Refrences
Aghighia, S., Burgessa, T. I., Scottbc, J. K., Calveraand, M., Hardy, G.
E. St. J., 2016. Isolation and pathogenicity of Phytophthora species
from declining Rubus anglocandicans. Plant Pathol. 65,451–461.
https://doi.org/10.1111/ppa.12436.
Alves, M. S., Dadalto, S. P., Goncalves, A.B., DeSouza, G. B., Barros,
V. A., & Fietto, L. G. (2014). Transcription factors functional
protein-protein interactions in plant defense responses.Proteomes , 2, 85-106. DOI: 10.3390/proteomes2010085.
Anil, K., Das, S. N, & Podile, A. R. (2014). Induced defense in plants:
a short overview. The Proceedings of the National
Academy of Sciences, India, Section B: Biological Sciences ,
84,669-679.
Boutrot, F., & Zipfel, C. (2017). Function, discovery, and exploitation
of plant pattern recognition receptors for broad-spectrum disease
resistance. Annual Review of Phytopathology, 55,257-286. DOI:
10.1146/annurev-phyto-080614-120106.
Bouwmeester, K., de Sain, M., Weide, R., Gouget, A., Klamer, S., Canut,
H., et al. (2011). The lectin receptor kinase LecRK-I.9 is a
novel Phytophthora resistance component and a potential host
target for a RXLR effector. PLoS Pathogens , 7, e1001327.
pmid:21483488. DOI: 10.1371/journal.ppat.1001327.
Castellano,
M., Pallas,
V.,
& Gomez,
G. (2016). A pathogenic long noncoding RNA redesigns the epigenetic
landscape of the infected cells by subverting host Histone Deacetylase 6
activity. New Phytologist , 211(4),1311-22. DOI:
10.1111/nph.14001.
Chakraborty, J.,
Ghosh,
P.,
Sen,
S., &
Das,
S. (2018). Epigenetic and transcriptional control of chickpea WRKY40
promoter activity under Fusarium stress and its heterologous
expression in Arabidopsis leads to enhanced resistance against bacterial
pathogen. Plant Science , 276, 250-267. DOI:
10.1016/j.plantsci.2018.07.014.
Cui, J., Xu, P., Meng, J., Li, J., Jiang, N., & Luan, Y. (2018).
Transcriptome signatures of tomato leaf induced by Phytophthora
infestans and functional identification of transcription
factor SpWRKY3. Theoretical and Applied Genetics , 131(4),
787–800. DOI: 10.1007/s00122-017-3035-9.
Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora Disease Worldwide.
APS Press. St. Paul, MN, pp: 562.
Eulgem,
T., Somssich,
I. E. (2007). Networks of WRKY transcription factors in defense
signaling. Current Opinion in Plant Biology , 10(4),366-71. DOI:
10.1016/j.pbi.2007.04.020.
Gamir, J., Darwiche, R., Van’t Hof, P., Choudhary, V., Stumpe, M.,
Schneiter, R., Mauch, F. (2017). The sterol-binding activity of
PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an
antimicrobial protein. The Plant Journal , 89(3),502-509. DOI:
10.1111/tpj.13398.
Göbel, C., Feussner, I., Hamberg, M., Rosahl, S. (2002). Oxylipin
profiling in pathogeninfected potato leaves. Biochimica et
Biophysica Acta , 1584,55-64.
https://doi.org/10.1016/S1388-1981(02)00268-8.
Hashemi, L., Golparvar, A. R., Nasr Esfahani, M., Golabadi, M. (2019).
Correlation between cucumber genotype and resistance to damping-off
disease caused by Phytophthoramelonis, Biotechnology & Biotechnological
Equipment, 33:1, 1494-1504, DOI: 10.1080/13102818.2019.1675535.
Hatami, N., Aminaee, M. M., Zohdi, H., & Tanideh, T. (2013).
Damping-off disease in greenhouse cucumber in Iran, archives of
phytopathology and plant protection, 46(7), 796-802.
https://doi.org/10.1080/03235408.2012.752145.
