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Post-glacial dispersal and colonization processes have shaped community patterns in sub-8 

Arctic regions such as Churchill, Manitoba, Canada. Important questions remain about the 9 

species that colonized this area, in particular the role of glacial history and biological traits in 10 

governing colonization patterns from refugial and southerly geographic regions. This study 11 

quantifies sub-Arctic beetle  phylogenetic community structure using the net relatedness index 12 

(NRI) and nearest taxon index (NTI); calculated using publicly available data from BOLD; 13 

compares patterns across families with different traits (habitat, diet) using standard statistical 14 

analysis (ANOVA) as well as phylogenetic generalized least squares (PGLS) using a higher-15 

level beetle phylogeny; and compares phylogenetic community structure in Churchill with a 16 

region in southern Canada (Guelph, Ontario). The dominant pattern detected in our study was 17 

that aquatic families were much better represented in Churchill compared to terrestrial families, 18 

when compared against richness sampled from across Canada and Alaska. Individually, most 19 

families showed significant phylogenetic clustering in Churchill. Closely related species were 20 

likely found together due to the strong environmental filtering present in Arctic environments. 21 

There was no significant difference in phylogenetic structure between Churchill and Guelph, 22 

although the trend was towards stronger clustering in the North. Similarly, there was no 23 

difference in phylogenetic structure metrics calculated for aquatic vs. terrestrial beetle families, 24 

again with a trend towards stronger clustering in water beetles. By contrast, there was a 25 
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significant relationship between traits and community structure. Predators showed significantly 26 

stronger clustering in Churchill compared to other feeding modes, perhaps due to phylogenetic 27 

conservatism of their overwintering ability or generalist diet of some clades within families. This 28 

study contributes to our understanding of the traits and processes structuring insect biodiversity 29 

and macroecological trends in the sub-Arctic. 30 

Keywords:   Phylogenetic community structure, Arctic, Entomology, Biogeography, 31 

Environmental filtering, Macroecology  32 
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Phylogenetic Signal of Sub-Arctic Beetle Communities 50 

Introduction 51 

 The Arctic is a land of change (Pielou 1995). Glaciation changed, or largely 52 

eliminated, the communities inhabiting sub-Arctic areas such as Churchill, Manitoba, Canada 53 

(Pielou 1995). Ever since the last glacial maximum, post-glacial colonization has been ongoing 54 

in Arctic North America, with species coming from both the south and from the Beringian 55 

glacial refuge (Pielou 1995, Woodcock et al. 2013). While diversity in general tends to decrease 56 

with latitude, Arctic environments still provide a diverse range of habitats and niches in which 57 

organisms exist (Danks 1992, Woodcock et al. 2013). As the climate shifts, these communities 58 

and habitats are experiencing rapid changes; this may be due to increasing temperature, melting 59 

sea ice, increased greenery, changing nutrient levels, or invading species (Walseng et al. 2018). 60 

Important questions remain about Arctic biodiversity, such as what species and traits make up 61 

Arctic communities, where did they colonize from, what patterns exist in their community 62 

structure, and how will these patterns shift in the future? With ongoing climate change, it is 63 

important to understand the traits of Arctic and sub-Arctic species, as well as to predict how their 64 

geographic ranges and community structure may shift in the future.  65 

Investigating evolutionary community structure can help us understand the relationships 66 

among species in Arctic communities and their distribution patterns. Phylogenetic community 67 

structure metrics are used to quantify the relatedness among cohabiting species against patterns 68 

in a broader source community (Webb 2000, Webb et al. 2002, Kraft et al. 2007, Mayfield & 69 

Levine 2010, Emerson et al. 2011, Smith et al. 2014, Boyle & Adamowicz 2015). Are the 70 

species found in a local community more closely related than those in a broader community? 71 

What does this tell us about the mechanisms underlying their relationships and distributions?  72 
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In order to identify and understand the phylogenetic relationships between species, it is 73 

beneficial to analyze DNA sequence data, which is a rich source of data for inferring 74 

relationships (Hebert et al. 2003, Hebert & Gregory 2005). DNA barcodes are standardized DNA 75 

sequences that are used for specimen identification and species discovery (Hebert et al. 2003, 76 

Hebert & Gregory 2005). The barcode most commonly used for animals is an approximately 658 77 

base pair region of cytochrome c oxidase subunit I (COI), a mitochondrial gene (Wilson 2010, 78 

Wilson 2011, Smith et al. 2014, Boyle & Adamowicz 2015). DNA barcoding allows for data to 79 

be readily available to other scientists through data banks like the Barcode of Life Data Systems 80 

(BOLD), which contains a large collection of geo-referenced specimens from locations around 81 

the world (Ratnasingham & Hebert 2007). This study leverages publicly available, geo-82 

referenced sequence data for beetles from BOLD, combined with a published multi-gene 83 

backbone phylogeny (Hunt et al. 2007), to combine the merits of both approaches for community 84 

phylogenetics (Boyle & Adamowicz, 2015).  85 

Various patterns can occur in phylogenetic community structure, including patterns of 86 

clustering, overdispersal, or random (Webb 2000, Webb et al. 2002). A clustered pattern occurs 87 

when closely related species are found together more often than expected by chance, often 88 

caused by environmental filtering (Fig.1a) (Kraft et al. 2007, Emerson et al. 2011, Weiher et al. 89 

2011, Smith et al.  2014, Boyle & Adamowicz 2015). In this case, cohabiting species typically 90 

share the traits needed to survive in a given environment and are therefore found in the same 91 

region, while more distantly related species that lack these traits are excluded. Overdispersion 92 

occurs when closely related species cohabit in the same local community less than is expected 93 

(Fig.1b) (Kraft et al. 2007, Mayfield & Levine 2010, Emerson et al. 2011, Weiher et al. 2011, 94 

Boyle & Adamowicz 2015). This is often interpreted as evidence for competitive exclusion, 95 
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whereby closely related species compete for the same resource, and this results in one species 96 

being forced out of the environment or into a different niche (Kraft et al. 2007, Emerson et al. 97 

2011, Weiher et al. 2011, Boyle & Adamowicz 2015). However, it is difficult to draw conclusion 98 

about mechanisms and the causes of these patterns based on the phylogenetic patterns alone. 99 

Mayfield & Levine (2010) suggest that competitive exclusion can also cause clustering. If 100 

competitive ability is phylogenetically clustered and is more important for surviving in the 101 

environment than niche differences, we can expect competitive exclusion to cause clustering 102 

rather than overdispersion (Mayfield & Levine 2010). In order to draw conclusions about 103 

mechanisms, it may be beneficial to examine traits rather than community phylogenetic patterns 104 

alone. 105 

There are various environmental and biotic factors that may influence the phylogenetic 106 

structure of communities, and these may change with latitude. Factors such as the strength of 107 

competition and environmental filtering change across latitude with Danks (1993), suggesting 108 

that the relative importance of competition for resources decreases as latitude increases. In 109 

northern environments, the climate and environmental factors are more important than biotic 110 

interactions when determining the survival of populations in the environment (Ernst & Buddle 111 

2015), which would be expected to result in a more clustered phylogenetic community structure. 112 

The traits of the species within a community, such as diet or lifestyle, can also affect the 113 

phylogenetic structure (Mayfield & Levine 2010). For example, Poulin et al. (2011) found that 114 

closely related parasitic species are found together in local communities more than expected, 115 

likely due to closely related species having similar hosts. If these hosts are clustered 116 

geographically, we can expect the same of the parasites (Poulin et al. 2011, Eagalle & Smith 117 

