Benjamin Walsh

and 5 more

The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages, are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life-history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but lose the ability to produce offspring. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening which limits a species' ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.

Alice Dore

and 2 more

Phenotypic plasticity can allow animals to adapt their behaviour, such as their mating effort, to their social and sexual environment. However, this relies on the individual receiving accurate and reliable cues of the environmental conditions. This can be achieved via the receipt of multi-component cues, which may provide redundancy and robustness. Male Drosophila melanogaster detect presence of rivals via combinations of any two or more redundant cue components (sound, smell and touch) and respond by extending their subsequent mating duration, which is associated with higher reproductive success. Although alternative combinations of cues of rival presence have previously been found to elicit equivalent increases in mating duration and offspring production, their redundancy in securing success under sperm competition has not previously been tested. Here, we explicitly test this by exposing male D. melanogaster to alternative combinations of rival cues and examining reproductive success in both the presence and absence of sperm competition. The results supported previous findings of redundancy of cues in terms of behavioural responses. However, there was no evidence of reproductive benefits accrued by extending mating duration in response to rivals. The lack of identifiable fitness benefits of longer mating under these conditions, both in the presence and absence of sperm competition, contrasted with some previous results, but could be explained by: 1) damage sustained from aggressive interactions with rivals leading to reduced ability to increase ejaculate investment, 2) presence of features of the social environment, such as male and female mating status, that obscured the fitness benefits of longer mating, 3) decoupling of behavioural investment with fitness benefits.