Knoth, C., Ringler, J., Dangl, J.L., Eulgem, T. (2007). Arabidopsis
WRKY70 is required for full RPP4-mediated disease resistance and basal
defense against Hyaloperonospora parasitica . Molecular
Plant-Microbe Interactions , 20,120-128. DOI: 10.1094/MPMI-20-2-0120.
Levesque, R. (2007). SPSS Programming and Data Management. A Guide for
SPSS and SAS Users, Fourth Edition, SPSS Inc., Chicago, 3.
Liu, Q., Li, X., Yan, S., Yu, T., Yang, J., Dong, J., Zhang, S., Zhao,
J., Yang, T., Mao, X., Zhu, X., & Liu, B. (2018). OsWRKY67 positively
regulates blast and bacteria blight resistance by direct activation of
PR genes in rice. BMC Plant Biology , 18,257. DOI:
10.1186/s12870-018-1479-y.
Mansoori B, Banihashemi Z. Evaluating cucurbit seedling resistance to
Phytophthora drechsleri. Plant Dis. 1982;66(1):373–376.
Maschietto,
V., Marocco,
A., Malachova,
A.,
& Lanubile,
A. (2015). Resistance to Fusarium verticillioides and
fumonisin accumulation in maize inbred lines involves an earlier and
enhanced expression of lipoxygenase (LOX) genes. Journal of Plant
Physiology , 188, 9-18. DOI: 10.1016/j.jplph.2015.09.003.
McGrath, M. T. (2001). Vegetable MD online: Phytophthora blight
of cucurbits. Cooperative Extension, New York State, Cornell University.
Online publication.
Nasr Esfahani M, Nasehi A, Rahmanshirazi P, et al. Susceptibility
assessment of bell pepper genotypes to crown and root rot disease. Arch
Phytopathol Plant Protect. 2014;47(8):944–953.
https://doi.org/10.1080/03235408.2013.826541.
Pfaffl, M. W. (2001). A new mathematical model for relative
quantification in real-time RT-PCR. Nucleic acids
research , 29(9), e45.
Porta, H., & Rocha-Sosa, M. (2002). Plant Lipoxygenases. Physiological
and Molecular Features. Plant Physiology , 130 (1), 15-21. DOI:
10.1104/pp.010787.
Pu, X., Xie, B., Li, P., Mao, Z., Ling, J., Shen, H., Zhang, J., Huang,
N., & Lin, B. (2014). Analysis of the defense -related mechanism in
cucumber seedlings in relation to root colonization by nonpathogenicFusarium oxysporum CS-20. FEMS Microbiology Letters ,
355(2),142-51. DOI: 10.1111/1574-6968.12461.
Rancé, I., Fournier, J., & Esquerre´-Tugaye,´ M. T. (1998) The
incompatible inter-action between Phytophtora parasitica var nicotianae
race 0 and tobacco issuppressed in transgenic plants expressing
antisense lipoxygenase se-quences. Proceedings of the National Academy
of Sciences of the United States 95: 6554-6559.
Rawat, S., Ali, S., Mittra, B., & Grover, A. (2017). Expression
analysis of chitinase upon challenge inoculation to Alternaria wounding
and defense inducers in Brassica juncea . Biotechnology
Reports , 13, 72–79. https://doi.org/10.1016/j.btre.2017.01.001
Ren, Y., Zhang, Z., Liu, J., Staub, J. E., Han, Y., et al. (2009). An
Integrated Genetic and Cytogenetic Map of the Cucumber Genome.PLoS ONE, 4(6), e5795. DOI: 10.1371/journal.pone.0005795.
Ruijter, J. M.,
Ramakers,
C., Hoogaars,
W.
M., Karlen,
Y., Bakker,
O., van
den Hoff, M. J.,
& Moorman,
A. F. (2009) Amplification efficiency: linking baseline and bias in the
analysis of quantitative PCR data. Nucleic Acids Research , 37(6),
e45. DOI: 10.1093/nar/gkp045.