2017). Similarly, Vamosi & Vamosi (2007) discussed the effects of an aquatic lifestyle on 118 
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community structure with dytiscid beetle communities in the lakes of Alberta and showing 119 

phylogenetic clustering. This may have been caused by a decrease in the importance of 120 

competition and an increase in environmental filtering in aquatic systems relative to terrestrial 121 

(Vamosi & Vamosi 2007). In order to survive in aquatic environments, species need to have a 122 

certain set of physiological tolerances, and environmental factors such as salinity and pH 123 

influence the diversity (Heino et al. 2016) and composition of species found in the environment 124 

(Vamosi & Vamosi 2007). However, different processes interact to determine species survival 125 

and co-existence, and it may be difficult to pinpoint one cause or mechanism (Peres-Neto et al. 126 

2012). Across these varied examples, the lifestyles and characteristics of the species influence 127 

the community structure.  128 

While prior studies have investigated clustering patterns and community structure within 129 

specific taxa and locations, few have compared these patterns across taxa or investigated how 130 

community structure is related to traits (Kraft et al. 2007, Vamosi & Vamosi 2007, Poulin et al. 131 

2011, Weiher et al. 2011). In this study, we investigate the patterns that occur in phylogenetic 132 

community structure at a species level across taxa and traits and investigate the phylogenetic 133 

relatedness of species inhabiting the sub-Arctic site of Churchill, Manitoba using northern North 134 

America as the regional species pool. This study allows us to investigate what traits, such as 135 

feeding modes and habitat preferences, are relatively more prevalent in Arctic communities and 136 

whether families with these traits tend to exhibit phylogenetic clustering. By understanding the 137 

current traits and community structure, and how these relate to environmental factors, we can 138 

better prepare for the changes likely to occur in the future.  139 

The focal organisms for this study are sub-Arctic Coleoptera. Beetles are understudied in 140 

previous community structure research yet are hyper-diverse, with species occupying a variety of 141 
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niches and habitats and exhibiting substantial variability in traits (Woodcock et al. 2013). There 142 

are also 322,157 public records available on the BOLD database as of June 25, 2019. 143 

Particularly, we will be focusing on the Churchill region as there has been a concerted effort to 144 

barcode fauna in northern communities, particularly Churchill (e.g. Woodcock et al. 2013, Zhou 145 

et al. 2009, 2010). In the BOLD database, there are 306 recorded species of Coleoptera in 146 

Churchill as of June 25, 2019 (Ratnasingham & Hebert 2007).  147 

We hypothesize that environmental filtering will impact community structure of sub-148 

Arctic communities due to the harsh environmental conditions present at higher latitudes. 149 

Specifically, we predict that the species in Churchill will present a significantly clustered pattern 150 

when compared against the broader North America species phylogeny. When comparing other 151 

regions within North America, we expect the regions found at higher latitudes to show a more 152 

significant clustered pattern.  Secondly, we hypothesize that the traits and characteristics of the 153 

species will influence the community structure. We predict that taxonomic groups with traits that 154 

expose them to more environmental filtering, such as being aquatic, or relying on a host species, 155 

such as being a parasite or parasitoid, will have a more clustered pattern than their terrestrial and 156 

free-feeding counterparts.  157 

Methods 158 

Data and Taxa  159 

 Using BOLD’s application programming interface (API), all data for this study were 160 

pulled from the BOLD database [June 19th 2019] directly into the R environment 161 

(Supplementary Material Appendix 1). All coding was done in R version 3.5.0 (R Core Team, 162 

2013). Data for both Canada and Alaska were used as the regional species pool and compared to 163 
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the data from Churchill, which will be defined as the local community for this study. Coleoptera 164 

families were retained for analysis if they were represented by three or more BINs (Barcode 165 

Index Number; Ratnasingham and Hebert 2013), in Churchill.   166 

Filtering Data and Defining Churchill 167 

 Once the sequences and metadata had been pulled from BOLD, the data were filtered. 168 

DNA sequences without a BIN or GPS coordinates were removed. Sequences were also removed 169 

if they were not from the COI-5P marker, if they had internal missing data (‘N’ nucleotides) or 170 

gap content greater than 1% of the sequence length, or were less than 500 base pairs. The 171 

decision to use COI is explained in Supplementary Material Appendix 2. The sequences were 172 

aligned within each BIN in order to choose a representative sequence for each BIN, defined as 173 

the sequence with the minimum average distance to all others in its BIN (as in Orton et al., 174 

2018). Alignments were preformed using the muscle algorithm (Edgar 2004) with the following 175 

parameters: maxiters equaled 3, diags equaled true, and gapopen equaled -3000. These 176 

parameters were chosen in order to limit the number of iterations for optimization to allow for an 177 

alignment to be quickly generated. Then, the selected centroids (one per BIN) were aligned 178 

within each family. A preliminary alignment was performed with the above parameters in order 179 

to trim the sequences and to screen for outliers. These sequences were then aligned using a 180 

reference sequence. A reference BIN that met the following criteria was selected from the public 181 

data on BOLD; it contained at least 10 CO1-5P sequences, it had at least one specimen 182 

photograph and did not have taxonomic conflicts at order level or above. The reference sequence 183 

was chosen from this BIN and had to be 658 base pairs long, have 2 trace file chromatograms 184 

and no missing information or stop codons. The final alignment was performed using the 185 

package muscle (Edgar 2004) with the same settings as the previous alignments, but with the 186 



9 
 

default maxiters parameter (maxiter = 8 in R implementation using muscle package) (Edgar 187 

2004). The gap opening penalty is based on preliminary analyses performed by Orton et al. 188 

(2018) on taxonomic groups that contained gap regions (amino acid insertions or deletions in the 189 

COI barcode region). This gap opening penalty provided biologically realistic alignments that 190 

preserved amino acid alignment homology across taxonomic groups (Orton et al. 2018). The 191 

centroid, alignment, and filtering code were adapted from publicly available code by May (2017) 192 

and Orton et al. (2018). 193 

 After the data were filtered, a Churchill subset was defined using coordinates: a latitude 194 

between 58.6 and 58.7 degrees and a longitude between -94.2 and -93.8 degrees. These 195 

coordinates were found using Google Earth (Google, 2018) and based on a map provided in 196 

Boyle (2012) that showed the accessible areas in the vicinity of Churchill, MB, included in prior 197 

DNA barcoding research. This map is compatible with maps in other Churchill-related DNA 198 

barcoding papers (e.g. Zhou et al. 2009, 2010; Woodcock et al. 2013). 199 

Community Phylogenetic Metrics   200 

 In order to test for phylogenetic clustering and overdispersion, we calculated net 201 

relatedness index (NRI) and nearest taxon index (NTI); the calculation of these metrics requires a 202 

phylogeny as one of the inputs. First, we generated a maximum likelihood tree for each 203 

Coleoptera family using one sequence per BIN for all BINs present in Canada and Alaska. The 204 

family level was chosen because beetle families often share important traits, such as feeding 205 

mode (Hunt et al. 2007). Before reconstructing the phylogenies, we first estimated the best-fit 206 

model of nucleotide evolution using the R package phangorn version 2.4.0 (Schliep 2011). The 207 

model with the lowest Bayesian Information Criterion (BIC) score was chosen, and the 208 

proportion of invariant sites was determined based on the fitted model. The number of intervals 209 
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of discrete gamma distribution (the k value) was set to 4. A neighbour joining tree, generated 210 

using the function NJ from phangorn version 2.4.0 (Schliep 2011), was used as the guide tree. 211 

