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Abstract. The goal of this paper is to study the number of limit
cycles that can bifurcate from the periodic orbits of a linear center
perturbed by nonlinear functions inside the class of all generalized
Liénard di¤erential equations allowing discontinuities.
In particular our results show that for any n � 1 there are

di¤erential equations of the form �x+f(x; _x) _x+x+sgn( _x)g(x) = 0,
with f and g polynomials of degree n and 1 respectively, having
[n=2] + 1 limit cycles, where [�] denotes the integer part function.

1. Introduction

The study of Liénard di¤erential equations has a long history and
a lot of results were obtained, see [12] for example. In 1977 Lins, de
Melo and Pugh studied the classical polynomial Liénard di¤erential
equations

�x+ f(x) _x+ x = 0 (1)

or equivalently a di¤erential system�
_x = y � F (x)
_y = �x

Here the dot denotes di¤erentiation with respect to the time t, f(x) is
a polynomial of degree n, with f(x) = F

0
(x). They conjectured in [5]

that the classical Liénard di¤erential equation of degree n > 1 has at
most [n=2] limit cycles, where [n=2] means the largest integer less than
or equal to n=2. They also proved that the conjecture is true for n = 2:
In [4] Chengzhi Li and Llibre proved the conjecture is is also true for
n = 3. The conjecture for n = 4 is still open. Recently De Maesschalck
and Dumortier proved in [8] that the classical Liénard equation of de-
gree n � 5 can have [n=2]+2 limit cycles, where [�] denotes the integer
part function. For n � 6 Dumortier, Panazzolo and Roussarie proved
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this conjecture is not true in [3].

In [9], the authors studied the number of limit cycles of the discontin-
uous classical Liénard di¤erential equations �x+f(x) _x+x+sgn( _x)g(x) =
0, with f and g polynomials of degree n and 1 respectively.
A large number of problems from mechanics and electrical engineer-

ing, theory of automatic control, economy, impact systems among oth-
ers cannot be described with smooth dynamical systems (see for in-
stance the book [2] and the references quoted therein). This is one
of the reasons that the study of non-smooth dynamical systems has
attracted many mathematicians. And of course in these problems the
detection of limit cycles is of fundamental importance.
Thus we have been motivated by the Liénard equations and by im-

portance of the non-smooth systems to study the limit cycles of the
discontinuous generalized Liénard polynomial di¤erential equations

�x+ f(x; _x) _x+ x+ sgn( _x)g(x) = 0 (2)

with f and g polynomials of degree n and 1; respectively. We study
the number of limit cycles which can bifurcate from the periodic orbits
of the linear center _x = y; _y = �x; perturbed inside the following class
of discontinuous generalized Liénard polynomial di¤erential systems

_x = y
_y = �x� " (f(x; y)y + sgn(y) (k1x+ k2))

(3)

where f is a polynomial of degree n 2 N and k1; k2 2 R In order to
prove our main result we �rst study the piecewise linear generalized
polynomial Liénard di¤erential systems

_x = y
_y = �x� " (f(x; y)y + 'w(y) (k1x+ k2))

(4)

where 'w : R! R is the piecewise linear function

'w(y) =

8><>:
�1; if y < �w
y

w
; if � w < y < w

1; if y > w

(5)

Observe that taking w ! 0 in (4) we obtain discontinuous generalized
Liénard polynomial di¤erential systems. The classical results for study-
ing the periodic orbits of di¤erential systems require that the systems
involved are of class at least C2. In 2004, Buica and Llibre [1] extended
the averaging theory for studying periodic orbits to continuous di¤er-
ential systems using mainly the Brouwer degree theory.
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Recently Llibre, Novaes and Teixeira [7]; using the theory of regulariza-
tion, developed the averaging theory of �rst order for studying periodic
orbits to discontinuous piecewise di¤erential systems with two systems.
The displacement function that we construct here is the same as in [7];
but adapted to the family of di¤erential equations we consider. More
precisely our main result are the following.

