REFERENCES
[1] B. Thomas. Something to shout about. Risk. 1993; 6: 56–58.
[2] T.H.F. Cheuk, T.C.F. Vorst. Shout Floors. Net Exposure, 2 November 1997.
[3] P. Jaillet, E.I. Ronn, S. Tompaidas. Valuation of commodity-based “swing” options. Proceedings of the Eighth Annual Derivative Securities Conference, Boston, 1998. [4] H. Windcliff, P. A. Forsyth, K. R. Vetzal. Shout options: A framework for pricing contracts which can be modified by the investor.J COMPUT APPL MATH. 2001; 134:213–241. DOI: 10.1016/S0377-0427(00)00551-3.
[5] R. Mallier, J. Goard. Integral equation formulation for shout options. ANZIAM J . 2018; 60: 65–85.
DOI: 10.1017/S1446181118000160.
[6] M. Dai, Y. K. Kwok , L. Wu. Optimal shouting policies of options with strike reset right. MATH FINANC. 2004; 14(3):383–401. DOI: 10.1111/j.0960-1627.2004.00196.x. [7] H. Windcliff, M.K Le Roux, P.A. Forsyth, K.R. Vetzal. Understanding the behavior and hedging of segregated funds offering the reset feature. N Am Actuar J. 2002; 6:107–125. DOI: 10.1080/10920277.2002.10596047. [8] J. Goard. Exact solutions for a strike reset put option and a shout call option. MATH COMPUT MODEL. 2012; 55:1787–1797. DOI: 10.1016/j.mcm.2011.11.033. [9] P.P. Boyle, A.W. Kolkiewicz, K.S. Tan. Valuation of the reset option in segregated fund contracts using Quasi-Monte Carlo. Research Report 99-10, Institute of Insurance and Pension Research, University of Waterloo, 1999.
[10] John C. Hull. Options. Futures and Other Derivatives(7th Edition), Prentice Hall; 2008.
[11] N. Thakoor, D.Y. Tangman, M. Bhuruth. Fast valuation of CEV American options. Wilmott . 2015; 1:54–61. DOI: 10.1002/wilm.10396.
[12] B. Düring, M. Fournié. High-order compact finite difference scheme for option pricing in stochastic volatility models. J COMPUT APPL MATH. 2012; 236:4462–4473. DOI: 10.1016/j.cam.2012.04.017.
[13] B. Düring, M. Fournié, C. Heuer. High-order compact finite difference scheme for option pricing in stochastic volatility models on non-uniform grids. J COMPUT APPL MATH. 2014; 271:247–266. DOI: 10.1016/j.cam.2014.04.016.
[14] B. Düring, C. Heuer. High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions. SIAM J NUMER ANAL .2015; 53(5):2113–2134.DOI: 10.1137/140974833.
[15] B. Düring, A. Pitkin. High-order compact finite difference scheme for option pricing in stochastic volatility jump models. J COMPUT APPL MATH. 2019; 355:201–217.DOI:10.1016/j.cam.2019.01.043.
[16] Howard, R.A. Dynamic Programming and Markov Processes . Cambridge ,The MIT Press; 1960.
[17] Y. Huang, P.A. Forsyth, G. Labahn. Combined fixed point and policy iteration for HJB equations in finance. SIAM J NUMER ANAL.2012; 50:1861–1882. DOI: 10.1137/100812641.
[18] N. Thakoor, D.K. Behera, D.Y.Tangman, M. Bhuruth. A new Howard-Crandall–Douglas algorithm
for the American option problem in computational finance. In: H. Behera, J. Nayak, B. Naik, A. Abraham, (eds.). Computational Intelligence in Data Mining . 2019; 711:135–143. Springer, Singapore. DOI: 10.1007/978-981-10-8055-5_13.
[19] A. Almendral, C.W. Oosterlee. Numerical valuation of options with jumps in the underlying. APPL NUMER MATH . 2005; 53:1–18. DOI: 10.1016/j.apnum.2004.08.037.
[20] D.Y.Tangman, A.Gopaul, M.Bhuruth. Exponential time integration and Chebychev discretisation schemes for fast pricing of options.APPL NUMER MATH .2008; 58:1309–1319.DOI: 10.1016/j.apnum.2007.07.005.
[21] L. V. Ballestra, L .Cecere. A fast numerical method to price American options under the Bates model. COMPUT MATH APPL . 2016; 72(5):1305–1319. DOI:10.1016/j.camwa.2016.06.041.