The maximum likelihood trees were generated using the function optim.pml from phangorn 212 

version 2.4.0 (Schliep 2011) and optNni, optGamma and optInv were set to true.  These trees 213 

were used in the NRI and NTI analysis. NRI and NTI calculate the pairwise distance between 214 

two species and use this to estimate the community relatedness (Webb 2000) (Supplementary 215 

Material Appendix 3). These calculations were preformed using the R package picante version 216 

1.7 (Kembel et al. 2010) and the null model “taxa.labels”, which indicates that random draws of 217 

the same species richness as the Churchill community were made from each family phylogeny; 218 

and NRI and NTI are re-calculated with each randomization. The analysis was repeated 1000 219 

times. The observed NRI and NTI values were then compared against the null distribution to 220 

obtain a p-value. These tests determined whether species inhabiting the Churchill region are 221 

more significantly phylogenetically clustered than expected by chance, when compared against 222 

the phylogeny of DNA barcoded beetles of northern North America.  223 

 Kraft et al. (2007) state that the power for the NRI and NTI analysis is highest when local 224 

species richness is 30-60% of regional species richness.  For the Coleoptera of Churchill, all 225 

families are below this range except for Dytiscidae, Gyrinidae, and Haliplidae. To determine the 226 

effects of this, a sensitivity analysis was performed (Supplementary Material Appendix 4).  A 227 

Holm-Bonferroni correction was done for the p-values in order to account for the test being 228 

performed 16 times. 229 

Community Phylogenetic Metrics for a Temperate Region 230 

 In order to compare the phylogenetic community structure patterns in Churchill to a 231 

temperate location, the analysis above was repeated for the Guelph region. Guelph was selected 232 
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due to its temperate climate and the abundance of data available on the BOLD database 233 

(Ratnasingham & Hebert 2007). A Guelph subset was defined using coordinates: a latitude 234 

between 43.4 and 43.6 degrees and a longitude between -80.3 and -80.1 degrees, selecting after 235 

consulting. These coordinates were found using Google Earth (Google, 2018).  In order to 236 

determine if the community structure of the Churchill and Guelph subsets were significantly 237 

different, a t-test was performed to compare mean NTI and NRI values for beetle families 238 

between these sites. 239 

Trait Analysis  240 

 For the trait analyses, we investigated whether families with different traits have different 241 

phylogenetic community structure, by comparing the NRI/NTI values across trait categories 242 

using an ANOVA. First, we created a character matrix for each family. Characters/traits were 243 

found for each family based on the literature (Le Conte 1862, Marshall 2007, Slipinski et al. 244 

2011). The traits that describe the majority of members of a given family were used; this 245 

included habitat (terrestrial or aquatic) and feeding mode (predator, herbivore, or scavenger). We 246 

then used a one-way ANOVA to compare the average phylogenetic structure (NRI or NTI 247 

metric) of families across trait categories, treating each family as an independent unit (as 248 

supported by the results of Pyle 2018). We conducted a second analysis considering phylogenetic 249 

relationships among families. We created a family-level phylogenetic tree, i.e. treating each 250 

family as one tip, using the phylogenetic hypothesis provided in Hunt et al. (2007) based upon 251 

three gene regions, and assigned branch lengths of 1, before fitting a phylogenetic generalized 252 

least squares (PGLS) model using picante version 1.7 (Kembel et al. 2010). This allowed us to 253 

determine whether families with particular traits have different clustering patterns while taking 254 
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into account the phylogeny of the entire order. The PGLS analysis used Brownian motion as the 255 

model of trait evolution and the log-likelihood was maximized for the method.  256 

Results  257 

Phylogenetic Clustering Metrics  258 

 Sixteen families of Coleoptera were analyzed for the study, following the data filtering 259 

steps described above, of which eight showed significant phylogenetic clustering (min p-value = 260 

0.0009, max p-value = 0.045) (Fig.2a). Five showed a non-significant trend toward clustering 261 

(min p-value = 0.05, max p-value = 0.44) and three showed a trend toward overdispersion but 262 

insignificant (min p-value = 0.58, max p-value = 0.83) (Table 1). For 11 of 16 families, the 263 

results for NRI and NTI showed the same trend and significance. For Hydrophilidae, 264 

Cryptophagidae and Staphylinidae, NTI suggested significant clustering while NRI was not 265 

significantly different from zero. For Gyrinidae and Haliplidae, NRI suggested significant 266 

clustering while NTI was insignificant. Though NRI and NTI conflict in significance, both show 267 

a trend toward clustering.   268 

 After applying the Holm-Bonferroni correction, Cantharidae (original p-value = 0.0009, 269 

corrected p-value = 0.0144) was the only family below 0.05. This suggests, that while the results 270 

for Cantharidae are very significant, there could be some false positives in the other families who 271 

did not meet this threshold. 272 

 The same analysis was completed for the Guelph subset. Thirty-two families were 273 

analyzed, five of which showed significant phylogenetic clustering (Fig.2b). Nine families 274 

showed a trend toward phylogenetic clustering in both NRI and NTI, but this was insignificant. 275 

Twelve showed a trend toward overdispersion in both NRI and NTI, but this was also 276 
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insignificant. The remaining six families had conflicting trends in NRI and NTI, with NRI 277 

showing a trend toward clustering and NTI showing a trend toward overdispersion in five of the 278 

families. The remaining family, Nitidulidae, showed clustering in NTI and overdispersion in 279 

NRI. The results for NRI and NTI agreed on significance for all but 3 families. Cryptophagidae 280 

was significant only in NTI and Scirtidae and Throscidae were significant only in NRI. Overall, 281 

Guelph appears to be more overdispersed than Churchill. However, the NRI values (t-statistic = -282 

0.9, p-value = 0.38 and NTI values (t-statistic = -1.53, p-value = 0.14) of the two subsets were 283 

not significantly different. 284 

Trait Analysis  285 

 Within the families studied in Churchill, only 5 were aquatic while 11 were terrestrial. 286 

However, aquatic families have a larger percent of their total BINs found in Churchill (Fig. 3). A 287 

Chi Square test was used to determine if there were relatively more BINs in a particular habitat 288 

than expected. This test indicated that the distribution of BINs is not independent of habitat (Χ-289 

squared = 23.51, df = 1, p-value = 1.243x10-6), with aquatic families better represented in the 290 

sub-Arctic than terrestrial families. A similar result was shown for feeding mode, with the 291 

number of sequences being significantly related to the feeding mode (Χ-squared = 244.59, df =2, 292 

p-value = 2.2x10-16) and predaceous BINs occurring relatively more frequently in the sub-Arctic 293 

than other feeding modes.  Six families were herbivores, six were predators and four were 294 

scavengers. The ANOVA showed no significant relationship between the community structure 295 

metrics and the traits of the families (Table 2a). There was no relationship between structure and 296 

habitat (F-value=2.02, p-value=0.18, Habitat df =1, Residuals df = 14) and no relationship 297 

between structure and feeding mode (F-value=0.71, p-value=0.51, Diet df=2, Residuals df = 13). 298 

These results were consistent with both the NRI and NTI values. The results of the PGLS 299 
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differed from that of the ANOVA. While community structure was not significantly related to 300 

habitat, there was a significant relationship to feeding mode (Table 2b, Fig.4). Predators were 301 

significantly more clustered than other feeding modes in both NRI (t-value=2.12, p-value=0.05) 302 

and NTI (t-value = 2.57, p-value = 0.02). There are also appeared to be a trend toward increased 303 

clustering in aquatic families.   304 

Discussion 305 

 Overall, we found significant clustering in eight of the Coleoptera families studied, and a 306 

trend toward clustering in five. This provides support for the hypothesis that due to the harsh 307 

conditions present at high latitudes, environmental filtering would be strong in sub-Arctic 308 

communities. The species present in the Churchill region possessed the traits needed to survive 309 

in this environment, while more distantly related species likely did not. This was not true for all 310 

families studied, as three families showed a trend toward overdispersal, though this was 311 

insignificant. All families were widely sampled across Canada, though less sampling was done in 312 

