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Abstract. In this article, we study the zero-Hopf bifurcation of
a quartic system in the three-dimensional space which can be ob-
tained from a scalar the third order ordinary di¤erential equation

...
x + a�x+ b _x+ cx+ h(x) = 0:

where a; b; c are parameters and the dot indicates derivative with
respect to the time t. For doing this, some adequate change in
parameters must be done in order that the computations become
easier.

1. Introduction and statement of the main results

In [2] the authors studied the existence of zero-Hopf bifurcations of
the third-order ordinary di¤erential equation

...
x + a�x+ b _x+ cx� x2 = 0; (1)

which is commonly known as the Genesio equation.
Here, we study the existence of zero-Hopf bifurcations of the di¤er-

ential equation
...
x + a�x+ b _x+ cx+ h(x) = 0; (2)

where h(x) = �x2 + x4 et a; b; c 2 R.
By de�ning of the variables y = _x, z = _y and _z = w, di¤eren-

tial equation (2) can be written as the system of nonlinear di¤erential
equations 8<: _x = y

_y = z
_z = �cx� by � az + x2 � x4

(3)

The objective is to study the existence of zero Hopf equilibria and of
zero Hopf bifurcations in the system (3). We recall that a zero Hopf
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equilibrium of a three dimensional autonomous di¤erential system is an
isolated equilibrium point of system whose linear part at the equilib-
rium has a zero eigenvalue and a pair of purely imaginary eigenvalues.
Usually the main tool for studying a zero Hopf bifurcation is to pass

the system to the normal form of a zero-Hopf bifurcation. However, our
analysis of the zero Hopf bifurcation occurring in the system (3) will
use the averaging theory, a summary of the results of this theory that
we need here is given in section 2. The averaging theory has already
been used to study Hopf and zero-Hopf bifurcations in some others
di¤erential systems, see for instance [[1]; [3]; [4]; [5]].
Proposition 1. Di¤erential system (3) has a unique zero Hopf

equilibrium localized at the origin of coordinates when a = c = 0 and
b > 0.
Theorem 2. Consider the system (3) with the parameters a =

"�; b = !2 + "� and c = ", with ! > 0 and " a su ciently small
parameter. Then this system exhibits a zero-Hopf bifurcation at the
equilibrium point located at the origin of coordinates when " = 0 if
��2!4 > 0. Moreover, the periodic orbit (x(t; "); y(t; "); z(t; ")) bifur-
cating from this equilibrium point satis es that (x(0; "); y(0; "); z(0; "))
is

"

 
( � �!2)

2
�
p
�2!4�2 + 2 2

2
; 0;
!2 ( � �!2)

2

!
+O

�
"2
�

if " > 0 is su¢ ciently small. If �� = (��!2 �
p
3�2!4 � 2 2)= (2!3)

then, then this periodic orbit is stable when Re(��) < 0, and unstable
if Re(�+) > 0 or Re(��) > 0.

2. Preliminaries

2.1. Averaging theory. In this subsection we present some basic re-
sults on the averaging theory, which will be used in the proof of The-
orem 2. For a general introduction to the averaging theory see for
instance the book of Sanders, Verhulst and Murdock [6].
Consider the following initial value problem

_x = "F (t; x) + "2G(t; x; "); x (0) = x0, (4)

and the averaged di¤erential equation

_y = "f(y); y(0) = x0. (5)

In equations (4) and (5), x; y 2 D, where D � Rn is an open set,
t 2 [0;1) and " is a small positive parameter. The functions F :
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[0;1) � D ! Rn and G : [0;1) � D � (0; "0] ! Rn are assumed be
periodic of period T in the variable t, and f : D ! Rn is given by

f(y) =
1

T

Z T

0

F (t; y) dt. (6)

The next theorem establishes that, under certain conditions, the equi-
librium points of the averaged equation (5) correspond to T -periodic
solutions of system (4). See [7] for a proof.
Theorem 3. Consider the initial value problems (4) and (5) and

suppose that F , its Jacobian DxF , its Hessian DxxF , G and its Ja-
cobian DxG are continuous and bounded by a constant independent
of " in [0;1) � D and " 2 (0; "0]. Further we assume that F and
G are T�periodic in t, with T independent of ". Then the following
statements hold.
(a) For t 2 [0; 1="] we have x(t)� y(t) = O(") as "! 0:
(b) If p is an equilibrium point of system (5) such that

detDyf(p) 6= 0; (7)

then there exists a periodic solution x(t; ") of period T of system (4)
such that x(0; ")� p = O(") as "! 0.
(c) If all the real parts of the eigenvalues of the matrix Dyf(p) are

negative, then the periodic solution x(t; ") is stable. If some real part of
the eigenvalues is positive, then the periodic solution x(t; ") is unstable.

