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B.P.7021 Ouagadougou 03, Burkina Faso

1
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AMS Subject Classification: 34K14; 34K30; 35B15; 35K57; 44A35; 47D06.

Keywords: measure theory; ergodicity; (µ, ν)-pseudo almost periodic function; infinite delay,
evolution equations; reaction diffusion system; partial functional differential equations.

1. Introduction

In this work, we present a new approach dealing with weighted pseudo almost periodic func-
tions with infinite delay and their applications in evolution equations and partial functional
differential equations. Here we use the measure theory to define an ergodic function and we
investigate many interesting properties of such functions. Weighted pseudo almost periodic
functions started recently and becomes an interesting field in dynamical systems. The study
of existence of almost periodic, asymptotically almost periodic, almost automorphic, asymptot-
ically almost automorphic and pseudo almost periodic solutions is one of the most attractive
topics in the qualitative theory of differential equations due both to its mathematical interest
and applications in physics, mathematical biology, and control theory, among other areas. Most
of these problems need to be studied in abstract spaces and the operators are defined over non-
dense domains. In this context the literature is very scarce (see [1] ,[2], [4] and the bibliography
therein).
In this work, we study the existence and uniqueness of (µ, ν)-pseudo almost periodic and auto-
morphic solutions of infinite class for the following neutral partial functional differential equation

u′(t) = Au(t) + L(ut) + f(t) for t ∈ R, (1.1)

where A is a linear operator on a Banach space X satisfying the Hille-Yosida condition, that is,
there exist M0 ≥ 1 and ω ∈ R such that ]ω,+∞[⊂ ρ(A) and

|R(λ,A)n| ≤ M0

(λ− ω)n
for n ∈ N and λ > ω,

where ρ(A) is the resolvent set of A and R(λ,A) = (λI −A)−1 for λ ∈ ρ(A). In sequel, without
lost of generality, we suppose that M0 = 1. The phase space B is a linear space of functions
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mapping ]−∞, 0] into X satisfying axioms which will be described in the sequel, for every t ≥ 0,
the history ut ∈ B is defined by

ut(θ) = u(t+ θ) for θ ∈]−∞, 0],

f : B → X is a continuous function and L is a bounded linear operator from B into X . In the
literature devoted to equations with finite delay, the state space is the space of all continuous
functions on [−r, 0], r ≥ 0, endowed with the uniform norm topology.
When the delay is finite some recent contributions concerning pseudo almost periodic solutions
for abstract differential equations similar to equation (1.1) have been made. For example in [2]
the authors have shown that if the inhomogeneous term f depends only on variable t and it
is a pseudo almost periodic function, then equation (1.1) has a unique pseudo almost periodic
solution. In [4] the authors have proven that if f : R×X0 → X is a suitable continuous function,

where X0 = D(A), the problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ R

has a unique pseudo almost periodic solution, while in [1] the authors have treated the existence
of almost periodic solutions for a class of partial neutral functional differential equations defined
by a linear operator of Hille-Yosida type with non-dense domain. In [3], the authors studied the
existence and uniqueness of pseudo almost periodic solutions for a first-order abstract functional
differential equation with a linear part dominated by a Hille-Yosida type operator with a non-
dense domain.
In [9], the authors introduce some new classes of functions called weighted pseudo-almost periodic
functions, which implement in a natural fashion the classical pseudo-almost periodic functions
due to Zhang ([14, 15, 16]). Properties of these weighted pseudo-almost periodic functions are
discussed, including a composition result for weighted pseudo-almost periodic functions. The
results obtained are subsequently utilized to study the existence and uniqueness of a weighted
pseudo-almost periodic solution to the heat equation with Dirichlet conditions.
In [6], the authors present new approach to study weighted pseudo almost periodic functions
using the measure theory. They present a new concept of weighted ergodic functions which
is more general than the classical one. Then they establish many interesting results on the
functional space of such functions like completeness and composition theorems. The theory of
their work generalizes the classical results on weighted pseudo almost periodic functions.
The aim of this work is to prove the existence of (µ, ν)-pseudo almost periodic and automorphic
solutions of equation (1.1) when the delay is distributed on ]−∞, 0]. Our approach is based on
the spectral decomposition of the phase space developed in [3] and a new approach developped
in [6].
This work is organised as follow, in section 2 we recall some prelimary results on spectral
decomposition. In section 3, we recall some prelimary results on (µ, ν)-pseudo almost periodic
functions and neutral partial functional differential equations that will be used in this work. In
section 4, we give some properties of (µ, ν)-pseudo almost periodic functions of infinite class.
In section 5, we discuss the main result of this paper. Using the strict contraction principle we
show the existence and uniqueness of (µ, ν)-pseudo almost periodic solution of infinite class for
equation (1.1). Section 6 is devoted to some applications arising in population dynamics.

2. Variation of constants formula and spectral decomposition

In this work, we assume that the state space (B, |.|B) is a normed linear space of functions
mapping ]−∞, 0] into X and satisfying the following fundamental axioms.

(A1) There exist a positive constant H and functions K(.),M(.) : R+ → R+, with K con-
tinuous and M locally bounded, such that for any σ ∈ R and a > 0, if u :]−∞, a]→ X, uσ ∈ B,
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and u(.) is continuous on [σ, σ + a], then for every t ∈ [σ, σ + a] the following conditions hold

(i) ut ∈ B,

(ii) |u(t)| ≤ H|ut|B, which is equivalent to |ϕ(0)| ≤ H|ϕ|B for every ϕ ∈ B

(iii) |ut|B ≤ K(t− σ) sup
σ≤s≤t

|u(s)|+M(t− σ)|uσ|B.

(A2) For the function u(.) in (A1), t 7→ ut is a B-valued continuous function for t ∈ [σ, σ + a].

(B) The space B is a Banach space.

We assume that:

(C1) If (ϕn)n≥0 is a sequence in B such that ϕn → 0 in B as n → +∞, then (ϕn(θ))n≥0
converges to 0 in X.

