Acknowledgements
This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (NRF-2018R1A2B6008850). This work was
partially supported by the Basic Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2017M2A2A6A01071261).
REFERENCES
Ackroyd, R., Kelty, C., Brown, N., & Reed, M. (2001). The history of
photodetection and photodynamic therapy. Photochemistry and
Photobiology, 74 (5), 656-669. doi:Doi
10.1562/0031-8655(2001)074<0656:Thopap>2.0.Co;2
Allison, R. R., Cuenca, R. E., Downie, G. H., Camnitze, P., Brodish, B.,
& Sibata, C. H. (2005). Clinical photodynamic therapy of head and neck
cancers-A review of applications and outcomes. Photodiagnosis and
Photodynamic Therapy, 2 (3), 205-222. doi:10.1016/S1572-1000(05)00092-X
Bogdan, N., Vetrone, F., Ozin, G. A., & Capobianco, J. A. (2011).
Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly
Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano
Letters, 11 (2), 835-840. doi:10.1021/nl1041929
Chatterjee, D. K., Gnanasammandhan, M. K., & Zhang, Y. (2010). Small
Upconverting Fluorescent Nanoparticles for Biomedical Applications.Small, 6 (24), 2781-2795. doi:10.1002/smll.201000418
DeRosa, M. C., & Crutchley, R. J. (2002). Photosensitized singlet
oxygen and its applications. Coordination Chemistry Reviews, 233 ,
351-371. doi 10.1016/S0010-8545(02)00034-6
Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current clinical
and preclinical photosensitizers for use in photodynamic therapy.Journal of Medicinal Chemistry, 47 (16), 3897-3915.
doi:10.1021/jm040074b
Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003).
Photodynamic therapy for cancer. Nature Reviews Cancer, 3 (5),
380-387. doi:10.1038/nrc1071
Dong, H., Sun, L. D., & Yan, C. H. (2015). Energy transfer in
lanthanide upconversion studies for extended optical applications.Chemical Society Reviews, 44 (6), 1608-1634.
doi:10.1039/c4cs00188e
Dougherty, T. J. (1987). Photosensitizers - Therapy and Detection of
Malignant-Tumors. Photochemistry and Photobiology, 45 (6),
879-889. doi:DOI 10.1111/j.1751-1097.1987.tb07898.x
Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D.,
Korbelik, M., . . . Peng, Q. (1998). Photodynamic therapy.Jnci-Journal of the National Cancer Institute, 90 (12), 889-905.
doi:DOI 10.1093/jnci/90.12.889
Du, Y. P., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., & Wang, Q. B.
(2010). Near-infrared Photoluminescent Ag2S Quantum Dots from a Single
Source Precursor. Journal of the American Chemical Society,
132 (5), 1470-+. doi:10.1021/ja909490r
Ferro, S., Ricchelli, F., Mancini, G., Tognon, G., & Jori, G. (2006).
Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by
liposome-delivered photo sensitising agents. Journal of
Photochemistry and Photobiology B-Biology, 83 (2), 98-104.
doi:10.1016/j.jphotobiol.2005.12.008
Hone, D. C., Walker, P. I., Evans-Gowing, R., FitzGerald, S., Beeby, A.,
Chambrier, I., . . . Russell, D. A. (2002). Generation of cytotoxic
singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A
potential delivery vehicle for photodynamic therapy. Langmuir,
18 (8), 2985-2987. doi:10.1021/la0256230
Ideta, R., Tasaka, F., Jang, W. D., Nishiyama, N., Zhang, G. D., Harada,
A., . . . Kataoka, K. (2005). Nanotechnology-based photodynamic therapy
for neovascular disease using a supramolecular nanocarrier loaded with a
dendritic photosensitizer. Nano Letters, 5 (12), 2426-2431.
doi:10.1021/nl051679d
Kim, H., Lee, H., Lee, D., Kim, S., & Kim, D. (2007). Asymmetric total
syntheses of (+)-3-(Z)-laureatin and (+)-3-(Z)-isolaureatin by “lone
pair− lone pair interaction-controlled” isomerization. Journal of
the American Chemical Society, 129 (8), 2269-2274.
Konan, Y. N., Gurny, R., & Allemann, E. (2002). State of the art in the
delivery of photosensitizers for photodynamic therapy. Journal of
Photochemistry and Photobiology B-Biology, 66 (2), 89-106. doi:
10.1016/S1011-1344(01)00267-6
Levy, J. G., & Obochi, M. (1996). New applications in photodynamic
therapy - Introduction. Photochemistry and Photobiology, 64 (5),
737-739. doi: 10.1111/j.1751-1097.1996.tb01828.x
Li, B. H., Moriyama, E. H., Li, F. G., Jarvi, M. T., Allen, C., &
Wilson, B. C. (2007). Diblock copolymer micelles deliver hydrophobic
protoporphyrin IX for photodynamic therapy. Photochemistry and
Photobiology, 83 (6), 1505-1512. doi:10.1111/j.1751-1097.2007.00194.x
Li, K., Jiang, Y. H., Ding, D., Zhang, X. H., Liu, Y. T., Hua, J. L., .