Theorem 1. For every n � 1 and j"j su¢ ciently small the maximum
number of limit cycles of piecewise generalized Liénard polynomial dif-
ferential systems bifurcating from the periodic orbits of the linear center
_x = y; _y = �x is [n=2] + 1. In order to guarantee that the limit cycles
dont vanishes then w ! 0; that is, to obtain the number of limit cycles
of discontinuous generalized Liénard polynomial systems (3) we have
the following result.

Corollary 2. For every n � 1 and j"j su¢ ciently small the maximum
number of limit cycles of discontinuous generalized Liénard polynomial
di¤erential systems (3) bifurcating from the periodic orbits of the linear
center _x = y; _y = �x is [n=2] + 1.
Comparing the mentioned result from [10]; that smooth generalized

Liénard polynomial di¤erential systems have at least [n=2] limit cycles
with corollary 2 we can say that the non-smooth generalized Liénard
polynomial di¤erential systems can have at least one more limit cycle
than the smooth ones. The proof of theorem 1 is based on the �rst-
order averaging method. In section 2 we will present this method in
the form obtained in [1] where di¤erentiability of the vector �eld is not
needed. Theorem 1 and corollary 2 are proved in sections 3 and 4
respectively.

2. The first-order averaging theory

Consider the di¤erential system

_x(t) = "F1(t; x) + "2R(t; x; "); (6)

where F1 : R � D ! Rn; R : R � D � (�"f ; "f ) ! Rn are continuous
functions, T -periodic in the �rst variable, and D is an open subset of
Rn: We de�ne F10 : D ! Rn as

F10(z) =
1

T

Z T

0

F1(s; z)ds;

and we assume that the following hypotheses (i) and (ii) hold.
(i) F1 and R are locally Lipschitz with respect to x.
(ii) F10(0) = 0 and there exists a neighborhood V of 0 such that
F10(z) 6= 0 for all z 2 �V nf0g and dB (F10; V; 0) 6= 0.
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So Then for j"j > 0 su¢ ciently small there exists a T -periodic
solution  (�; ") of system (6) such that  (0; ") ! 0 as " ! 0 The
expression dB (F10; V; 0) 6= 0 means that the Brouwer degree of the
function F10 : V ! Rn at the �xed point 0 is not zero.

3. Proof of Theorem 1

We shall need the rst-order averaging theory to prove Theorem 1.
In order to apply the �rst-order averaging method we write system (4)
in polar coordinates (r; �) where x = r cos (�), y = r sin (�), r > 0. In
this way system (4) is written in the standard form for applying the

averaging theory. If we write f(x; y) =
nP

i+j=0

aijx
iyj aixi then system

(4) becomes8>>>><>>>>:
_r = �"

 
nP

i+j=0

aijr
i+j+1 cosi � sinj+2 � + 'w(r sin �) (k1r cos � + k2) sin �

!
_� = �1� "

r

 
nP

i+j=0

aijr
i+j+1 cosi+1 � sinj+1 � + 'w(r sin �) (k1r cos � + k2) cos �

!
(7)

Taking � as the new independent variable system (7) becomes

dr

d�
= "

  
nX

i+j=0

air
i+j+1 cosi � sinj+2 �

!
+ 'w(r sin �) (k1r cos � sin � + k2 sin �)

!
+O

�
"2
�

where

'w(r sin �) =

8>>><>>>:
�1; if sin � < �w

r
r sin �

w
; if � w

r
< sin � <

w

r
1; if sin � >

w

r

(8)

and

F10(r) =
1

2�

Z 2�

0

  
nX

i+j=0

air
i+j+1 cosi � sinj+2 �

!
+'w(r sin �) (k1r cos � sin � + k2 sin �)) d�

We denote

F10(r) =
1

2�
(F10a(r) + F10b(r)) ;

where

F10a(r) =

Z 2�

0

 
nX

i+j=0

ai;jr
i+j+1 cosi � sinj+2 �

!
d�
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and

F10b(r) =

Z 2�

0

('w(r sin �) (k1r cos � sin � + k2 sin �)) d�

In order to calculate the exact expression of F10a we use the following
formulasZ 2�

0

cosi � sinj+2 �d� =

�
0 if i is odd, or j is odd
��ij if i is even and j is even,

Z 2�

0

cosi � sin �d� = 0; for i = 0; 1; : : :

Hence

F10a(r) =
nX

i+j=0

i even, j even

��ijaijr
i+j+1 (9)

In order to calculate the expression of F10b we de�ne for each r1 > 0
the function

I1 (r1; w) =
R 2�
0
('w (r1 sin �) (k1r cos � sin � + k2 sin �)) d�

=

8><>:
�k2

r1
w

0 < r1 � w

2k2

 
r1
w
arccsc

�r1
w

�
+

p
r21 � w2

r1

!
r1 � w

(10)
Thas the averaged function F10 is given by

F10 (r1) =

0BB@ nX
i+j=0

i even, j even

��ijaijr
i+j+1
1

1CCA+ I1 (r1; w) ;

We have to �nd the zeroes of equation F10 (r1) = 0:We shall divide our
study in two cases. At really, we are interested just in the zeroes for
r1 > w; but we shall also consider the case 0 < r1 � w for completion.
If we write
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F I10 (r1) =
1

2�

0BB@
0BB@ nX

i+j=0

i even, j even

��ijaijr
i+j+1
1

1CCA+ �k2
r1
w

1CCA

=
r1
2

0BB@
0BB@ nX

i+j=0

i even, j even

�ijaijr
i+j
1

1CCA+ k2
w

1CCA

=
r1
2

0BB@
0BB@ nX

i+j=2

i even, j even

�ijaijr
i+j
1

1CCA+ ��00a00 + k2
w

�1CCA
and

F II10 (r1) =
1

2�

0BB@ nX
i+j=0

i even, j even

��ijaijr
i+j+1
1 + 2k2

 
r1
w
arccsc

�r1
w

�
+

p
r21 � w2

r1

!1CCA
then

F10 (r1) =

�
F I10 (r1) ; r1 < w
F II10 (r1) ; r1 � w

From now we take w small so that there are no zeros of F10 in the
interval (0; w) as F I10 is a polynomial and r1 = 0 is a root, we can
assure that there is such interval.
Now we study the existence of zeros for r1 > w: Denote

I (r1; w) = 2

 
r1
w
arccsc

�r1
w

�
+

p
r21 � w2

r1

!
;

We have:

(i) For each w �xed
@2I (r1; w)

@r21
= � 4w2

r3
p
r2 � w2

< 0 so the graph of

I(:; w) is concave.

(ii) For each w �xed
@I (r1; w)

@r1
=
2

w
arccsc

�r1
w

�
� 2

p
r21 � w2

r21
and,

(iia) lim
r1!w

@I

@r1
(r1; w) =

�

w
; and,
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(iib) lim
r1!1

@I

@r1
(r1; w) = 0:

By (i) we have that
@I

@r1
is decreasing. Then by (i), (iia) and (iib) we

obtain that
@I

@r1
(r1; w) > 0; so the graph of I(:; w) is strictly increas-

ing. Moreover as
@I

@r1
(r1; w) <

�
w
it follows that the graph of I(:; w) is

below of the straight line
�

w
r1.

(iii) lim
r1!1

I (r1; w) = 4; I(:; w) : (0;1)! (0; 4) and I is aC1-di¤eomorphism.

Thus the averaging function F10 is C1 Now we need solve
nX

i+j=0

i even, j even

��ijaijr
i+j+1
1 + k2I (r1; w) = 0; (11)

For simpli�cation, we denote k2 = �.
Note that, if n is odd, then (11) writes as

� r1

0BB@ n�1X
i+j=0

i even, j even

��ijaijr
i+j
1

1CCA = I (r1; w) ; (12)

while if n is even, then (11) writes as

� r1

0BB@ nX
i+j=0

i even, j even

��ijaijr
i+j
1

1CCA = I (r1; w) ; (13)

The left hand sides of equations (12) and (13) are polynomials of odd
degree, with zero as a root. Both systems have the same number of
solutions. From now we consider n even, so we will prove the existence
of
n