Let C(]−∞, 0], X) be the space of continuous functions from ]−∞, 0] into X. We suppose the
following assumptions:

(C2) B ⊂ C(]−∞, 0], X).

(C3) there exists λ0 ∈ R such that, for all λ ∈ C with Reλ > λ0 and x ∈ X we have eλ.x ∈ B
and

K0 = sup
Reλ>λ0,x∈X

x 6=0

|eλ.x|B
|x|

<∞,

where (eλ.x)(θ) = eλθx for θ ∈]−∞, 0] and x ∈ X.

To equation (1.1), we associate the following initial value problem
d

dt
ut = Aut + L(ut) + f(t) for t ≥ 0

u0 = ϕ ∈ B,

(2.1)

where f : R+ → X is a continuous function.

Let us introduce the part A0 of the operator A in D(A) which defined by{
D(A0) = {x ∈ D(A) : Ax ∈ D(A)}
A0x = Ax for x ∈ D(A0)

We make the following assumption:

(H0) A satisfies the Hille-Yosida condition.

Lemma 2.1. [1] A0 generates a strongly continuous semigroup (T0(t))t≥0 on D(A).

The phase space BA of equation (2.1) is defined by

BA = {ϕ ∈ B : ϕ(0) ∈ D(A)}.
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For each t ≥ 0, we define the linear operator U(t) on BA by

U(t) = vt(., ϕ)

where v(., ϕ) is the solution of the following homogeneous equation
d

dt
vt = Avt + L(vt) for t ≥ 0

v0 = ϕ ∈ B.

Proposition 2.2. [3] (U(t))t≥0 is a strongly continuous semigroup of linear operators on BA.
Moreover, (U(t))t≥0 satisfies, for t ≥ 0 and θ ∈]−∞, 0], the following translation property

(U(t)ϕ)(θ) =

 (U(t+ θ)ϕ)(0) for t+ θ ≥ 0

ϕ(t+ θ) for t+ θ ≤ 0.

Theorem 2.3. [3] Assume that B satisfies (A1), (A2), (B), (C1) and (C2). Then AU defined
on BA by

D(AU ) =
{
ϕ ∈ C1(]−∞, 0];X) ∩BA; ϕ′ ∈ BA, ϕ(0) ∈ D(A) and ϕ′(0) = Aϕ(0) + L(ϕ)

}
AUϕ = ϕ′ for ϕ ∈ D(AU ).

is the infinitesimal generator of the semigroup (U(t))t≥0 on BA.

Let 〈X0〉 be the space defined by

〈X0〉 = {X0x : x ∈ X}

where the function X0x is defined by

(X0x)(θ) =

 0 if θ ∈]−∞, 0[,

x if θ = 0.

The space BA ⊕ 〈X0〉 equipped with the norm |φ+X0c|B = |φ|B + |c| for (φ, c) ∈ BA ×X is a
Banach space and consider the extension AU defined on BA ⊕ 〈X0〉 by{

D(ÃU ) =
{
ϕ ∈ C1(]−∞, 0];X) : ϕ ∈ D(A) and ϕ′ ∈ D(A)

}
ÃUϕ = ϕ′ +X0(Aϕ+ L(ϕ)− ϕ′).

Lemma 2.4. [3] Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (C3). Then, ÃU
satisfies the Hille-Yosida condition on BA ⊕ 〈X0〉.

Now, we can state the variation of constants formula associated to equation(2.1).

Let C00 be the space of X-valued continuous function on ] −∞, 0] with compact support. We
assume that:

(D) If (ϕn)n≥0 is a Cauchy sequence in B and converges compactly to ϕ on ] − ∞, 0], then
ϕ ∈ B and |ϕn − ϕ| → 0.
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Theorem 2.5. [3] Assume that (C1), (C2) and (C3) hold. Then the integral solution u of
equation(2.1) is given by the following variation of constants formula

ut = U(t)ϕ+ lim
λ→+∞

∫ t

0
U(t− s)B̃λ(X0f(s))ds for t ≥ 0,

where B̃λ = λ(λI − ÃU )−1.

Let (S0(t))t≥0 be the strongly continuous semigroup defined on the subspace

B0 = {ϕ ∈ B : ϕ(0) = 0}

by

(S0(t)φ)(θ) =

 φ(t+ θ) if t+ θ ≤ 0

0 if t+ θ ≥ 0

Definition 2.6. Assume that the space B satisfies Axioms (B) and (D), B is said to be a
fading memory space, if for all ϕ ∈ B0,

|S0(t)| → 0 as t→ +∞ in B0.

Moreover, B is said to be a uniform fading memory space, if

|S0(t)| → 0 as t→ +∞.

Lemma 2.7. If B is a uniform fading memory space, then we can choose the function K
constant and the function M such that M(t)→ 0 as t→ +∞.

Proposition 2.8. If the phase space B is a fading memory space, then the space BC(]−∞, 0], X)
of bounded continuous X-valued functions on ]−∞, 0] endowed with the uniform norm topology,
is continuous embedding in B. In particular B satisfies (C3), for λ0 > 0.

For the sequel, we make the following assumption:

(H1) T0(t) is compact on D(A) for every t > 0.

(H2) B is a uniform fading memory space.

Theorem 2.9. [3] Assume that B satisfies (A1), (A2), (B), (C1) and (H0), (H1), (H2) hold.
Then the semigroup (U(t))t≥0 is decomposed on BA as follows

U(t) = U1(t) + U2(t) for t ≥ 0

where (U1(t))t≥0 is an exponentially stable semigroup on BA, which means that there are positive
constants α0 and N0 such that

|U1(t)| ≤ N0e
−α0t|ϕ| for t ≥ 0 and ϕ ∈ BA

and (U2(t))t≥0 is compact for for every t > 0.

We have the following result on the spectral decomposition of the phase space BA.