Northern Canada than Southern. The overdispersed families could potentially still have been 313 

experiencing clustering, just at a larger scale, with closely related species being clustered in 314 

Canada.  315 

 When comparing the Guelph and Churchill subsets, Guelph appeared to be more 316 

overdispersed than Churchill, though this difference was not significant. It is possible that 317 

Guelph, at 43.5 degrees north, and Canada in general, is still far enough north to experience 318 

significant clustering. Guelph was less clustered than Churchill (58.7 degrees north) and if 319 

compared to more regions at lower latitudes, it is possible there will be a more pronounced 320 

difference. This supports the hypothesis that sub artic communities are experiencing greater 321 

environmental filtering. Temperate areas are under less extreme environmental pressures, likely 322 
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resulting in stronger competition and more phylogenetically dispersed communities compared to 323 

polar regions (Danks 1993).  324 

 For some families in both Churchill and Guelph, the NRI and NTI differed in their 325 

estimates of significance, or, in some cases, even their predicted trend. This likely relates to the 326 

different ways NRI and NTI measure distance between nodes. If NRI suggests clustering, this is 327 

due to clustering occurring deeper within the phylogeny (Webb 2000). For NTI, the clustering is 328 

occurring within the clades and at the tips of the phylogeny (Webb 2000). For this study, it is 329 

beneficial to use both in order to detect clustering patterns at all levels.  330 

 Our results were similar to those found in other studies. Ernst & Buddle (2015) found that 331 

assemblage structure was correlated with latitude and that climate was more important than 332 

biotic factors for determining community structure in northern communities of beetles when 333 

species were placed in functional groupings. Similarly, Shibuya et al. (2011) found that in the 334 

beetle family Carabidae in Japan, the environmental conditions were more important for 335 

determining community patterns than competition, and there was actually very little interaction 336 

between the beetle species. Carabidae was significantly clustered in our study, in accordance 337 

with the findings of Shibuya et al. (2011). While Dytisicidae was not significantly clustered in 338 

this study, it still showed a trend toward clustering, similar to Vamosi & Vamosi (2007). Not all 339 

families exhibited this pattern. The importance of competition, as well as the strength of 340 

environmental filtering, likely differs between species, and this results in different community 341 

structure patterns, even under harsh environmental conditions. There were some families that 342 

exhibited a trend toward overdispersion. Ulrich & Fattorni (2013) found a similar pattern in 343 

Tenebrionidae and suggested that this could be due to colonization patterns. Differences in the 344 

past colonization patterns of the families could also influence the community structure.  345 



16 
 

In contrast to our predictions, there was no significant relationship between phylogenetic 346 

community structure and habitat in both the ANOVA and PGLS analyses at the family level, 347 

though a trend toward increased clustering in aquatic families was shown. Competition is often 348 

less important in aquatic communities due to the strong influence of environmental factors 349 

(Vamosi & Vamosi 2007, Heino et al. 2016). Therefore, we expected aquatic families to be 350 

significantly more clustered than terrestrial. Both terrestrial and aquatic families exhibited 351 

similar clustering patterns, but only terrestrial families showed any trend toward overdispersion. 352 

This could be due to stronger clustering in aquatic habitats. This pattern could also be influenced 353 

by the low richness of some of the terrestrial families, as well as low plant species richness in the 354 

sub-Arctic. Though there was no significant evidence for a relationship between the phylogenetic 355 

clustering and the habitat at the level investigated in this study, there may be evidence for the 356 

influence of habitat at a higher taxonomic level. Getting a true representation of terrestrial versus 357 

aquatic families was difficult due to the variability within families and the limited families 358 

located in Churchill. Only five of the sixteen families studied were aquatic. However, these 359 

aquatic families had a larger percent of their total species found in Churchill than terrestrial 360 

families, and habitat was shown to be strongly related to the representation of Northern North 361 

American BINs that have been found in Churchill. This suggests that it may be easier for aquatic 362 

species to colonize the Arctic than terrestrial. In order to better understand this pattern, other 363 

locations and taxonomic levels should be investigated. Habitat is likely not the trait determining 364 

community structure within families in this study. 365 

However, there was a significant relationship between clustering and feeding mode, with 366 

predator families showing significantly more clustering compared to other feeding modes. This 367 

pattern could possibly be due to the predator’s reliance on their prey species. If the prey is 368 
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clustered, so is the predator. However, out of the six predatory families studied, five were 369 

generalist predators (Marshall 2006). The sixth family, Coccinellidae, consumes mostly aphids 370 

(Marshall 2006). This is also the only predator family that showed a trend toward overdispersion. 371 

Therefore, the general diet of most of the families suggests that the clustering pattern observed is 372 

not dependent on their prey and that having a more general diet is beneficial for surviving in the 373 

Arctic. It is also possible that there are limits to the vegetation available in Arctic climates, 374 

therefore limiting the survival and diversity of herbivores. Another possible explanation is that 375 

these predators are able to survive in these northern habitats due to their cold tolerance and 376 

overwintering abilities. Predacious families such as Coccinellidae and Carabidae have 377 

overwintering strategies that allow for survival in cold temperatures (Knapp & Saska 2011, 378 

Hamedi et al. 2013). This includes occupying microhabitats that buffer the effects of the climate, 379 

lowering temperature thresholds for activity or increasing cryoprotectant concentrations (Knapp 380 

& Saska 2011, Hamedi et al. 2013). If these traits are phylogenetically conserved, this would 381 

result in clustering.  Diet has been shown to be important in other studies, such as Poulin et al. 382 

(2011), who found clustering in parasitic families due to their reliance on specific host species. 383 

Like habitat, feeding mode was shown to influence the number of individuals found in Churchill, 384 

with predacious families having a larger percent of their total species found in Churchill 385 

compared to other feeding modes. This suggest that predators may be more likely to colonize 386 

Arctic environments and that feeding mode is an important part of determining community 387 

structure in Churchill. Overall, there was support for our hypothesis that traits would impact 388 

phylogenetic community structure. The idea that traits are important for determining community 389 

structure is also supported by the literature; Mayfield & Levine (2010) suggest that phylogeny 390 
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alone cannot determine community structure, and studies such as Vamosi & Vamosi (2007) have 391 

found traits such as body size to be related to community structure.  392 

 One of the limitations of this study was limited richness of BINs within some habitats 393 

and traits among the families present in Churchill, reflecting primarily the biological patterns as 394 

sampling has been extensive (Woodcock et al. 2013; Pyle 2018). There were more terrestrial 395 

species than aquatic and more herbivores and predators than scavengers; this makes it hard to 396 

accurately compare the observed clustering patterns in relation to the trait states. There were only 397 

16 families studied, providing limited data for the analysis of variance assessing the phylogenetic 398 

community structure of the families and traits. Future studies may expand on these results by 399 

conducting this analysis for other taxa, other geographic regions, and other traits. While this 400 

study did look at one temperate region, including more regions along a latitudinal gradient would 401 

allow us to better understand the effects of latitude and environmental conditions on 402 

communities. There was a connection between community structure and traits, but only two 403 

traits were investigated. By including more traits, we can discover what other traits are being 404 

filtered for in Arctic communities and how these traits are affecting phylogenetic community 405 

structure. It may also be beneficial to investigate the effect of traits at a lower taxonomic level, as 406 

families are diverse, and one trait state may not adequately describe the ecology of every species. 407 

