REFERENCES
Abdel-Fattah, G.M., El-Haddad, S.A., Hafez, E.E., & Rashad, Y.M. (2011). Induction of defense responses in common bean plants byarbuscular mycorrhizal fungi. Microbiological Research , 166, 268–281.
Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease Resistance Mechanisms in Plants. Genes , 9(7), 339.
Amaral, L.S., Debona, D., Costa, L.C., Luiza, A., José, R.S., Fabrício, R.O., & Rodrigues, A. (2019). Biochemical insights into basal and induced resistance in cabbage to black rot. Journal of Phytopathology , 167, 390–403.
Bagheri, L.M., Nasr-Esfahani, M., Abdossi, V., & Naderi, D. (2020). Analysis of candidate genes expression associated with defense responses to root and collar rot disease caused by Phytophthora capsici in peppers Capsicum annuum , Genomics , 112(3), 2309-2317.
Beaudoin-Eagan, L.D & Thorpe, T.A. (1985). Shikimate pathway activity during shoot initiation in tobacco callus cultures. Plant Physiology , 73,228-232.
Bharathi, E., Santha Lakshmi Prasad, M., Yadav, P., & Bee, H. (2019). Defense responses to Fusarium oxysporum f. sp. riciniinfection in castor (Ricinus communis L.) cultivars. Indian Phytopathology , 72, 647-656.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 72,248-254.
Chen, C., Belanger, R.R., Benhamou, N., & Paullitz, T.C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR). Physiological Molecular Plant Pathology , 56, 1323.
Constabel, C.P., & Ryan, C.A. (1998). A survey of wound-and methyl jasmonate-induced leaf polyphenol oxidase in crop plants,Phytochemistry , 47 (4), 507–511.
Dazy, M., Jung, V., Férard, J.F., & Masfaraud, J.F. (2008). Ecological recovery of 712 vegetation at a former coke-factory industrial wasteland: Role of plant 713 antioxidant enzymes and possible implications in site restoration. Chemosphere , 74,57-63.
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora Disease Worldwide. APS Press. St. Paul, MN, pp, 562.
Fernandes, C.F., Moraes, V.C.P., Vasconcelos, L.M., Silveira, J.A.G., & Oliveira, J.T.A. (2006). Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. Journal of Plant Physiology , 163, 1040-1048.
Garg, N., & Manchanda, G. (2009). ROS generation in plants: Boon or bane? Plant Biosystems , 143, 81-96.
Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A., Peres, L.E., & Azevedo, R.A. (2012). Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions,Plant Physiology and Biochemistry , 56, 79-96.
Hashemi, L., Golparvar, A.R., Nasr Esfahani, M., & Golabadi, M. (2019). Correlation between cucumber genotype and resistance to damping-off disease caused by Phytophthora melonis , Biotechnology & Biotechnological Equipment , 33(1), 1494-1504.
Hatami, N., Aminaee, M.M., Zohdi, H., & Tanideh, T. (2013). Damping-off disease in greenhouse cucumber in Iran. Archives of Phytopathology and Plant Protection , 46(7), 796–802.
Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J.Q., & Chen, Z. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress.Plant Physiology , 153, 1526–1538.
Jiang, S., Han, S., He, D., Cao, G., Fang, K., Xiao, X., Yi, J., & Wan, X. (2019). The accumulation of phenolic compounds and increased activities of related enzymes contribute to early defense against walnut blight. Physiological and Molecular Plant Pathology , 108, 101433.
Jung, W.J., F. Maboodb, A. Souleimanovb, & D.L. Smith. (2011). Induction of defense-related enzymes in soybean leaves by class IId bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains. Microbiological Research , 167, 14-19.
Khatediya, N.K., Parmar, D.V., Mahatma, M.K., & Pareek, M. (2018). Increased accumulation of phenolic metabolites in groundnut (Arachis hypogaea  L.) genotypes contribute to defense against Sclerotium rolfsii  infection, Archives of Phytopathology and Plant Protection , 51(9-10), 530-549, DOI: 10.1080/03235408.2018.1490519.
Kim, D.S., & Huang, B.K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic aciddependent signalling of the defense response to microbial pathogens. Journal of Experimental Botany , 65, 2295-2306.
Khodadadi, F., Tohidfar, M., Vahdati, K., Dandekar, A.M., & Leslie, C.A. (2020). Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant pathology , 69(4), 756-764.
Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.H, Sarthou, J.P., Cellier, V., Messéan, A., & Aubertot, J.N. (2017). Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development , 37, 10. Li, L., & Steffens, J. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta , 215, 239-47. pmid: 12029473.
Mandal, S., & Mitra, A., (2007). Reinforcement of cell wall in roots ofLycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology , 71, 201-209.
Mydlarz, L.D., & Harvell, C.D. (2006). Peroxidase activity and inducibility in the see fan coral exposed to a fungal pathogen.Comparative Biochemistry & Physiology . 10, 1016.
Moghbeli, E., Nemati, S.H., Aroiee, H., & Olfati, J.A. (2017). Evaluation of Resistance, Enzymatic Response, and Phenolic compounds in roots of F1 cucumber hybrids to Fusarium oxysporium F. SP.Radicis-Cucumerium . Journal of Horticultural Research , 25(1), 117–124. DOI: 10.1515/johr-2017-0012.
Moghaddam, G.A, Rezayatmand, Z., Nasr Esfahani, M. & Khozaei, M. (2019). Genetic defense analysis of tomatoes in response to early blight disease, Alternaria alternata . Plant Physiology and Biochemistry , 142, 500-509.