Theorem 2.10. [3] Assume that B satisfies (A1), (A2), (B), (C1), and (H0), (H1), (H2)
hold. Then the space BA is decomposed as a direct sum

BA = S ⊕ U
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of two U(t) invariant closed subspaces S and U such that the restricted semigroup on U is a
group and there exist positive constants M and ω such that

|U(t)ϕ| ≤ Me−ωt|ϕ| for t ≥ 0 and ϕ ∈ S

|U(t)ϕ| ≤ Meωt|ϕ| for t ≤ 0 and ϕ ∈ U,

where S and U are called respectively the stable and unstable space.

3. (µ, ν)-Pseudo almost periodic functions

In this section, we recall some properties about µ-pseudo almost periodic functions. The
notion of µ-pseudo almost periodicity is a generalization of the pseudo almost periodicity intro-
duced by Zhang [14, 15, 16]; it is also a generalization of weighted pseudo almost periodicity
given by Diagana [9]. Let BC(R;X) be the space of all bounded and continuous function from
R to X equipped with the uniform topology norm.
We denote by N the Lebesgue σ-field of R and by M the set of all positive measures µ on N
satisfying µ(R) = +∞ and µ([a, b]) <∞, for all a, b ∈ R (a ≤ b).

Definition 3.1. A bounded continuous function φ : R→ X is called almost periodic if for each
ε > 0, there exists a relatively dense subset of R denote by K(ε, φ,X) such that |φ(t+τ)−φ(t)| <
ε for all (t, τ) ∈ R×K(ε, φ,X).

We denote by AP (R;X), the space of all such functions.

Definition 3.2. Let X1 and X2 be two Banach spaces. A bounded continuous function
φ : R ×X1 → X2 is called almost periodic in t ∈ R uniformly in x ∈ X1 if for each ε > 0 and
all compact K ⊂ X1, there exists a relatively dense subset of R denote by K(ε, φ,K) such that
|φ(t+ τ, x)− φ(t, x)| < ε for all t ∈ R, x ∈ K, τ ∈ K(ε, φ,K).

We denote by AP (R×X1;X2), the space of all such functions.

The next lemma is also a characterization of almost periodic functions.

Lemma 3.3. A function φ ∈ C(R, X) is almost periodic if and only if the space of functions
{φτ : τ ∈ R}, where (φτ )(t) = φ(t+ τ), is relatively compact in BC(R;X).

In the sequel, we recall some preliminary results concerning the (µ, ν)-Pseudo almost periodic
functions with infinite delay.
E (R;X,µ, ν) stands for the space of functions

E (R;X,µ, ν) =
{
u ∈ BC(R;X) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
|u(t)|dµ(t) = 0

}
.

To study delayed differential equations for which the history belong to B, we need to introduce
the space

E (R;X,µ, ν,∞) =
{
u ∈ BC(R;X) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|u(θ)|

)
dµ(t) = 0

}
.

In addition to above-mentioned space, we consider the following spaces

E (R×X1, X2, µ, ν) =
{
u ∈ BC(R×X1;X2) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ
|u(t, x)|X2dµ(t) = 0

}
,

E (R×X1;X2, µ, ν,∞) =
{
u ∈ BC(R×X1;X2) : lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|u(θ, x)|X2

)
dµ(t) = 0

}
,
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where in both cases the limit (as τ → +∞) is uniform in compact subset of X1.

In view of previous definitions, it is clear that the spaces E (R;X,µ, ν,∞) and E (R×X1;X2, µ, ν,∞)
are continuously embedded in E (R;X,µ, ν) and E (R×X1, X2, µ, ν), respectively.
On the other hand, one can observe that a ρ-weighted pseudo almost periodic functions is
µ-pseudo almost periodic, where the measure µ is absolutely continuous with respect to the
Lebesgue measure and its Radon-Nikodym derivative is ρ:

dµ(t) = ρ(t)dt

and ν is the usual Lebesgue measure on R, i.e ν([−τ, τ ] = 2τ for all τ ≥ 0.

Example 3.4. [6] Let ρ be a nonnegative N -measurable function. Denote by µ the positive
measure defined by

µ(A) =

∫
A
ρ(t)dt, for A ∈ N , (3.1)

where dt denotes the Lebesgue measure on R. The function ρ which occurs in equation (3.1) is
called the Radon-Nikodym derivative of µ with respect to the Lebesgue measure on R.

Definition 3.5. Let µ, ν ∈ M. A bounded continuous function φ : R → X is called (µ, ν)-
pseudo almost periodic if φ = φ1 + φ2, where φ1 ∈ AP (R, X) and φ2 ∈ E (R;X,µ, ν).

We denote by PAP (R;X,µ, ν) the space of all such functions.

Definition 3.6. Let µ, ν ∈ M and X1 and X2 be two Banach spaces. A bounded continuous
function φ : R×X1 → X2 is called uniformly (µ, ν)-pseudo almost periodic if φ = φ1 +φ2, where
φ1 ∈ AP (R×X1;X2) and φ2 ∈ E (R×X1, X2, µ, ν).

We denote by PAP (R×X1;X2, µ, ν), the space of all such functions.

Definition 3.7. µ, ν ∈ M. A bounded continuous function φ : R → X is called (µ, ν)-pseudo
almost periodic of infinite class if φ = φ1 +φ2, where φ1 ∈ AP (R;X) and φ2 ∈ E (R;X,µ, ν,∞).

We denote by PAP (R;X,µ, ν,∞), the space of all such functions.

Definition 3.8. µ, ν ∈ M. Let X1 and X2 be two Banach spaces. A bounded continuous
function φ : R × X1 → X2 is called uniformly (µ, ν)-pseudo almost periodic of infinite class if
φ = φ1 + φ2, where φ1 ∈ AP (R×X1;X2) and φ2 ∈ E (R×X1;X2, µ, ν,∞).

We denote by PAP (R×X1;X2, µ, ν,∞), the space of all such functions.