. . Liu, B. (2011). Folic acid-functionalized two-photon absorbing
nanoparticles for targeted MCF-7 cancer cell imaging. Chemical
Communications, 47 (26), 7323-7325. doi:10.1039/c1cc10739a
Li, X. M., Zhang, F., & Zhao, D. Y. (2013). Highly efficient lanthanide
upconverting nanomaterials: Progresses and challenges. Nano Today,
8 (6), 643-676. doi:10.1016/j.nantod.2013.11.003
Li, Z., & Zhang, Y. (2008). An efficient and user-friendly method for
the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with
controllable shape and upconversion fluorescence. Journal of
Nanotechnology, 19 (34), 345606.
Liu, Z., Cai, W. B., He, L. N., Nakayama, N., Chen, K., Sun, X. M., . .
. Dai, H. J. (2007). In vivo biodistribution and highly efficient tumour
targeting of carbon nanotubes in mice. Nature Nanotechnology,
2 (1), 47-52. doi:10.1038/nnano.2006.170
Meier, R., Henning, T. D., Boddington, S., Tavri, S., Arora, S.,
Piontek, G., . . . Daldrup-Link, H. E. (2010). Breast Cancers: MR
Imaging of Folate-Receptor Expression with the Folate-Specific
Nanoparticle P1133. Radiology, 255 (2), 527-535.
doi:10.1148/radiol.10090050
Naccache, R., Vetrone, F., Mahalingam, V., Cuccia, L. A., & Capobianco,
J. A. (2009). Controlled Synthesis and Water Dispersibility of Hexagonal
Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chemistry of Materials,
21 (4), 717-723. doi:10.1021/cm803151y
Nawalany, K., Rusin, A., Kepczynski, M., Mikhailov, A., Kramer-Marek,
G., Snietura, M., . . . Nowakowska, M. (2009). Comparison of
photodynamic efficacy of tetraarylporphyrin pegylated or encapsulated in
liposomes: In vitro studies. Journal of Photochemistry and
Photobiology B-Biology, 97 (1), 8-17.
doi:10.1016/j.jphotobiol.2009.07.005
Wang, C., Tao, H. Q., Cheng, L., & Liu, Z. (2011). Near-infrared light
induced in vivo photodynamic therapy of cancer based on upconversion
nanoparticles. Biomaterials, 32 (26), 6145-6154.
doi:10.1016/j.biomaterials.2011.05.007
Wang, F., Banerjee, D., Liu, Y. S., Chen, X. Y., & Liu, X. G. (2010).
Upconversion nanoparticles in biological labeling, imaging, and therapy.Analyst, 135 (8), 1839-1854. doi:10.1039/c0an00144a
Wang, F., & Liu, X. G. (2009). Recent advances in the chemistry of
lanthanide-doped upconversion nanocrystals. Chemical Society
Reviews, 38 (4), 976-989. doi:10.1039/b809132n
Wang, J., Liu, G., & Jan, M. R. J. J. o. t. A. C. S. (2004).
Ultrasensitive electrical biosensing of proteins and DNA:
carbon-nanotube derived amplification of the recognition and
transduction events. 126 (10), 3010-3011.
Wilson, B. C. (2002). Photodynamic therapy for cancer: Principles.Canadian Journal of Gastroenterology, 16 (6), 393-396. doi:Doi
10.1155/2002/743109
Woodburn, K., & Kessel, D. (1994). The Alteration of
Plasma-Lipoproteins by Cremophor El. Journal of Photochemistry and
Photobiology B-Biology, 22 (3), 197-201. doi:Doi
10.1016/1011-1344(93)06968-9
Woolley, A. T., Guillemette, C., Cheung, C. L., Housman, D. E., &
Lieber, C. M. (2000). Direct haplotyping of kilobase-size DNA using
carbon nanotube probes. Nature Biotechnology, 18 (7), 760-763.
doi:Doi 10.1038/77760
Zhang, G. D., Harada, A., Nishiyama, N., Jiang, D. L., Koyama, H., Aida,
T., & Kataoka, K. (2003). Polyion complex micelles entrapping cationic
dendrimer porphyrin: effective photosensitizer for photodynamic therapy
of cancer. Journal of Controlled Release, 93 (2), 141-150.
doi:10.1016/j.jconrel.2003.05.002
Zhang, P., Steelant, W., Kumar, M., & Scholfield, M. (2007). Versatile
photosensitizers for photodynamic therapy at infrared excitation.Journal of the American Chemical Society, 129 (15), 4526-+.
doi:10.1021/ja0700707
Zhao, L., Kim, T. H., Ahn, J. C., Kim, H. W., & Kim, S. Y. (2013).
Highly efficient ”theranostics” system based on surface-modified gold
nanocarriers for imaging and photodynamic therapy of cancer.Journal of Materials Chemistry B, 1 (42), 5806-5817.
doi:10.1039/c3tb20933d
Zhou, J., Liu, Z., & Li, F. Y. (2012). Upconversion nanophosphors for
small-animal imaging. Chemical Society Reviews, 41 (3), 1323-1349.
doi:10.1039/c1cs15187h
Zhou, J., Yu, M. X., Sun, Y., Zhang, X. Z., Zhu, X. J., Wu, Z. H., . . .
Li, F. Y. (2011). Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4
nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials,
32 (4), 1148-1156. doi:10.1016/j.biomaterials.2010.09.071