2
+ 1 limit cycles. The greatest integer function [n=2] + 1 is needed

just to deal with the case n odd, and the adaptation of the proof is
straightforward. Denote

P (r1) = �r1P0 (r1) (14)

Note that:
i) lim
r1!w+

I (r1; w) = � and lim
r1!1

I (r1; w) = 4,

ii) P(0) = 0 and the polynomial P has at most
n

2
positive roots (the

nonzero roots are symmetric)
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iii) P 0 (r1) is a polynomial of degree n; and its zeros are also symmetric,
so there are at most n=2 positive critical points (maxima or minima).

So if P 0(0) > 0 then equation (13) has at most
n

2
+ 1 solutions, and

if P 0(0) < 0; then equation (13) has at most
n

2
solutions. We note

that condition (iii) shows that there are no more than two solutions for
equation (13) between two zeroes of P.

4. Proof of Corollary 2

Let � = fy = 0g be a section for the �ow of (3) and (4): De-
�ne P0 : � ! � Pw : � ! � the �rst map associated to (3) and
(4) respectively. Note that both maps P0 and Pw are analytic for
w > 0; because: i) P0 is a composition of two analytic functions: the
Poincaré maps of (3) for y > 0 and y < 0, considering the cross sec-
tion y = 0; and ii) Pw is a compositions of four analytic functions,
the Poincaré maps of (4) with respect to the cross sections y = �!
Moreover limw!0 Pw = P0 (see [11]).
Now, from Theorem 1 we have that:
Case 1) If r < w; then we can discard Pw; as r ! 0 when w ! 0;

and all limit cycles for r < w disappears.
Case 2) If r > w for each w > 0; Pw has at most [n=2] + 1 �xed

point �yiw 2 �; i = 1; : : : ; [n=2]+1; with �yiw 6= 0: For each �yiw there exists
a �ri1;w > w that satisfy (11): These points are the points of intersection
between the graph of the function I1(; w) and the curve h (r1). We will
show that these points are stable. Now note that for each r1 > w we

have (i)
@I1
@w

=
2

w2

�
w
p
r2 � w2

r
� r arccsc

� r
w

��
(ii) lim

r!w

@I1
@w

(r1; w) = �
�

w

(iii) lim
r!1

@I1
@w

(r1; w) = 0

(iv)
@2I1
@r@w

=
2

w2

�
w (w2 + r2)

r2
p
r2 � w2

� arccsc
� r
w

��
(v) If f1(r; w) =

w (w2 + r2)

r2
p
r2 � w2

�arccsc
� r
w

�
then lim

r!w
f1(r; w) = +1 and

lim
r!1

f1(r; w) = 0: Moreover

@f1
@r
(r; w) = �2w

3
p
r2 � w2 (2r2 � w2)

r (r3 � rw2)2
< 0
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then we can conclude

@2I1
@r@w

=
2

w2

�
w (w2 + r2)

r2
p
r2 � w2

� arccsc
� r
w

��
> 0:

By (i) to (v) we obtain
@I1
@w
(r; w) < 0: So for r1 �xed with r1 > w

we have I1 (r1; :) decreasing with w: This implies that if w1 > w2 then
�ri1;w1 < �r

i
1;w2

Moreover an upper bounded of �ri1;w for i = 1; : : : ; [n=2]+1
is 4: This implies that limw!0 �r

i
1;w = �r

i
1 exists and 0 < w < �ri1 � 4; for

each i = 1; : : : ; [n=2]+1 From those arguments it follows that the �xed
point �ri1;w; i = 1; : : : ; [n=2] + 1 of the averaging equation associated to
the �xed point �yiw of Pw have a non- zero limit when w ! 0: This
implies that �yiw ! �yi and �yi 6= 0; for each i = 1; : : : ; [n=2] + 1: Now
as limw!0 Pw (�y

i
w) = P0 (�y

i) we obtain P0 (�yi) = �yi: This concludes the
proof of corollary 2.
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