4. Properties of (µ, ν)-pseudo almost periodic functions of infinite class

From µ, ν ∈M, we formulate the following hypothese.

(H3) Let µ, ν ∈M be such that lim sup
τ→+∞

µ([−τ, τ ])

ν([−τ, τ ])
= α <∞.

We have the following result.

Lemma 4.1. Assume that (H3) holds. The space E (R;X,µ, ν,∞) endowed with the uniform
topology norm is a Banach space.

Proof. We can see that E (R;X,µ, ν,∞) is a vector subspace of BC(R;X). To complete the
proof, it is enough to prove that E (R;X,µ, ν,∞) is closed in BC(R;X). Let (zn)n be a sequence
in E (R;X,µ, ν,∞) such that limn→+∞ zn = z uniformly in R. From ν(R) = +∞, it follows
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ν([−τ, τ ]) > 0 for τ sufficiently large. Let n0 ∈ N such that for all n ≥ n0, ‖zn − z‖∞ < ε. Let
n ≥ n0, then we have

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|z(θ)|

)
dµ(t) ≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|zn(θ)− z(θ)|

)
dµ(t)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|zn(θ)|

)
dµ(t)

≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup
t∈R
|zn(t)− z(t)|

)
dµ(t)

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|zn(θ)|

)
dµ(t)

≤ ‖zn − z‖∞ ×
µ([−τ, τ ])

ν([−τ, τ ])
+

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|zn(θ)|

)
dµ(t).

We deduce that

lim sup
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|z(θ)|

)
dµ(t) ≤ αε for any ε > 0.�

From the definition of PAP (R;X,µ, ν,∞), we deduce the following result.

Proposition 4.2. µ, ν ∈∈ M. The space PAP (R;X,µ, ν,∞) endowed with the uniform topol-
ogy norm is a Banach space.

Next result is a characterization of (µ, ν)-ergodic functions of infinite class.

Theorem 4.3. Assume that (H3) holds and let µ, ν ∈ M and I be a bounded interval (eventu-
ally I = Ø). Assume that f ∈ BC(R, X). Then the following assertions are equivalent:

i) f ∈ E (R, X, µ, ν,∞).

ii) lim
τ→+∞

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) = 0.

iii) For any ε > 0, lim
τ→+∞

µ
({
t ∈ [−τ, τ ] \ I : sup

θ∈]−∞,t]
|f(θ)| > ε

})
ν([−τ, τ ] \ I)

= 0.

Proof. The proof is made like the proof of Theorem 2.13 in [6].

i) ⇔ ii) Denote by A = ν(I), B =

∫
I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t). We have A and B ∈ R, since

the interval I is bounded and the function f is bounded and continuous. For τ > 0 such that
I ⊂ [−τ, τ ] and ν([−τ, τ ] \ I) > 0, we have

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) =

1

ν([−τ, τ ])−A

[ ∫
[−τ,τ ]

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t)−B

]
=

ν([−τ, τ ])

ν([−τ, τ ])−A

[ 1

ν([−r, r])

∫
[−τ,τ ]

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t)− B

ν([−τ, τ ])

]
.

From above equalities and the fact that ν(R) = +∞, we deduce that ii) is equivalent to

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) = 0,
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that is i).

iii)⇒ ii) Denote by Aετ and Bε
τ the following sets

Aετ =
{
t ∈ [−τ, τ ] \ I : sup

θ∈]−∞,t]
|f(θ)| > ε

}
and Bε

τ =
{
t ∈ [−τ, τ ] \ I) : sup

θ∈]−∞,t]
|f(θ)| ≤ ε

}
.

Assume that iii) holds, that is

lim
τ→+∞

µ(Aετ )

ν([−τ, τ ] \ I)
= 0. (4.1)

From the equality∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) =

∫
Aετ

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) +

∫
Bετ

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t),

we deduce that for τ sufficiently large

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) ≤ ‖f‖∞

µ(Aετ )

ν([−τ, τ ] \ I)
+ ε

µ(Bε
τ )

ν([−τ, τ ] \ I)
.

By using (H3), it follows that

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) ≤ αε, for any ε > 0,

consequently (ii) holds.

ii)⇒ iii) Assume that ii) holds. From the following inequality∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) ≥

∫
Aετ

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t)

1

ν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) ≥ ε

µ(Aετ )

ν([−τ, τ ] \ I)

1

εν([−τ, τ ] \ I)

∫
[−τ,τ ]\I

(
sup

θ∈]−∞,t]
|f(θ)|

)
dµ(t) ≥ µ(Aετ )

ν([−τ, τ ] \ I)
,

for τ sufficiently large, we obtain equation (4.1), that is iii).�

From µ ∈M, we formulate the following hypotheses.

(H4) For all a, b and c ∈ R, such that 0 ≤ a < b ≤ c, there exist δ0 and α0 > 0 such
that

|δ| ≥ δ0 ⇒ µ(a+ δ, b+ δ) ≥ α0µ[δ, c+ δ].

(H5) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) ≤ βµ(A) when A ∈ N satisfies A ∩ I = Ø.

We have the following results due to [6]

Lemma 4.4. [6] Hypothesis (H5) implies (H4).

Proposition 4.5. [6] µ, ν ∈M satisfy (H4) and f ∈ PAP (R;X,µ, ν) be such that

f = g + h

where g ∈ AP (R, X) and h ∈ E (R, X, µ, ν). Then

{g(t), t ∈ R} ⊂ {f(t), t ∈ R} (the closure of the range of f).
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Corollary 4.6. [6] Assume that (H4) holds. Then the decomposition of a (µ, ν)-pseudo almost
periodic function in the form f = g + φ where g ∈ AP (R;X) and φ ∈ E (R;X,µ, ν), is unique.

The following proposition is a consequence of Proposition 4.5.