Ruiz Gómez, F.J., Pérez-de-Luque, A., Sánchez-Cuesta, R., Quero, J.L.,
Navarro Cerrillo, M.N., 2018. Differences in the Response to Acute
Drought and Phytophthora cinnamomi Rands Infection in Quercus ilex L.
Seedlings. Forests. 9, 634. https://doi.org/10.3390/f9100634.
Rychlik, W. (2007). OLIGO 7 Primer Analysis Software. In: Yuryev A.
(eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana
Press.
Sebastian, P., Schaefer, H., Telford, I. R., & Renner, S. S. (2010).
Cucumber (Cucumis sativus ) and melon (C. melo ) have
numerous wild relatives in Asia and Australia, and the sister species of
melon is from Australia. Proceedings of the National Academy of
Sciences of the United States of America , 107,14269-14273. DOI:
10.1073/pnas.1005338107.
Sudisha, J., Sharathchandra, R., Amruthesh, K., Kumar, A., & Shetty,
H.S. (2012). Plant Defense: Biological Control, in: Pathogenesis Related
Proteins in Plant Defense Response (pp. 379-403). New York: Springer.
Tingquan, W., Rui, W., Xiaomei, X., Xiaoming, H., Baojuan, S., Yujuan,
Z., Zhaojuan, L., Shaobo, L., & Yu’e, L. (2014). Cucumissativus L-type lectin receptor kinase (CsLecRK ) gene
family response to Phytophthora melonis ,Phytophthora capsici and water immersion in disease
resistant and susceptible cucumber cultivars. Gene , 549(2),
214-22. DOI: 10.1016/j.gene.2014.07.058.
Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of
inducible defense-related proteins in infected plants. Annual
Review of Phytopathology , 44,135-162. DOI:
10.1146/annurev.phyto.44.070505.143425
van den Berg, N., Mahomed, W., Olivier, N. A., Swart, V., & Crampton,
B. G. (2018). Transcriptome analysis of an incompatible Perseaamericana - Phytophthora cinnamomi interaction
reveals the involvement of SA- and JA-pathways in a successful defense
response. PLOS ONE , 13(10), e0205705. DOI:
10.1371/journal.pone.0205705.
Wang, Y., & Bouwmeester, K. (2017). L-type lectin receptor kinases: New
forces in plant immunity. PLoS Pathogens , 13(8), e1006433.
https://doi.org/10.1371/journal.ppat.1006433.
Wang, Z. K., Cheng, J. Y., Fan, A. Q., Zhao, J., Yu, Z. Y., Li, Y. B.,
Zhang, H., Xiao, J., Muhammad, F., et al. (2018). LecRK-V, an L-type
lectin receptor kinase in Haynaldia villosa , plays
positive role in resistance to wheat powdery mildew. Plant
Biotechnology Journal , 16, 50-62. DOI: 10.1111/pbi.12748.
Wu, T., Wang, R., Xu, X., He, X., Sun, B., Zhong, Y., Liang, Z., Luo,
S., & Lin, Y. (2014). Cucumis sativus L-type lectin
receptor kinase (CsLecRK ) gene family response toPhytophthora melonis , Phytophthora capsiciand water immersion in disease resistant and susceptible cucumber
cultivars. Gene , 549, 214-222. DOI: 10.1016/j.gene.2014.07.058.
Xu, X., Wang, R., Chao, J., Lin, Y., Jin, Q., He, X., Luo, S., & Wu, T.
(2015). The expression patterns of Cucumis sativus WRKY
(CsWRKY ) family under the condition of inoculation withPhytophthora melonis in disease resistant and susceptible
cucumber cultivars. Canadian Journal of Plant Science ,
95,1121-1131. https://doi.org/10.4141/cjps-2014-403.
Zhao, T., Wang, J., Zhang, B., & Hou, X. (2018).
Genome-Wide
Analysis of Lectin Receptor-Like Kinases in Tomato (Solanumlycopersicum) and Its Association with the Infection of Tomato
Yellow Leaf Curl Virus.Plant Molecular
Biology Reporter, 36: 429-438. DOI: 10.1186/s12864-015-1249-2.