3. Proof of Proposition 1 and Theorem 2

Proof of Proposition 1.
We saw that the characteristic polynomial of the linear part of system

(3) at the equilibrium point xc = (c; 0; 0) is q(�) = �
3 + a�2 + b� + c.

We want to �nd the parameter values for which the polynomial q has a
zero eigenvalue and a pair of purely imaginary eigenvalues, that is the
parameter values for which q is of the form ��

�
�2 + b

�
with b > 0. In

order to simplify the expressions, we will put b = !2, with ! > 0. Thus,
imposing the condition q(�) = ��

�
�2 + !2

�
, we obtain that a = c = 0

and b > 0. Hence, when a = c = 0 and b > 0 there is a unique zero-
Hopf equilibrium point at the origin of coordinates. Moreover, if we
put b = !2, with ! > 0, then the eigenvalues are 0 and �i!. This
completes the proof of Proposition 1.
Proof of Theorem 2.
We shall use the averaging theory of �rst order described in sub-

section 2:1 (see Theorem 3) in order to study if from the double
zero-Hopf equilibrium point located at the origin of coordinates, it
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bifurcates some periodic orbit by moving the parameters a; b; c of sys-
tem (3). Thus, let the parameters a; b; c of system (3) be given by
a = "�; b = !2 + "�; c = " with " > 0 a su¢ ciently small parameter.
Then, the system (3) becomes8<: _x = y

_y = z
_z = �"x� (!2 + "�) y � "�z + x2 � x4

(8)

The �rst step in order to write our di¤erential system (8) in the normal
form for applying the averaging theory is to write the linear part at the
origin of system (8) when " = 0 into its real Jordan normal form, that
is into the form 0@ 0 �! 0

! 0 0
0 0 0

1A
To do this, we apply the linear change of variables (x; y; z)! (X; Y; Z)
where

x =
Z � !X
!2

; y = Y; z = !X: (9)

In the new variables (X; Y; Z), system (8) becomes

_X = (� !4X4 + !6X2 � Y !10 + !4Z2 � Z4 + 4!3X3Z � 2!5XZ + 4!XZ3

�6!2X2Z2)=!9 +
�
 !7X �  !6Z � Y !8� � �!9X

�
"=!9;

_Y = !X; (10)
_Z = (!6X2 � 2!5XZ + !4Z2 � !4X4 + 4!3X3Z � 6!2X2Z2 + 4!XZ3 � Z4)=!8

+
�
 !7X �  !6Z � Y !8� � �!9X

�
"=!8:

Nowwe re-scale the variables (X; Y; Z) as follows (X; Y; Z)! ("u; "v; "w).Then
system (10) becomes

_u = �v! + ( !7u�  !6w � �!9u+ !6u2 � v!8� + !4w2 � 2!5uw)"=!9

+(�!4u4 � w4 + 4!3u3w + 4! uw3 � 6!2u2w2)"3=!9;
_v = !u; (11)

_w =
�
 !7u�  !6w � v!8� � �!9u+ !6u2 � 2!5uw + !4w2

�
"=!8;

+
�
�!4u4 � w4 + 4!3u3w + 4! uw3 � 6!2u2w2

�
"3=!8:
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Now we pass the di¤erential system (11) to cylindrical coordinates
(r; �; w) de�ned by u = r cos � and v = r sin � and we obtain

_r = cos (�) " (�"2!4r4 (cos (�))4 � "2w4 + 4 "2!3r3 (cos (�))3w + 4 "2! r cos (�)w3

�6 "2!2r2 (cos (�))2w2 +  !7r cos (�)�  !6w � �!9r cos (�) + !6r2 (cos (�))2

�r sin (�)!8� + !4w2 � 2!5r cos (�)w)=!9;
_� = �(� sin (�) "3!4r4 (cos (�))4 � sin (�) "3w4 + 4 sin (�) "3!3r3 (cos (�))3w

+4 sin (�) "3! r cos (�)w3 � 6 sin (�) "3!2r2 (cos (�))2w2

+sin (�)!7"  r cos (�)� sin (�)  !6"w � sin (�)!9" � r cos (�) (12)

+sin (�)!6" r2 (cos (�))2 + sin (�)!4"w2 � 2 sin (�)!5" r cos (�)w
+!8"r� (cos (�))2 � !8" r� � r!10)=r!9