Moradi, N., Rahimian, H., Dehestani, A., & Babaeizad, V. (2016). Cucumber Response to Sphaerotheca fuliginea: Differences in antioxidant enzymes activity and pathogenesis-related gene expression in susceptible and resistant genotypes. Journal of Plant Molecular Breeding , 4(2), 33- 40.
Nasr Esfahani, M. (2018). Analysis of virulence and genetic variability of Alternaria alternata associated with leaf spot disease in potato plants in Iran. Acta Mycologica , 53, 1-9.
Nasr Esfahani, M., Chatraee, M., Shafizadeh, S., Jalaji, S. (2012). Evaluation of resistance of cucurbit and cucumber cultivars toPhytophthora drechsleri in Greenhouse. Iranian Seed and Plant Improvement Journal , 28,407-417.
Nasr Esfahani M, Nasehi A, Rahmanshirazi P. (2014). Susceptibility assessment of bell pepper genotypes to crown and root rot disease.Arch Phytopathol Plant Protect ; 47: 944–953.
Nasr Esfahani, M. (2019). Morphological, virulence and genetic variability of Ulocladium atrum causing potato leaf blight disease in Iran. J Plant Prot Res 59: 41-49.
Nasr Esfahani, M. (2020). Genetic variability and virulence of some Iranian Rhizoctonia solani isolates associated with stem canker and black scurf of potato (Solanum tuberosum L.). J. Plant Prot. Res . 60 (1): 21–30.
Nazavari, K., Jamali, F., Bayat, F., & Modarresi, M. (2016). Evaluation of resistance to seedling damping-off caused by Phytophthora drechsleri in cucumber cultivars under greenhouse conditions.Biological Forum , 8, 54-60.
Nostar, O., Ozdemir, F., Bor, M., Turkan, I., & Tosun, N. (2013). Combined effects of salt stress and cucurbit downy mildew (Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on growth, physiological traits and antioxidant activity in cucumber (Cucumis sativus L.) seedling. Physiological and Molecular Plant Pathology , 83, 84-92.
Pandey, V., A.K. Tewari, & Saxena, D. (2017). Activities of defensive antioxidant enzymes and biochemical compounds induced by bioagents in Indian mustard against alternaria blight . Proceedings of the National Academy of Sciences, 2, 1–10.
Prasannath, K. & De Costa, D.M. (2015). Induction of peroxidase activity in tomato leaf tissues treated with two crop management systems across a temperature gradient. Proceedings of the International Conference on Dry Zone Agriculture 2015. Faculty of Agriculture, University of Jaffna, Sri Lanka. 15th & 16th October 2015. 34-35.
Rais, A., Jabeen, Z., Shair, F., Hafeez, F.Y., & Hassan, M.N. (2017). Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae . PLoS ONE, 12(11), e0187412. https://doi.org/10.1371/ journal. pone.0187412.
Riedle-Bauer, M. (2000). Role of reactive oxygen species and antioxidant enzymes in systemic virus infections of plants. Journal of Phytopathology . 148, 297–302.
Sabbaghi, E., Sabbagh, S.K., Panjehkek, N., & Bolokyazd, H.R. (2018). Jasmonic Acid Induced Systemic Resistance in Infected Cucumber byPythium aphanidermatum . Journal of agricultural science, 24, 143-152. DOI: 10.15832/ankutbd.446416.
Siddique, Z., K.P. Akhtar, A. Hameed, N. Sarwar, I.U. Haq, & S.A. Khan. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions , 9,702–711.
Su, Y., Wang, Z., Xu, L., Peng, Q., Liu, F., Li, Z., & Que, Y. (2016). Early selection for smut resistance in sugarcane using pathogen proliferation and changes in physiological and biochemical indices.Frontiers in Plant Science , 7, 1133.
Su, X., Guan, L., & Hu, F. (2019). Comparison of Defensive Enzyme Activities in the Leaves of Seven Oriental Lily Hybrids after Inoculation with Botrytis elliptica . Journal of the American Society for Horticultural Science, 144(1), 55-62.
Solekha, R., Susanto, F.A., Joko, T., Nuringtyas, T.R., & Purwestri, Y.A. (2019). Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv.oryzae . Journal of Plant Pathology , https://doi.org/10.1007/s42161-019-00426-z.
Saunders, J., & O’neill, N. (2004). The characterization of defense responses to fungal infection in alfalfa. Biological control , 49, 715–728.
Vanitha, S.C., Niranjana, S.R., & Umesha, S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology , 157, 552–557.
Van Rossum, M.W., Alberda, M., & van der Plas, L.H. (1997). Role of oxidative damage in tulip bulb scale micropropagation, Plant Science . 130 (2), 207–216.
Wu, T., Wang, R., Xu, X., He, X., Sun, B., Zhong, Y., Liang, Z., Luo, S., & Lin, Y. (2014). Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis ,Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene , 549, 214-222.
Xie, J.H., Chai, T.T., Xua, R., Liu, D., Yang, Y.X., Deng, Z.C., Jin, H., & He, H. (2017). Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum . Electronic Journal of Biotechnology, 27, 63-69.
Yusuf, C.Y.L. Abdullah, J.O. Shaharuddin, N.A. Abu Seman, I., & Abdullah, M.P. (2018). Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq. Plant Cell Reports , 37, 265–278.
Zhang, C.Z., Wang, X., Zhang, F., Dong, L., Wu, J., Cheng, Q., Qi, D., Yan, X., Jiang, L., Fan, S., Li, N., Li, D., Xu, P., & Zhang, S. (2017). Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection. Scientific reports , 7(1), 7242. https://doi.org/10.1038/s41598-017-07832-2.
Zhao, S., Du, C.M., & Tian, C.Y. (2012). Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of cucumber Fusarium wilt by Streptomyces bikiniensis HD 087.World Journal of Microbiology & Biotechnology , 28, 2919–2927.