Proposition 4.7. Let µ, ν ∈ M. Assume (H4) holds. Then the decomposition of a (µ, ν)-
pseudo-almost periodic function φ = φ1 + φ2, where φ1 ∈ AP (R;X) and φ2 ∈ E (R;X,µ, ν,∞),
is unique.

Proof. In fact, since as a consequence of Corollary 4.6, the decomposition of a (µ, ν)-pseudo-
almost periodic function φ = φ1 + φ2, where φ1 ∈ AP (R;X) and φ2 ∈ E (R;X,µ, ν), is unique.
Since PAP (R;X,µ, ν,∞) ⊂ PAP (R;X,µ, ν), we get the desired result.�

Definition 4.8. Let µ1, µ2 ∈ M. We say that µ1 is equivalent to µ2, denoting this as µ1 ∼ µ2
if there exist constants α and β > 0 and a bounded interval I (eventually I = Ø) such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A), when A ∈ N satisfies A ∩ I = Ø.

From [6] ∼ is a binary equivalence relation on M. the equivalence class of a given measure
µ ∈M will then be denoted by

cl(µ) = {$ ∈M : µ ∼ $}.

Theorem 4.9. Let µ1, µ2, ν1, ν2 ∈ M. If µ1 ∼ µ2 and ν1 ∼ ν2, then PAP (R;X,µ1, ν1,∞) =
PAP (R;X,µ2, ν2,∞).

Proof. Since µ1 ∼ µ2 and ν1 ∼ ν2 there exist some constants α1, α2, β1, β2 > 0 and a bounded
interval I (eventually I = Ø) such that α1µ1(A) ≤ µ2(A) ≤ β1µ1(A) and α2ν1(A) ≤ ν2(A) ≤
β2ν1(A) for each A ∈ N satisfies A ∩ I = Ø i.e

1

β2ν1(A)
≤ 1

ν2(A)
≤ 1

α2ν1(A)
.

Since µ1 ∼ µ2 and N is the Lebesgue σ-field, we obtain for τ sufficiently large, it follows that

α1µ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈]−∞,t]
|f(θ)| > ε

})
β2ν1([−τ, τ ] \ I)

≤
µ2

({
t ∈ [−τ, τ ] \ I : sup

θ∈]−∞,t]
|f(θ)| > ε

})
ν2([−τ, τ ] \ I)

≤
β1µ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈]−∞,t]
|f(θ)| > ε

})
α2ν1([−τ, τ ] \ I)

By using Theorem 4.3 we deduce that E (R, X, µ1, ν1,∞) = E (R, X, µ2, ν2,∞). From the def-
inition of a (µ, ν)-pseudo almost periodic function, we deduce that PAP (R;X,µ1, ν1,∞) =
PAP (R;X,µ2, ν2,∞).�

Let µ, ν ∈M we denote by

cl(µ, ν) = {$1, $2 ∈M : µ ∼ $2 and ν ∼ $2}.

Proposition 4.10. [8] Let µ, ν ∈ M satisfy (H5). Then PAP (R, X, µ, ν) is invariant by
translation, that is f ∈ PAP (R, X, µ, ν) implies fα ∈ PAP (R, X, µ, ν) for all α ∈ R.

In what follows, we prove some preliminary results concerning the composition of (µ, ν)-pseudo
almost periodic functions of infinite class.
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Theorem 4.11. Let µ, ν ∈ M, φ ∈ PAP (R × X1;X2, µ, ν,∞) and h ∈ PAP (R;X1, µ, ν,∞).
Assume that there exists a function Lφ : R→ [0,+∞[ sastisfies

|φ(t, x1)− φ(t, x2)| ≤ lφ(t)|x1 − x2| for t ∈ R and for x1, x2 ∈ X1. (4.2)

If

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈]−∞,t]
Lφ(θ)

)
dµ(t) <∞ and lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
Lφ(θ)

)
ξ(t)dµ(t) = 0

(4.3)
for each ξ ∈ E(R, µ, ν) and for almost τ > 0, then the function t → φ(t, h(t)) belongs to
PAP (R;X2, µ, ν,∞).

Proof. Assume that φ = φ1 + φ2, h = h1 + h2 where φ1 ∈ AP (R × X1;X2), φ2 ∈ E (R ×
X1;X2, µ, ν,∞) and h1 ∈ AP (R;X1), h2 ∈ E (R;X1, µ, ν,∞). Consider the following decompo-
sition

φ(t, h(t)) = φ1(t, h1(t)) + [φ(t, h(t))− φ(t, h1(t))] + φ2(t, h1(t)).

From [7, 13], φ1(., h1(.)) ∈ AP (R;X2). It remains to prove that both φ(., h(.))− φ(., h1(.)) and
φ2(., h1(.)) belong to E (R;X2, µ, ν,∞).
Using equation (4.2), it follows that

µ
({
t ∈ [−τ, τ ] : sup

θ∈]−∞,t]
|φ(θ, h(θ))− φ(θ, h1(θ))| > ε

})
ν([−τ, τ ])

≤
µ
({
t ∈ [−τ, τ ] : sup

θ∈]−∞,t]
(Lφ(θ)|h2(θ)|) > ε

})
ν([−τ, τ ])

≤
µ
({
t ∈ [−τ, τ ] :

(
sup

θ∈]−∞,t]
Lφ(θ)

)(
sup

θ∈]−∞,t]
|h2(θ)|

)
> ε
})

ν([−τ, τ ])
.

