĉ(f1) · · · ĉ(fk)exp( ˜̇R+ ˜̈R)
)∣∣∣(n)

=
∣∣∣σ(ĉ(f1) · · · ĉ(fk)

∏
1≤j≤ k2

exp(
1

2
θj ĉ(f2j−1)ĉ(f2j))

∏
1≤l≤n−k2

exp(
1

2
θ̂lĉ(h2l−1)ĉ(h2l))

)∣∣∣(n)
=

∣∣∣σ(ĉ(f1) · · · ĉ(fk)
∏

1≤j≤ k2

[
cos

θj
2
− sin

θj
2
ĉ(f2j−1)ĉ(f2j)

] ∏
1≤l≤n−k2

[
cos

θ̂l
2
− sin

θ̂l
2
ĉ(h2l−1)ĉ(h2l)

])∣∣∣(n)
= (−1)

n−k
2

∏
1≤j≤ k2

cos
θj
2

∏
1≤l≤n−k2

sin
θ̂l
2
. (3.43)

Now we consider the right hand side of (3.39),

(
RE − L1

)2p
= (−1)p



(
θ2p1 0

0 θ2p1

)
0

. . .

0
(
θ2pk

2

0

0 θ2pk
2

)
 . (3.44)

Then

det
1
2

(
cosh

(RE − L1

2

))
=

k
2∏
j=1

( ∞∑
p=0

(θj
2

)2p (−1)p

(2p)!

)
=

k
2∏
j=1

cosh

√
−1θj
2

=

k
2∏
j=1

e
√
−1θj
2 + e−

√
−1θj
2

2
=

k
2∏
j=1

cos
θj
2
.

(3.45)
Similarly, we have

det
1
2

( sinh(R
E⊥−L2

2 )

(RE⊥ − L2)/2

)
=

n−k
2∏
j=1

sin
θ̂j
2

θ̂j
2

. (3.46)

On the other hand,

Pf(
RE

⊥ − L2

2
) = T

(
exp
(∑
s<t

〈R
E⊥ − L2

2
hs, ht〉hs ∧ ht

))
= T

(
exp
( ∑
1≤j≤n−k2

θ̂j
2
h2j−1 ∧ h2j

))
=

n−k
2∏
j=1

θ̂j
2
.

(3.47)
Combining these equations, the proof of lemma 3.17 is complete.

To summarize, we have proved Theorem 3.9.
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3.2. The local odd dimensional equivariant index Theorem for sub-signature operators

In this section, we give a proof of a local odd dimensional equivariant index theorem for sub-signature
operators. Let M be an odd dimensional oriented closed Riemannian manifold. Using (2.19) in Section 2,
we may define the sub-signature operators D̃E . Let γ be an orientation reversing involution isometric acting
on M . Set dγ preserves E and E⊥ and preserves the orientation of E , then γ̃τ̂(E, gE) = τ̂(E, gE)γ̃, where
γ̃ is the lift on the exterior algebra bundle ∧T ∗M of γ. There exists a self-adjoint lift γ̃ : Γ(M ;∧(T ∗M))→
Γ(M ;∧(T ∗M)) of γ satisfying

γ̃2 = 1; D̃E γ̃ = −γ̃D̃E . (3.48)

Now the +1 and −1 eigenspaces of γ̃ give a splitting

Γ(M ;∧(T ∗M)) ∼= Γ+(M ;∧(T ∗M))⊕Γ−(M ;∧(T ∗M))) (3.49)

then the sub-signature operator interchanges Γ+(M ;∧(T ∗M)) and Γ−(M ;∧(T ∗M)), and ĉ(E, gE) preserves
Γ+(M ;∧(T ∗M)) and Γ−(M ;∧(T ∗M)).

Denotes by D̃+
E the restriction of D̃E to Γ+(M,∧(T ∗M)). We assume dimE = k is even, then (D̃E)ĉ(E, gE) =

ĉ(E, gE)(D̃E) and ĉ(E, gE) is a linear map from kerD̃±E to kerD̃±E .
The purpose of this section is to compute

indĉ(E,gE)[(D̃
+
E)] = Tr(ĉ(E, gE)|kerD̃+

E
)− Tr(ĉ(E, gE)|kerD̃+

E
). (3.50)

By the Mckean-Singer formular, we have

indĉ(E,gE)(D̃
+
E) =

∫
M

(
√
−1)

k
2 Tr[γ̃ĉ(E, gE)kt(x, γ(x))]dx

=

∫
M

(
√
−1)

k
2 Tr[γ̃ĉ(E, gE)K(F+∂t)−1(x, γ(x), t)]dx. (3.51)

Let

RE−L1 =



(
0 −θ1
θ1 0

)
0

. . .

0
(

0 −θ− k2
θ− k2

0

)
 , RE

⊥
−L2 =



(
0 −θ̂1
θ̂1 0

)
0

. . .

0
(

0 −θ̂n−k−1
2

θ̂n−k−1
2

0

)
0


;

(3.52)
and

Pf(
RE

⊥ − L2

2
) =

n−k−1
2∏
j=1

θ̂j
2
. (3.53)

Similar to Theorem 3.9, we get the main Theorem in this section.

Theorem 3.18. ( Local odd dimensional equivariant index Theorem for sub-signature operators )
Let x0 ∈Mγ , then

lim
t→0

Tr
[
γ̃(x0)ĉ(E, gE)I(F+∂t)−1(x0, t)

]
= −(

1√
−1

)
k
2−12

n
2

{
Â(RM

γ

)νφ(RN
γ

)i∗Mγ

[
det

1
2

(
cosh

(RE
4π
− L1

2

))
×det

1
2

( sinh(R
E⊥

4π −
L2

2 )

RE⊥

4π −
L2

2

)
Pf
(RE⊥

4π
− L2

2

)]}(a,0)

(x0). (3.54)
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