There is also the issue that some families are understudied and under sampled (Brunke 2019). 408 

While sampling in general is extensive for Churchill beetles (Woodcock et al. 2013; Pyle 2018), 409 

families such as Scirtidae and Latridiidae are poorly understood and appear to be more diverse in 410 

Canada than the number of recorded species suggests (Brunke 2019). By continuing to study 411 

Canada’s insect communities, including intensive sampling at focal sites, we can future explore 412 

diversity, traits, and community structure based upon more complete sampling.  413 
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 During post-glacial colonization, species came from the south and from the Beringian 414 

glacial refugium (Pielou 1995, Woodcock et al. 2013). Was this colonization random? The 415 

results of this study suggest that it wasn’t. Closely related species, sharing similar traits were 416 

found in sub-Arctic communities due to the environmental filtering occurring in this area. Arctic 417 

communities are particularly vulnerable to climate change and increasing temperatures (Danks 418 

1992, Walseng 2017). If Arctic conditions change, it is possible that some of their extreme 419 

environmental pressures will decrease or shift, and the environmental filtering occurring in these 420 

environments will likely also change. By understanding the current community structure and the 421 

factors and traits influencing this, we can better predict how these communities are likely to 422 

change in the future. If temperate locations show less clustering than those in northern regions, 423 

as shown by the comparison of Guelph and Churchill in this study, we can expect communities 424 

to become less phylogenetically clustered as species move northward. 425 

 426 

 427 

 428 

 429 
 430 

 431 
 432 

 433 
 434 

 435 
 436 
 437 
 438 
 439 

 440 
 441 
 442 
 443 
 444 
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Data Accessibility Statement  445 

 DNA Sequences and related data are publicly available on the Barcode of Life  446 

Database http://boldsystems.org/. An excel file containing the process ids of sequences used in  447 

this analysis can be found in Supplementary material. 448 

 The character matrices and phylogenetic tree used in the analysis are available on Data 449 

Dryad.  450 
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Tables & Figures  651 

Table 1: A table showing the community phylogenetic and other metrics for each of the Coleoptera families. Significant values are in 652 

bold. Significant values under the Holm-Bonferroni threshold are in italics.  653 

Family Clustering 

Value NRI 

p-value 

NRI 

Clustering 

Value NTI 

p-

Value 

NTI 

Number 

of BINs 

in 

Canada 

and 

Alaska 

Number 

of BINs 

in 

Churchill 

% of 

Total 

Found in 

Churchill  

Number of 

Sequences 

in Canada 

and Alaska  

Number of 

Sequences 

in 

Churchill 

Habitat Feeding 

Mode  

Buprestidae 2.02 0.04 2.2 0.05 84 3 4% 470 3 Terrestrial  Scavenger  

Cantharidae  2.78 0.0009 2.52 0.005 95 6 6% 5043 23 Terrestrial  Predator 

Carabidae 1.94 0.02 2.29 0.01 398 20 5% 3642 90 Terrestrial Predator 

Chrysomelidae -0.72 0.77 -0.47 0.67 259 5 2% 3805 71 Terrestrial Herbivore 

Coccinellidae -0.19 0.58 -0.62 0.74 104 5 5% 2481 9 Terrestrial Predator 

Cryptophgidae 1.38 0.07 1.88 0.04 65 3 5% 428 5 Terrestrial  Herbivore 

Curculionidae 0.21 0.44 0.19 0.39 356 8 2% 7453 11 Terrestrial  Herbivore 

Dytiscidae 1.34 0.08 1.52 0.07 84 36 43% 1531 140 Aquatic  Predator 

Elateridae 0.39 0.34 0.38 0.43 246 5 2% 3035 20 Terrestrial Herbivore 

Gyrinidae 2 0.045 1.17 0.13 18 7 39% 215 22 Aquatic Predator 

Haliplidae 2.17 0.03 0.99 0.17 9 6 67% 75 6 Aquatic Herbivore 

Hydrophilidae 1.14 0.12 2.7 0.01 56 6 11% 265 13 Aquatic Scavenger 

Latridiidae -0.74 0.76 -0.89 0.83 80 3 4% 4216 11 Terrestrial Scavenger 

Leiodidae 0.68 0.24 0.25 0.38 124 5 4% 593 19 Terrestrial Scavenger 

Scirtidae 1.03 0.17 0.67 0.2 43 3 7% 2881 9 Aquatic  Herbivore 
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Stapylinidae 0.61 0.29 2.48 0.009 951 21 2% 7187 35 Terrestrial  Predator  

654 
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Table 2: The results from the a) ANOVA, i) for the NRI values and ii) for the NTI values. There 655 

is no significant relationship between the phylogenetic community structure within families and 656 

the habitat or feeding mode of the families. These results differed from the b) PGLS analysis 657 

comparing community structure within families to feeding mode and comparing community 658 

structure to habitat for both i) NRI values and ii) NTI values, taking into account the family-level 659 

phylogeny of beetles. There was no significant relationship between community structure and 660 

habitat but there was a significant relationship with feeding mode. Predators were significantly 661 

more clustered.  662 

a) i) ANOVA: NRI Values  663 

 Df Sum Sq Mean Sq F Value  Pr(>F) 

Habitat 1 2.07 2.07 2.023 0.18 

Residuals 14 14.32 1.02   

 664 

 Df Sum Sq Mean Sq F Value  Pr(>F) 

Adult Diet  2 1.62 0.81 0.71 0.51 

Residuals 13 14.77 1.14   

 665 

    ii) ANOVA: NTI Values  666 
 667 

 Df Sum Sq Mean Sq F Value  Pr(>F) 

Habitat 1 0.89 0.89 0.59 0.46 

Residuals 14 21.15 1.51   
 668 
 Df Sum Sq Mean Sq F Value  Pr(>F) 

Adult Diet  2 3.02 1.51 1.03 0.384 

Residuals 13 19.02 1.46   

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 
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b) i) PGLS: NRI Values  677 

 Value Std. Error t-value p-value 

Herbivore 0.42 0.68 0.62 0.54 

Predator 1.14 0.54 2.12 0.05 

Scavenger 0.72 0.66 1.09 0.3 

                  678 

 Value Std. Error t-value p-value 

Aquatic  1.31 0.79 1.66 0.12 

Terrestrial -0.39 0.74 -0.53 0.61 

 679 
   ii) PGLS: NTI Values  680 
 681 

 Value Std. Error t-value p-value 

Herbivore 0.14 0.72 0.2 0.84 

Predator 0.47 0.57 2.57 0.02 

Scavenger 1 0.7 1.42 0.18 

                 682 

 Value Std. Error t-value p-value 

Aquatic  1.23 0.89 1.38 0.19 

Terrestrial -0.39 0.83 -1.47 0.65 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 
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a)   b)  693 

Figure 1: Phylogenetic trees demonstrating phylogenetic community structure patterns. Each 694 

habitat or geographic region is shown by a different colour and shape. a) Pattern A shows a 695 

clustering pattern, where closely related species share the same region. b) Pattern B shows an 696 

overdispersed pattern, where closely related species inhabit different regions or environments.  697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 
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a)  705 

b)  706 

Figure 2: a) Graph showing the phylogenetic community metrics for Coleoptera families in 707 