Since h2 is (µ, ν)-ergodic of infinite class, Theorem 4.3 and equation (4.3) yield that for the
above-mentioned ε, we have

lim
τ→+∞

µ
({
t ∈ [−τ, τ ] :

(
sup

θ∈]−∞,t]
Lφ(θ)

)(
sup

θ∈]−∞,t]
|h2(θ)|

)
> ε
})

ν([−τ, τ ])
= 0,

and then we obtain

lim
τ→+∞

µ
({
t ∈ [−τ, τ ] : sup

θ∈]−∞,t]
|φ(θ, h(θ))− φ(θ, h1(θ))| > ε

})
ν([−τ, τ ])

= 0, (4.4)

By Theorem 4.3, equation (4.4) shows that t 7→ φ(t, h(t))−φ(t, h1(t)) is (µ, ν)-ergodic of infinite
class.
Now to complete the proof, it is enough to prove that t 7→ φ2(t, h(t)) is (µ, ν)-ergodic of infinite

class. Since φ2 is uniformly continuous on the compact set K = {h1(t) : t ∈ R} with respect to
the second variable x, we deduce that for given ε > 0, there exists δ > 0 such that, for all t ∈ R,
ξ1 and ξ2 ∈ K, one has

‖ξ1 − ξ2‖ ≤ δ ⇒ ‖φ2(t, ξ1(t))− φ2(t, ξ2(t))‖ ≤ ε.

Therefore, there exist n(ε) and {zi}n(ε)i=1 ⊂ K, such that

K ⊂
n(ε)⋃
i=1

Bδ(zi, δ)
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and then

‖φ2(t, h1(t))‖ ≤ ε+

n(ε)∑
1

‖φ2(t, zi)‖

Since

∀i ∈ {1, ..., n(ε)}, lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈]−∞,t]
|φ2(θ, zi)|

)
dµ(t) = 0,

we deduce that

∀ε > 0, lim sup
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈]−∞,t]
|φ2(θ, h1(t))|

)
dµ(t) ≤ ε,

that implies

lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈]−∞,t]
|φ2(θ, h1(t))|

)
dµ(t) = 0.

Consequently t 7→ φ2(t, h(t)) is (µ, ν)-ergodic of infinite class.�

We have the following result.

Theorem 4.12. Assume that (H4) holds. Let µ, ν ∈M and φ ∈ PAP (R;X,µ, ν,∞), then the
function t→ φt belongs to PAP (B;X,µ, ν,∞).

Proof. Assume that φ = g + h where g ∈ AP (R;X) and h ∈ E (R;X,µ, ν,∞). Then we can see
that, φt = gt + ht and gt is almost periodic. On the other hand, we have

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]

[
sup

ξ∈]−∞,0]
|h(θ + ξ)|

])
dµ(t) ≤ 1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈]−∞,t]
|h(θ)|

)
dµ(t),

which shows that φt belongs to PAP (B, µ, ν,∞). Thus, we obtain the desired result.�

5. (µ, ν)-Pseudo almost periodic solutions of infinite class

In what follows, we will be looking at the existence of bounded integral solutions of infinite
class of equation (1.1).

Theorem 5.1. [3] Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (H1), holds. If
f ∈ BC(R;X), then there exists a unique bounded solution u of equation (1.1) on R, given by

ut = lim
λ→+∞

∫ t

−∞
Us(t− s)Πs(B̃λX0f(s))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0f(s))ds for t ∈ R,

where Πs and Πu are the projections of BA onto the stable and unstable subspaces, respectively.

Proposition 5.2. [11] Let h ∈ AP (R;X) and Γ be the mapping defined for t ∈ R by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞
Us(t− s)Πs(B̃λX0h(s))ds+ lim

λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0h(s))ds

]
(0).

Then Γh ∈ AP (R, X).

Theorem 5.3. Let µ, ν ∈M satisfy (H4) and g ∈ E (R;X,µ, ν,∞). Then Γg ∈ E (R;X,µ, ν,∞).
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Proof. In fact, for τ > 0 we get∫ τ

−τ

(
sup

θ∈]−∞,t]
|Γh(θ)|ds

)
dµ(t) ≤ MM̃

∫ τ

−τ

(
sup

θ∈]−∞,t]

∫ θ

−∞
e−ω(θ−s)|Πs| |g(s)|ds

)
dµ(t)

+MM̃

∫ τ

−τ

(
sup

θ∈]−∞,t]

∫ +∞

θ
eω(θ−s)|Πu| |g(s)|ds

)
dµ(t)

≤ MM̃ |Πs|
∫ τ

−τ
sup

s∈]−∞,t]
|g(s)|

(
sup

θ∈]−∞,t]

∫ θ

−∞
e−ω(θ−s)ds

)
dµ(t)

+MM̃ |Πu|
∫ τ

−τ
sup

s∈]−∞,−θ]
|g(s)|

((
sup

θ∈]−∞,t]

∫ +∞

θ
eω(θ−s)ds

)
dµ(t)

≤ MM̃ |Πs|+MM̃ |Πu|
ω

∫ τ

−τ

(
sup

s∈]−∞,t]
|g(s)|

)
dµ(t).

Consequently

1

ν[−τ, τ ]

∫ τ

−τ

(
sup

θ∈]−∞,t]
(Γg)(θ)

)
dµ(t) ≤ MM̃ |Πs|+MM̃ |Πu|

ω

[ 1

ν[−τ, τ ]

∫ τ

−τ

(
sup

s∈]−∞,t]
|g(s)|

)
dµ(t)

]
,

which converges to zero as τ → +∞. Thus, we obtain the desired result.�

For the existence of (µ, ν)-pseudo almost periodic solution of infinite class, we make the fol-
lowing assumption.

(H6) f : R→ X is in cl(µ, ν)-pseudo almost periodic of infinite class.

Proposition 5.4. Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (H0), (H1), (H4)
and (H6) hold. Then equation (1.1) has a unique cl(µ, ν)-pseudo almost periodic solution of
infinite class.

Proof. Since f is a (µ, ν)-pseudo almost periodic function, f has a decomposition f = f1 + f2
where f1 ∈ AP (R;X) and f2 ∈ E (R;X,µ, ν,∞). Using Proposition 5.1, Proposition 5.2 and
Theorem 5.3, we get the desired result.�

Our next objective is to show the existence of (µ, ν)-pseudo almost periodic solutions of in-
finite class for the following problem

u′(t) = Au(t) + L(ut) + f(t, ut) for t ∈ R (5.1)

where f : R×B → X is continuous.

