Refrences
Aghighia, S., Burgessa, T. I., Scottbc, J. K., Calveraand, M., Hardy, G. E. St. J., 2016. Isolation and pathogenicity of Phytophthora species from declining Rubus anglocandicans. Plant Pathol. 65,451–461. https://doi.org/10.1111/ppa.12436.
Alves, M. S., Dadalto, S. P., Goncalves, A.B., DeSouza, G. B., Barros, V. A., & Fietto, L. G. (2014). Transcription factors functional protein-protein interactions in plant defense responses.Proteomes , 2, 85-106. DOI: 10.3390/proteomes2010085.
Anil, K., Das, S. N, & Podile, A. R. (2014). Induced defense in plants: a short overview. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences , 84,669-679.
Boutrot, F., & Zipfel, C. (2017). Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annual Review of Phytopathology, 55,257-286. DOI: 10.1146/annurev-phyto-080614-120106.
Bouwmeester, K., de Sain, M., Weide, R., Gouget, A., Klamer, S., Canut, H., et al. (2011). The lectin receptor kinase LecRK-I.9 is a novel Phytophthora  resistance component and a potential host target for a RXLR effector. PLoS Pathogens , 7, e1001327. pmid:21483488. DOI: 10.1371/journal.ppat.1001327.
Castellano, M., Pallas, V., & Gomez, G. (2016). A pathogenic long noncoding RNA redesigns the epigenetic landscape of the infected cells by subverting host Histone Deacetylase 6 activity. New Phytologist , 211(4),1311-22. DOI: 10.1111/nph.14001.
Chakraborty, J., Ghosh, P., Sen, S., & Das, S. (2018). Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium  stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Plant Science , 276, 250-267. DOI: 10.1016/j.plantsci.2018.07.014.
Cui, J., Xu, P., Meng, J., Li, J., Jiang, N., & Luan, Y. (2018). Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. Theoretical and Applied Genetics , 131(4), 787–800. DOI: 10.1007/s00122-017-3035-9.
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora Disease Worldwide. APS Press. St. Paul, MN, pp: 562.
Eulgem, T., Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology , 10(4),366-71. DOI: 10.1016/j.pbi.2007.04.020.
Gamir, J., Darwiche, R., Van’t Hof, P., Choudhary, V., Stumpe, M., Schneiter, R., Mauch, F. (2017). The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal , 89(3),502-509. DOI: 10.1111/tpj.13398.
Göbel, C., Feussner, I., Hamberg, M., Rosahl, S. (2002). Oxylipin profiling in pathogeninfected potato leaves. Biochimica et Biophysica Acta , 1584,55-64. https://doi.org/10.1016/S1388-1981(02)00268-8.
Hashemi, L., Golparvar, A. R., Nasr Esfahani, M., Golabadi, M. (2019). Correlation between cucumber genotype and resistance to damping-off disease caused by Phytophthoramelonis, Biotechnology & Biotechnological Equipment, 33:1, 1494-1504, DOI: 10.1080/13102818.2019.1675535.
Hatami, N., Aminaee, M. M., Zohdi, H., & Tanideh, T. (2013). Damping-off disease in greenhouse cucumber in Iran, archives of phytopathology and plant protection, 46(7), 796-802. https://doi.org/10.1080/03235408.2012.752145.
Knoth, C., Ringler, J., Dangl, J.L., Eulgem, T. (2007). Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica . Molecular Plant-Microbe Interactions , 20,120-128. DOI: 10.1094/MPMI-20-2-0120.
Levesque, R. (2007). SPSS Programming and Data Management. A Guide for SPSS and SAS Users, Fourth Edition, SPSS Inc., Chicago, 3.
Liu, Q., Li, X., Yan, S., Yu, T., Yang, J., Dong, J., Zhang, S., Zhao, J., Yang, T., Mao, X., Zhu, X., & Liu, B. (2018). OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC Plant Biology , 18,257. DOI: 10.1186/s12870-018-1479-y.
Mansoori B, Banihashemi Z. Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Dis. 1982;66(1):373–376.
Maschietto, V., Marocco, A., Malachova, A., & Lanubile, A. (2015). Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. Journal of Plant Physiology , 188, 9-18. DOI: 10.1016/j.jplph.2015.09.003.
McGrath, M. T. (2001). Vegetable MD online: Phytophthora blight of cucurbits. Cooperative Extension, New York State, Cornell University. Online publication.
Nasr Esfahani M, Nasehi A, Rahmanshirazi P, et al. Susceptibility assessment of bell pepper genotypes to crown and root rot disease. Arch Phytopathol Plant Protect. 2014;47(8):944–953. https://doi.org/10.1080/03235408.2013.826541.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research , 29(9), e45.
Porta, H., & Rocha-Sosa, M. (2002). Plant Lipoxygenases. Physiological and Molecular Features. Plant Physiology , 130 (1), 15-21. DOI: 10.1104/pp.010787.