Churchill, MB. A positive value indicates a clustered pattern, and a negative value marks an 708 

overdispersed pattern. Families exhibiting significant (p-value < 0.05) clustering are marked by 709 

an asterisk. The majority of families tend towards a clustering pattern. b) Graph showing the 710 

clustering values for Coleoptera families in Guelph, ON. The phylogenetic community structure 711 

is generally random, without a clear trend toward overdisperion or clustering. Families are more 712 

overdispersed in this region than Churchill.  713 
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 714 

 715 

Figure 3: Phylogenetic tree showing the terrestrial and aquatic families present in Churchill. The 716 

pie graphs show the percent of the total BINs from Canada and Alaska that have been found in 717 

Churchill. Aquatic families have a larger percent of their total BINs found in Churchill than 718 

terrestrial families.  719 

 720 

 721 

 722 

 723 

 724 
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a) b)  725 

c) d)  726 

Figure 4: Boxplots showing the results of the PGLS for the clustering values of Coleoptera 727 

families inhabiting species habitats using a) NRI and b) NTI and the clustering values of 728 

Coleoptera families exhibiting different feeding modes using c) NRI and d) NTI.  The same letter 729 

above bars denotes groups that do not differ significantly, while different letters denote a 730 

significant difference; predators are significantly clustered using the NTI.  731 

 732 

 733 

 734 

 735 

 736 
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Supplementary Material  737 

 738 

Appendix 1: Phylogenetic Community Structure Analysis R  Pipeline 739 

#pipeline for phylogenetic community structure analysis  740 

#Part 1: Inputting and Filtering Data ---- 741 

 742 

#Packages needed for this analysis 743 

#If you do not already have these packages, uncomment the code and install. 744 

#install.packages("readr") 745 

library(readr) 746 

#install.packages("plyr") 747 

library(plyr) 748 

#install.packages("dplyr") 749 

library(dplyr) 750 

#install.packages("foreach") 751 

library(foreach) 752 

#install.packages("tidyverse") 753 

library(tidyverse) 754 

#install.packages("stringr") 755 

library(stringr) 756 

#install.packages("stringi") 757 

library(stringi) 758 

#install.packages("ape") 759 

library(ape) 760 

#source("https://bioconductor.org/biocLite.R") 761 

#biocLite("Biostrings") 762 

library(Biostrings) 763 

#source("https://bioconductor.org/biocLite.R") 764 
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#biocLite("muscle") 765 

library(muscle) 766 

#install.packages("phangorn") 767 

library(phangorn) 768 

#install.packages("picante") 769 

library(picante) 770 

#install.packages("data.table") 771 

library(data.table) 772 

#install.packages("phytools") 773 

library(phytools) 774 

 775 

#Upload order data into R 776 

#Uncomment the following code to download data directly from BOLD, specifying the required 777 

geographical locations 778 

#dfOrder <- 779 

read_tsv("http://www.boldsystems.org/index.php/API_Public/combined?taxon=Coleoptera&geo780 

=Alaska|Canada&format=tsv") 781 

#Write file to hard disk 782 

#write_tsv(dfOrder, "Coleoptera_download_June19") 783 

#Read in saved order data  784 

dfOrder <- read_tsv("Coleoptera_download_June19") 785 

 786 

#Filtering the data 787 

dfOrder <- dfOrder %>% 788 

  #Filter out those without bin_uri 789 

  filter(str_detect(bin_uri, ":")) %>% 790 

  #Filter out those without a sequence  791 

  filter(str_detect(nucleotides, "[ACTG]")) %>% 792 

  #Filter for COI-5P 793 
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  filter(markercode == "COI-5P") %>% 794 

  #Filter out sequences with fewer than 500 base pairs  795 

  filter(nchar(gsub("-", "", nucleotides)) > 499) %>% 796 

  #Filter out records without a family name 797 

  filter(!is.na(family_name)) 798 

 799 

#Filter out high gap/N content. A threshold of 1% was chosen because species often differ by 800 

more than 2% divergence. By filtering out records with > 1% N and gap content, we are likely to 801 

get a high-quality data set, given typical patterns of variability in COI in animals.  802 

startNGap <- sapply(regmatches(dfOrder$nucleotides, gregexpr("^[-N]", dfOrder$nucleotides)), 803 

length) 804 

startNGap <- foreach(i=1:nrow(dfOrder)) %do%  805 

  if (startNGap[[i]]>0) {  806 

    split <- strsplit(dfOrder$nucleotides[i], "^[-N]+")  807 

    dfOrder$nucleotides[i] <- split[[1]][2] 808 

  } 809 

endNGap <- sapply(regmatches(dfOrder$nucleotides, gregexpr("[-N]$", dfOrder$nucleotides)), 810 

length) 811 

endNGap <- foreach(i=1:nrow(dfOrder)) %do% 812 

  if (endNGap[[i]]>0) { 813 

    split <- strsplit(dfOrder$nucleotides[i], "[-N]+$") 814 

    dfOrder$nucleotides[i] <- split[[1]][1] 815 

  } 816 

internalNGap <- sapply(regmatches(dfOrder$nucleotides, gregexpr("[-N]", 817 

dfOrder$nucleotides)), length) 818 

internalNGap <- foreach(i=1:nrow(dfOrder)) %do% 819 

  which((internalNGap[[i]]/nchar(dfOrder$nucleotides[i]) > 0.01)) 820 

nGapCheck <- sapply(internalNGap, function(x)length(x)) 821 

nGapCheck <- which(nGapCheck>0) 822 

dfOrder <- dfOrder[-nGapCheck, ] 823 
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#Remove redundant "BOLD" section from BIN column  824 

dfOrder$bin_uri <- substr(dfOrder$bin_uri, 6, 13) 825 

#Filter out sequences without coordinates  826 

containLatLon <- grep ("[0-9]", dfOrder$lat) 827 

dfOrder <- dfOrder[containLatLon, ] 828 

 829 

#Create subset filter using coordinates  830 

#Filter for Churchill, Manitoba  831 

SubsetFilter_Churchill <- which(dfOrder$lat > 58.6 & 832 

                           dfOrder$lon > -94.2 & dfOrder$lat < 58.7 & 833 

                           dfOrder$lon < -93.8) 834 

#Apply filter 835 

dfOrder_Churchill <- dfOrder[SubsetFilter_Churchill, ] 836 

 837 

#Find total number of BINs per family in the regional subset of the order 838 

#First convert to datatable  839 

dfOrder_Churchill <- as.data.table(dfOrder_Churchill) 840 

#create datatable showing number of sequences per family  841 

total_species_number <- dfOrder_Churchill[ , .(.N),by=.(family_name)] 842 

#create datatable showing the number of BINs per family 843 

number_of_unique_species <- dfOrder_Churchill[ , 844 

.(number_of_species=length(unique(bin_uri))), by=family_name] 845 

#convert to dataframe 846 

number_of_unique_species <- as.data.frame(number_of_unique_species) 847 

#Filter down to families with more than 3 or more species 848 

number_of_unique_species <- filter(number_of_unique_species, 849 

number_of_unique_species$number_of_species > 2) 850 

 851 

#Create filter to filter down the order to families with three or more species in the subset   852 
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dfOrder_filter <- which(dfOrder$family_name %in% number_of_unique_species$family_name) 853 

#Apply filter  854 

dfOrder <- dfOrder[dfOrder_filter, ] 855 

 856 

#Remove unneeded variables  857 

rm(number_of_unique_species, total_species_number, SubsetFilter_Churchill, containLatLon, 858 

endNGap, internalNGap, nGapCheck, split, startNGap, dfOrder_filter, i) 859 

 860 

#Part 2: Choosing a Centroid---- 861 

 862 

#In this section we find a centroid sequence for each BIN present in the order (Not the subset) 863 