For the sequel, we make the following assumption.

(H7) Let µ, ν ∈ M and f : R × B → X cl(µ, ν)-pseudo almost periodic of infinite class
such that there exists a continuous function Lf : R→ [0,+∞[ such that

|f(t, ϕ1)− f(t, ϕ2)| ≤ Lf (t)|ϕ1 − ϕ2|B for all t ∈ R and ϕ1, ϕ2 ∈ B

and Lf satisfies inequality (4.3).
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Theorem 5.5. Assume that B is a uniform fading memory space and (A1), (A2), (C1), (C2),
(H0), (H1), (H2), (H3), (H5) and (H7) hold. If

MM̃C sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)ds+ |Πu|

∫ +∞

t
eω(t−s)Lf (s)ds

)
<

1

2
,

where C = max
{

sup
t∈R
|M(t)|, sup

t∈R
|K(t)|

}
, then equation (5.1) has a unique cl(µ, ν)-pseudo

almost periodic solution of infinite class.

Proof. Let x be a function in PAP (R;X,µ, ν,∞), from Theorem 4.12 the function t → xt
belongs to PAP (B, µ,∞). Hence Theorem 4.11 implies that the function g(.) := f(., x.) is in
PAP (R;X,µ,∞). Consider the mapping

H : PAP (R;X,µ, ν,∞)→ PAP (R;X,µ, ν,∞)

defined for t ∈ R by

(Hx)(t) =
[

lim
λ→+∞

∫ t

−∞
Us(t−s)Πs(B̃λX0f(s, xs))ds+ lim

λ→+∞

∫ t

+∞
Uu(t−s)Πu(B̃λX0f(s, xs))ds

]
(0).

From Proposition 5.1, Proposition 5.2 and taking into account Theorem 5.3, it suffices now
to show that the operator H has a unique fixed point in PAP (R;X,µ, ν,∞). Since B is a
uniform fading memory space, by the Lemma 2.7, we can choose the function K constant and

the function M such that M(t) → 0 as t → +∞. Let C = max
{

sup
t∈R
|M(t)|, sup

t∈R
|K(t)|

}
and

x1, x2 ∈ PAP (R;X,µ, ν,∞), then we have

| Hx1(t)−Hx2(t)| ≤
∣∣∣ lim
λ→+∞

∫ t

−∞
Us(t− s)Πs(B̃λX0[f((s, x1s))− f((s, x1s))]ds

∣∣∣
+
∣∣∣ lim
λ→+∞

∫ t

+∞
Us(t− s)Πu(B̃λX0[f((s, x2s))− f((s, x2s))]ds

∣∣∣
≤ MM̃

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)|x1s − x2s|Bds+ |Πu|

∫ +∞

t
eω(t−s)Lf (s)|x1s − x2s|Bds

)
≤ MM̃

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)(K(s) sup

0≤ξ≤s
|x1(ξ)− x2(ξ)|+M(s)|x10 − x20 |B)ds

+|Πu|
∫ +∞

t
eω(t−s)Lf (s)(K(s) sup

0≤ξ≤s
|x1(ξ)− x2(ξ)|+M(s)|x10 − x20 |B)ds

)

| Hx1(t)−Hx2(t)| ≤ 2MM̃C sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)Lf (s)ds+ |Πu|

∫ +∞

t
eω(t−s)Lf (s)ds

)
|x1 − x2|.

This means that H is a strict contraction. Thus by Banach’s fixed point theorem, H has a
unique fixed point u in PAP (R;X,µ, ν,∞). We conclude that equation (5.1), has one and only
one cl(µ, ν)-pseudo almost periodic solution of infinite class.�

Proposition 5.6. Assume that B is a uniform fading memory space and (A1), (A2), (C1),
(C2), (H0), (H1), (H2), (H3) and, (H5) and f is lipschitz continuous with respect the second
argument. If

Lip(f) <
ω

2MM̃C(|Πs|+ |Πu|)
then equation (5.1) has a unique cl(µ, ν)-pseudo almost periodic solution of infinite class, where
Lip(f) is the lipschitz constant of f .
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Proof. Let us pose k = Lip(f), we have

| Hx1(t)−Hx2(t)| ≤ 2MM̃C sup
t∈R

(
|Πs|

∫ t

−∞
e−ω(t−s)kds+ |Πu|

∫ +∞

t
eω(t−s)kds

)
|x1 − x2|

≤ 2kMM̃C(|Πs|+ |Πu|)
ω

|x1 − x2|.

Consequently H is a strict contraction if k <
ω

2MM̃C(|Πs|+ |Πu|)
.�

6. Application

For illustration, we propose to study the existence of solutions for the following model

∂

∂t
z(t, x) =

∂2

∂x2
z(t, x) +

∫ 0

−∞
G(θ)z(t+ θ, x))dθ + (sin t+ sin(

√
2t)) + arctan(t)

+

∫ 0

−∞
h(θ, z(t+ θ, x))dθ for t ∈ R and x ∈ [0, π]

z(t, 0) = z(t, π) = 0 for t ∈ R,

(6.1)

where G :] −∞, 0] → R is a continuous function and h :] −∞, 0] × R → R is continuous and
lipschitzian with respect to the second argument. To rewrite equation (6.1) in the abstract form,
we introduce the space X = C0([0, π];R) of continuous function from [0, π] to R+ equipped with
the uniform norm topology. Let A : D(A)→ X be defined by{

D(A) = {y ∈ X ∩ C2([0, π],R) : y′′ ∈ X}
Ay = y′′.

Then A satisfied the Hille-Yosida condition in X. Moreover the part A0 of A in D(A) is the

generator of strongly continuous compact semigroup (T0(t))t≥0 on D(A). It follows that (H0)
and (H1) are satisfied.
The phase space B = Cγ , γ > 0 where

Cγ = {ϕ ∈ C(]−∞, 0];X) : lim
θ→−∞

eγθϕ(θ) exist in X}

with the the following norm

|ϕ|γ = sup
θ≤0
|eγθϕ(θ)|.