Pu, X., Xie, B., Li, P., Mao, Z., Ling, J., Shen, H., Zhang, J., Huang, N., & Lin, B. (2014). Analysis of the defense -related mechanism in cucumber seedlings in relation to root colonization by nonpathogenicFusarium oxysporum CS-20. FEMS Microbiology Letters , 355(2),142-51. DOI: 10.1111/1574-6968.12461.
Rancé, I., Fournier, J., & Esquerre´-Tugaye,´ M. T. (1998) The incompatible inter-action between Phytophtora parasitica var nicotianae race 0 and tobacco issuppressed in transgenic plants expressing antisense lipoxygenase se-quences. Proceedings of the National Academy of Sciences of the United States 95: 6554-6559.
Rawat, S., Ali, S., Mittra, B., & Grover, A. (2017). Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea . Biotechnology Reports , 13, 72–79. https://doi.org/10.1016/j.btre.2017.01.001
Ren, Y., Zhang, Z., Liu, J., Staub, J. E., Han, Y., et al. (2009). An Integrated Genetic and Cytogenetic Map of the Cucumber Genome.PLoS ONE, 4(6), e5795. DOI: 10.1371/journal.pone.0005795.
Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, M. J., & Moorman, A. F. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research , 37(6), e45. DOI: 10.1093/nar/gkp045.
Ruiz Gómez, F.J., Pérez-de-Luque, A., Sánchez-Cuesta, R., Quero, J.L., Navarro Cerrillo, M.N., 2018. Differences in the Response to Acute Drought and Phytophthora cinnamomi Rands Infection in Quercus ilex L. Seedlings. Forests. 9, 634. https://doi.org/10.3390/f9100634.
Rychlik, W. (2007). OLIGO 7 Primer Analysis Software. In: Yuryev A. (eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana Press.
Sebastian, P., Schaefer, H., Telford, I. R., & Renner, S. S. (2010). Cucumber (Cucumis sativus ) and melon (C. melo ) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences of the United States of America , 107,14269-14273. DOI: 10.1073/pnas.1005338107.
Sudisha, J., Sharathchandra, R., Amruthesh, K., Kumar, A., & Shetty, H.S. (2012). Plant Defense: Biological Control, in: Pathogenesis Related Proteins in Plant Defense Response (pp. 379-403). New York: Springer.
Tingquan, W., Rui, W., Xiaomei, X., Xiaoming, H., Baojuan, S., Yujuan, Z., Zhaojuan, L., Shaobo, L., & Yu’e, L. (2014). Cucumissativus L-type lectin receptor kinase (CsLecRK ) gene family response to Phytophthora melonis ,Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene , 549(2), 214-22. DOI: 10.1016/j.gene.2014.07.058.
Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology , 44,135-162. DOI: 10.1146/annurev.phyto.44.070505.143425
van den Berg, N., Mahomed, W., Olivier, N. A., Swart, V., & Crampton, B. G. (2018). Transcriptome analysis of an incompatible Perseaamericana - Phytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response. PLOS ONE , 13(10), e0205705. DOI: 10.1371/journal.pone.0205705.
Wang, Y., & Bouwmeester, K. (2017). L-type lectin receptor kinases: New forces in plant immunity. PLoS Pathogens , 13(8), e1006433. https://doi.org/10.1371/journal.ppat.1006433.
Wang, Z. K., Cheng, J. Y., Fan, A. Q., Zhao, J., Yu, Z. Y., Li, Y. B., Zhang, H., Xiao, J., Muhammad, F., et al. (2018). LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa , plays positive role in resistance to wheat powdery mildew. Plant Biotechnology Journal , 16, 50-62. DOI: 10.1111/pbi.12748.
Wu, T., Wang, R., Xu, X., He, X., Sun, B., Zhong, Y., Liang, Z., Luo, S., & Lin, Y. (2014). Cucumis sativus L-type lectin receptor kinase (CsLecRK ) gene family response toPhytophthora melonis , Phytophthora capsiciand water immersion in disease resistant and susceptible cucumber cultivars. Gene , 549, 214-222. DOI: 10.1016/j.gene.2014.07.058.
Xu, X., Wang, R., Chao, J., Lin, Y., Jin, Q., He, X., Luo, S., & Wu, T. (2015). The expression patterns of Cucumis sativus WRKY (CsWRKY ) family under the condition of inoculation withPhytophthora melonis in disease resistant and susceptible cucumber cultivars. Canadian Journal of Plant Science , 95,1121-1131. https://doi.org/10.4141/cjps-2014-403.
Zhao, T., Wang, J., Zhang, B., & Hou, X. (2018). Genome-Wide Analysis of Lectin Receptor-Like Kinases in Tomato (Solanumlycopersicum) and Its Association with the Infection of Tomato Yellow Leaf Curl Virus.Plant Molecular Biology Reporter,  36: 429-438. DOI: 10.1186/s12864-015-1249-2.