#Create a smaller dataframe with needed info 864 

dfBinList <- (dfOrder[, c("processid", "bin_uri", "nucleotides")]) 865 

#Create groupings by BIN, each with different bin_uri 866 

binList <- lapply(unique(dfOrder$bin_uri), function(x) dfOrder[dfOrder$bin_uri==x, ]) 867 

#Find the number of processids in each bin  868 

binSize <- sapply(binList, function(x)length(x$processid)) 869 

#Create new data frame with bin_uri and bin size 870 

dfOrder_bins <- data.frame(binSize) 871 

dfOrder_bins$bin_uri <- c(unique(dfOrder$bin_uri)) 872 

#Merge dfBinList and dfOrder_bins 873 

dfBinList <- merge(dfBinList, dfOrder_bins, by.x="bin_uri", by.y="bin_uri") 874 

#Reorder dfFamily_bins by bin_uri 875 

dfOrder_bins <- dfOrder_bins[order(dfOrder_bins$bin_uri), ] 876 

 877 

#Find BINs with more than one member 878 

largeBin <- which(dfBinList$binSize > 1)    879 

#Create dataframe with only BINs with more than one member  880 

if (length(largeBin) > 0) { 881 
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  dfCentroid <- dfBinList[largeBin, ] 882 

} 883 

 884 

#Subset dfOrder_bins down to number of BINs in dfOrder 885 

dfOrder_bins <- subset(dfOrder_bins, dfOrder_bins$bin_uri %in% dfCentroid$bin_uri) 886 

 887 

#Find number of unique BINs in dfCentroid  888 

binNumberCentroid <- unique(dfCentroid$bin_uri)    889 

binNumberCentroid <- length(binNumberCentroid)  890 

 891 

#Create dataframe with BINs with only one sequence  892 

dfNonCentroid <- dfBinList[-largeBin, ] 893 

 894 

#Create list from dfCentroid  895 

largeBinList <- lapply(unique(dfCentroid$bin_uri), function(x) dfCentroid[dfCentroid$bin_uri 896 

== x, ]) 897 

#Extract process Id from each bin 898 

largeBinProcessid <- sapply(largeBinList, function(x) (x$processid)) 899 

 900 

#Convert sequences to dnaStringSet 901 

dnaStringSet1 <- sapply(largeBinList, function(x) DNAStringSet(x$nucleotides))   902 

#Name dnaStringSet with processids    903 

for(i in seq(from=1, to=binNumberCentroid, by=1)) { 904 

  names(dnaStringSet1[[i]]) <- largeBinProcessid[[i]] 905 

}            906 

 907 

#Run multiple sequence alignment for sequences in each BIN in dnaStringSet1    908 

alignment1 <- foreach(i=1:binNumberCentroid) %do% 909 

  muscle::muscle(dnaStringSet1[[i]], maxiters=3, diags=TRUE, gapopen=-3000) 910 
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 911 

#Convert to DNAbin format  912 

dnaBINCentroid <- foreach(i=1:binNumberCentroid) %do% as.DNAbin(alignment1[[i]]) 913 

 914 

#Calculate a pairwise distance matrix for each BIN 915 

geneticDistanceCentroid <- foreach(i=1:binNumberCentroid) %do% 916 

  dist.dna(dnaBINCentroid[[i]], model="TN93", as.matrix = TRUE, 917 

           pairwise.deletion = TRUE) 918 

 919 

#Determine centroid sequence; The sequence with the minimum average distance to all other 920 

sequences in the BIN. 921 

centroidSeq <- foreach(i=1:binNumberCentroid) %do% 922 

which.min(rowSums(geneticDistanceCentroid[[i]])) 923 

centroidSeq <- centroidSeq %>% 924 

  unlist() %>% 925 

  names() 926 

 927 

#Subset dfCentroid by the processid on the list  928 

dfCentroid <- subset(dfCentroid, processid %in% centroidSeq) 929 

 930 

#Merge with dfNonCentroid 931 

dfAllSeq <- rbind(dfCentroid, dfNonCentroid) 932 

#Merge with the original data set  933 

dfAllSeq <- merge(dfAllSeq, dfOrder, by.x="processid", by.y="processid") 934 

#Reorganize and clean up  935 

dfAllSeq <- (dfAllSeq[, c("bin_uri.x", "binSize", "processid", "family_taxID", "family_name", 936 

"species_taxID", "species_name", "nucleotides.x", "lat", "lon", "subfamily_name", 937 

"order_name")]) 938 

colnames(dfAllSeq)[1] <- "bin_uri" 939 

colnames(dfAllSeq)[8] <- "nucleotides" 940 
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#Delete any possible duplicate entries  941 

dfAllSeq <- (by(dfAllSeq, dfAllSeq["bin_uri"], head, n=1)) 942 

dfAllSeq <- Reduce(rbind, dfAllSeq) 943 

#Add an index column 944 

dfAllSeq$ind <- row.names(dfAllSeq) 945 

 946 

#Remove unneeded dataframes and variables  947 

rm(alignment1, binList, dfBinList, dfCentroid, dfOrder_bins, dfNonCentroid, dnaBINCentroid, 948 

dnaStringSet1, geneticDistanceCentroid, largeBinList, largeBinProcessid, binNumberCentroid, 949 

binSize,  centroidSeq, i, largeBin) 950 

 951 

#Part 3: Alignment---- 952 

 953 

#Create a function to trim the sequences  954 

RefSeqTrim <- function(x) { 955 

  #Create data frame for reference sequence  956 

  #This reference sequence was taken from BOLD for Coleoptera. Process id: AEDNA549-12. 957 

Species: Colymbetes dolabratus. 958 

  dfRefSeq <- data.frame(taxa=c("Coleoptera"), 959 

nucleotides=c("TAACTTTATATTTTATTTTTGGTGCATGGGCTGGAATGGTAGGAACAT960 

CTTTAAGTATGTTGATTCGAGCCGAATTAGGAAATCCTGGTTCTCTGATTGGAGATG961 

ATCAAATTTATAATGTTATTGTAACAGCACATGCTTTTGTAATAATTTTTTTCATAGT962 

AATACCTATTATAATTGGGGGATTTGGAAATTGATTAGTTCCATTAATATTGGGGGC963 

CCCAGATATAGCTTTTCCCCGAATAAATAATATAAGTTTTTGACTTCTTCCGCCTTCT964 

TTAACTCTTCTATTAATAAGAAGAATAGTTGAAAGTGGGGCCGGGACAGGATGAAC965 

AGTTTACCCCCCTCTATCTTCAGGAATTGCACACGGAGGAGCTTCAGTTGATCTAGC966 

AATTTTTAGTCTTCATTTAGCTGGAATTTCATCTATTTTAGGGGCTGTAAATTTCATT967 

ACAACTATTATTAATATACGATCAGTGGGAATAACATTCGACCGAATGCCTCTATTT968 

GTATGATCCGTAGGAATTACAGCTTTATTACTATTATTATCTTTACCTGTATTAGCGG969 

GAGCTATTACTATATTATTAACTGATCGTAATCTAAACACCTCATTCTTCGACCCGGC970 

AGGAGGGGGAGATCCAATTTTATATCAACATTTATT")) 971 

  colnames(dfRefSeq)[2] <- "nucleotides" 972 

  #Convert to datatable 973 
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  dfRefSeq <- setDT(dfRefSeq) 974 