This space is a uniform fading memory space, that is (H2), and it satisfies (C1), (C2).

We define f : R× C → X and L : C → X as follows

f(t, ϕ)(x) = sin t+ sin(
√

2t) + arctan(t) +

∫ 0

−∞
h(θ, ϕ(θ)(x))dθ for x ∈ [0, π] and t ∈ R,

L(ϕ)(x) =

∫ 0

−∞
G(θ)ϕ(θ)(x))dθ for θ ∈]−∞, 0] and x ∈ [0, π].

Let us pose v(t) = z(t, x). Then equation (6.1) takes the following abstract form

v′(t) = Av(t) + L(vt) + f(t, vt) for t ∈ R. (6.2)
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Consider the measures µ and ν where its Radon-Nikodym derivative are respectively ρ1, ρ2 :
R→ R defined by

ρ1(t) =

 1 for t > 0

et for t ≤ 0.

and
ρ2(t) = |t| for t ∈ R

i.e dµ(t) = ρ1(t)dt and dν(t) = ρ2(t)dt where dt denotes the Lebesgue measure on R and

µ(A) =

∫
A
ρ1(t)dt for ν(A) =

∫
A
ρ2(t)dt for A ∈ B.

From [6] µ, ν ∈M, µ, ν satisfy Hypothesis (H5) and sin t+ sin(
√

2t) +
π

2
is almost periodic.

We have

lim sup
τ→+∞

µ([−τ, τ ])

ν([−τ, τ ])
= lim sup

τ→+∞

∫ 0

−τ
etdt+

∫ τ

0
dt

2

∫ τ

0
tdt

= lim sup
τ→+∞

1− e−τ + τ

τ2
= 0 <∞,

which implies that (H3) is satisfied.

Since for all θ ∈ R,
−π
2
≤ arctan θ ≤ π

2
, then we have

1

ν([−τ, τ ])

∫ +τ

−τ
sup

θ∈]−∞,0]
| arctan(θ)|dµ(t) ≤ π

2
× 1

ν([−τ, τ ])

∫ +τ

−τ
dµ(t)

≤ π

2
× µ([−τ, τ ])

ν([−τ, τ ])
→ 0 as τ → +∞.

It follows that t 7→ arctan t is (µ, ν)-ergodic of infinite class consequently, f is uniformly (µ, ν)-
pseudo almost periodic of infinite class. Moreover, L is a bounded linear operator from B to X.
In fact for ϕ ∈ Cγ , we have ϕ ∈ C(]−∞, 0];X) and lim

θ→−∞
eγθϕ(θ) = x0 exist in X, then there

exists M ≥ 0 such that |eγθϕ(θ)| ≤M for all θ ∈]−∞, 0]. We have for x ∈ X

|L(ϕ)(x)| ≤
∫ 0

−∞
|G(θ)ϕ(θ)(x))dθ

≤
∫ 0

−∞
|e(γ+1)θe−γθeγθϕ(θ)(x))dθ

≤ M

∫ 0

−∞
eθdθ <∞

and

|L(ϕ)(x)| ≤
∫ 0

−∞
|G(θ)ϕ(θ)(x))dθ

≤
∫ 0

−∞
|e(γ+1)θe−γθeγθϕ(θ)(x))dθ

≤
(∫ 0

−∞
eθdθ

)
|ϕ|γ ,
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which implie that L is well defined and L is a bounded linear operator from B to X. We suppose
that there exists a function k1(.) ∈ L1(]−∞, 0];R+) such that

|h(θ, x1)− h(θ, x2)| ≤ k(θ)|x1 − x2| for θ ≤ 0 and x1, x2 ∈ R (6.3)

h(θ, 0) = 0. (6.4)

For example, we can take h(θ, x) = e−θ
2

sin
(x

2

)
for (θ, x) ∈]−∞, 0]×R and k1(θ) = e−θ

2
. We

can see that h(θ, 0) = 0 and |h(θ, x1) − h(θ, x2)| ≤
1

2
(|x1 − x2|). Assumptions (6.3) and (6.4)

imply that f(ϕ) ∈ X. In fact, ϕ ∈ B, then

f(ϕ)(x) =

∫ 0

−∞
h(θ, ϕ(θ)(x))dθ for x ∈ [0, π]

and

|f(ϕ)(x)| ≤
∫ 0

−∞
k1(θ)|ψ(θ)(x))|dθ.

Consequently

|f(ψ)| ≤
(∫ 0

−∞
k1(θ)dθ

)
|ψ|B.

Moreover assumption (6.4) implies that

f(ψ)(0) = f(ψ)(π) = 0.

Using the dominated convergence theorem, one can show that f(ϕ) is a continuous function on
[0, π]. Moreover, for every ϕ1, ϕ2 ∈ B, we have

|f(t, ϕ1)− f(t, ϕ2)| = sup
0≤x≤π

|f(ϕ1)(x)− f(ϕ2)(x)|

≤ sup
0≤x≤π

∫ 0

−∞
|h(θ, ϕ1(θ)(x))− h(θ, ϕ2(θ)(x))|dθ

≤ sup
0≤x≤π

∫ 0

−∞
k1(θ)|ϕ1(θ)(x)− ϕ2(θ)(x)|dθ

≤
(∫ 0

−∞
k1(θ)dθ

)
sup

−∞<θ≤0
0≤x≤π

|ϕ1(θ)(x)− ϕ2(θ)(x)|.

Consequently, we conclude that f is Lipschitz continuous and cl(µ, ν)-pseudo almost periodic of
infinite class. Then by Proposition 5.6 we deduce the following result.

Theorem 6.1. Under the above assumptions, equation (6.2) has a unique cl(µ, ν)-pseudo almost
periodic solution v of infinite class.
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