_w = "(�"2!4r4 (cos (�))4 � "2w4 + 4 "2!3r3 (cos (�))3w + 4 "2! r cos (�)w3

�6 �2!2r2 (cos (�))2w2 +  !7r cos (�)�  !6w � �!9r cos (�) + !6r2 (cos (�))2

�r sin (�)!8� + !4w2 � 2!5r cos (�)w)=!8

In system (12) we take as the new independent variable, and we get

dr

d�
= "F1 (�; r; w) (13)

dw

d�
= "F2 (�; r; w)

where

F1 (�; r; w) = cos (�) ( !3r cos (�)�  !2w � �!5r cos (�)
+!2r2 (cos (�))2 � r sin (�)!4� + w2 � 2! r cos (�))w=!6

F2 (�; r; w) =  !3r cos (�)�  !2w � �!5r cos (�) + !2r2 (cos (�))2

�r sin (�)!4� + w2 � 2! r cos (�)w=!5

Using the notation of subsection 2:1, we have t = �; T = 2�; x = (r; w)T

and

F (�; r; w) =

�
F1 (�; r; w)
F2 (�; r; w)

�
and f (r; w) =

�
f1 (r; w)
f2 (r; w)

�
:

It is immediate to check that system (13) satis�es all the assumptions
of Theorem 4.
Now we compute the integrals (6). We obtain that

f1 (r; w) =
1

2�

Z 2�

0

F1 (�; r; w) d� =
r (�2w +  !2 � �!4)

2!5
;

f2 (r; w) =
1

2�

Z 2�

0

F2 (�; r; w) d� = �
2  !2w � !2r2 � 2w2

2!5
:
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The system f1 (r; w) = f2 (r; w) = 0 has a unique solution (r; w) with
r� > 0, namely

r� =

p
�2!4�2 + 2 2!

2
; w� =

!2 ( � �!2)
2

The Jacobian (7) at (r; w) takes the value

det
@ (f1; f2)

(r; w)

����
(r;w)=(r�;w�)

=
2 � �2!4
2!6

which is nonzero by hypothesis. Moreover the eigenvalues of the Jaco-
bian matrix

@ (f1; f2)

(r; w)

����
(r;w)=(r�;w�)

are given by

(��!2 �
p
3�2!4 � 2 2)=

�
2!3
�

The rest of the proof of Theorem 2 follows immediately from Theorem
3 if we show that the periodic solution corresponding to (r; w) pro-
vides a periodic orbit bifurcating from the origin of coordinates of the
di¤erential system (8) at " = 0.
Theorem 4 garantes for " > 0 su¢ ciently small the existence of a

periodic solution (r(�; "); w(�; ")) of system (13) such that

(r(0; "); w(0; "))!
 p

�2!4�2 + 2 2!
2

;
!2 ( � �!2)

2

!
when "! 0. From the second equation of system (12) we obtain that
�(t; �) = !t + O("). Moreover, we have that (r(t; "); � (t; ") ; w(t; ")) is
a periodic solution of system (12) such that

(r(0; "); � (0; ") ; w(0; "))!
 p

�2!4�2 + 2 2!
2

; 0;
!2 ( � �!2)

2

!
when "! 0. So for " > 0 su¢ ciently small system (11) has the periodic
solution

(u(t; "); v(t; "); w(t; ")) = (r(t; ") cos(t; "); r(t; ") sin(t; "); w(t; "));

such that

(u(0; "); v (0; ") ; w(0; "))!
 p

�2!4�2 + 2 2!
2

; 0;
!2 ( � �!2)

2

!
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when "! 0. This periodic solution in the di erential system (10) writes
as (X(t; "); Y (t; "); Z(t; ")) = ("u(t; "); "v(t; "); "w(t; ")), and it satis�es
that

(X(0; "); Y (0; "); Z(0; "))!
 p

�2!4�2 + 2 2!"
2

; 0;
!2 ( � �!2) "

2

!
when "! 0. Finally, we have that system (8) has the periodic solution
(x(t; "); y(t; "); z(t; ")) obtained from solution (X(t; "); Y (t; "); Z(t; "))
through the change of variables (9). It satis es that (x(0; "); y (0; ") ; z(0; "))
is

"

 
( � �!2)

2
�
p
�2!4�2 + 2 2

2
; 0;
!2 ( � �!2)

2

!
+O

�
"2
�

if " is su¢ ciently small. Thus (x(0; "); y(0; "); z(0; "))! (0; 0; 0) when
" ! 0. Therefore, it is a periodic solution starting at the zero-Hopf
equilibrium point located at the origin of coordinates when " = 0. This
completes the proof of Theorem 2.
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