  dfRefSeq[, "nucleotides":=as.character(nucleotides)] 975 

  #Trim sequences to 620bp 976 

  dfRefSeq[, nucleotides:=substr(nucleotides, 20, nchar(nucleotides)-19)] 977 

  #Check sequence length 978 

  dfRefSeq[, seqLength:=nchar(nucleotides)] 979 

  #Ensure sequences are of character type 980 

  alignmentSeqs <- as.character(x$nucleotides) 981 

  #Name according to bin_uri 982 

  names(alignmentSeqs) <- x$bin_uri 983 

  alignmentref <- as.character(dfRefSeq$nucleotides[1]) 984 

  #Name reference sequence  985 

  names(alignmentref) <- "Reference" 986 

  #Put sequences together 987 

  alignmentSeqsPlusRef <- append(alignmentref, alignmentSeqs) 988 

  #Convert to DNAStringSet  989 

  DNAStringSet2 <- DNAStringSet(alignmentSeqsPlusRef) 990 

  #Run alignment  991 

  alignment2 <- muscle::muscle(DNAStringSet2, diags=TRUE, gapopen=-3000) 992 

  #Check alignment  993 

  classFileNames <- foreach(i=1:nrow(dfRefSeq)) %do%  994 

    paste("alignmentUntrimmed", dfRefSeq$taxa[i], ".fas", sep="") 995 

  alignmentUntrimmed <- DNAStringSet(alignment2) 996 

  writeXStringSet(alignmentUntrimmed, file=classFileNames[[1]], 997 

                  format = "fasta", width=1500) 998 

  #Find stop and start positions in reference  999 

  refSeqPos <- which(alignment2@unmasked@ranges@NAMES=="Reference") 1000 

  refSeqPos <- alignment2@unmasked[refSeqPos] 1001 
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  refSeqPosStart <- regexpr("[ACTG]", refSeqPos) 1002 

  refSeqPosStart <- as.numeric(refSeqPosStart) 1003 

  refSeqPosEnd <- nchar(dfRefSeq$nucleotides[1]) + refSeqPosStart 1004 

  refSeqPosEnd <- as.numeric(refSeqPosEnd) 1005 

  #Trim sequence 1006 

  alignment2Trimmed <- substr(alignment2, refSeqPosStart, refSeqPosEnd) 1007 

  #Convert to DNAStringSet 1008 

  DNAStringSet3 <- DNAStringSet(alignment2Trimmed) 1009 

  #Check alignment  1010 

  classFileNames <- foreach(i=1:nrow(dfRefSeq)) %do%  1011 

    paste("alignmentTrimmed", dfRefSeq$taxa[i], ".fas", sep="") 1012 

  writeXStringSet(DNAStringSet3, file=classFileNames[[1]], 1013 

                  format = "fasta", width=1500) 1014 

  #Remove reference sequence  1015 

  refSeqRm <- which(DNAStringSet3@ranges@NAMES=="Reference") 1016 

  dnaStringSet3 <- subset(DNAStringSet3[-refSeqRm]) 1017 

  alignmentOrder <- DNAStringSet3@ranges@NAMES 1018 

  #Reorder based on alignment 1019 

  x <- x[match(alignmentOrder, x$bin_uri), ] 1020 

  #Replace old sequences with new ones  1021 

  trimmedSeqs <- as.character(DNAStringSet3) 1022 

  x$nucleotides <- trimmedSeqs 1023 

  #Return datafrmae with new sequences  1024 

  return(x) 1025 

} 1026 

 1027 

#Trim centroid sequences to reference sequence  1028 

dfAllSeq2 <- RefSeqTrim(dfAllSeq) 1029 
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 1030 

#Convert sequences to DNAbin format  1031 

DNABin <- DNAStringSet(dfAllSeq2$nucleotides) 1032 

names(DNABin) <- dfAllSeq2$bin_uri 1033 

DNABin <- as.DNAbin(DNABin) 1034 

#Construct a distance matrix  1035 

distanceMatrix <- dist.dna(DNABin, model="TN93", as.matrix = TRUE, pairwise.deletion = 1036 

TRUE) 1037 

#Visualize the values in the distance matrix using a histogram 1038 

hist(distanceMatrix) 1039 

 1040 

#Using upper threshold of IQR to detect outliers  1041 

lowerQuantile <- quantile(distanceMatrix)[2] 1042 

upperQuantile <- quantile(distanceMatrix)[4] 1043 

iqr <-upperQuantile - lowerQuantile 1044 

#Set threshold to 1.5. In order to only remove extreme outliers this can be change to 3.   1045 

upperThreshold <- (iqr*1.5) + upperQuantile 1046 

#Remove 0 values  1047 

distanceMatrix[distanceMatrix==0] <- NA 1048 

#Convert to data table  1049 

dfOutliers <- as.data.table(distanceMatrix, keep.rownames = T) 1050 

#Change the "rn" column to bin_uri 1051 

setnames(dfOutliers, "rn", "bin_uri") 1052 

#Identify divergent BINs  1053 

dfOutliers <- dfOutliers[, outlier := apply(.SD, 1, function(x)all(x>upperThreshold, 1054 

na.rm=T))][outlier==TRUE] 1055 

 1056 

#Create remove sequences function 1057 

RemoveSequences<-function(x, y){ 1058 
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  if(length(y)==0){ 1059 

    print("There are no sequences to remove!") 1060 

  } 1061 

  else if(length(y)>0){ 1062 

    x <- x[!x$bin_uri%in%y] 1063 

  } 1064 

  return(x) 1065 

} 1066 

 1067 

#Remove outliers  1068 

#Outliers should be blasted prior to removal  1069 

dfAllSeq <- RemoveSequences(dfAllSeq, dfOutliers$bin_uri) 1070 

 1071 

#Create final alignment of sequences  1072 

#Create RefSeq data frame 1073 

#Sequence was taken from BOLD and manually put in 1074 

dfRefSeq <- data.frame(taxa=c("Coleoptera"), 1075 

nucleotides=c("TAACTTTATATTTTATTTTTGGTGCATGGGCTGGAATGGTAGGAACAT1076 

CTTTAAGTATGTTGATTCGAGCCGAATTAGGAAATCCTGGTTCTCTGATTGGAGATG1077 

ATCAAATTTATAATGTTATTGTAACAGCACATGCTTTTGTAATAATTTTTTTCATAGT1078 

AATACCTATTATAATTGGGGGATTTGGAAATTGATTAGTTCCATTAATATTGGGGGC1079 

CCCAGATATAGCTTTTCCCCGAATAAATAATATAAGTTTTTGACTTCTTCCGCCTTCT1080 

TTAACTCTTCTATTAATAAGAAGAATAGTTGAAAGTGGGGCCGGGACAGGATGAAC1081 

AGTTTACCCCCCTCTATCTTCAGGAATTGCACACGGAGGAGCTTCAGTTGATCTAGC1082 

AATTTTTAGTCTTCATTTAGCTGGAATTTCATCTATTTTAGGGGCTGTAAATTTCATT1083 

ACAACTATTATTAATATACGATCAGTGGGAATAACATTCGACCGAATGCCTCTATTT1084 

GTATGATCCGTAGGAATTACAGCTTTATTACTATTATTATCTTTACCTGTATTAGCGG1085 

GAGCTATTACTATATTATTAACTGATCGTAATCTAAACACCTCATTCTTCGACCCGGC1086 

AGGAGGGGGAGATCCAATTTTATATCAACATTTATT")) 1087 

 1088 

#name nucleotide column and set as character  1089 

colnames(dfRefSeq)[2] <- "nucleotides" 1090 
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dfRefSeq$nucleotides <- as.character(dfRefSeq$nucleotides)  1091 

#Trim references to standard 620 1092 

dfRefSeq$nucleotides <- substr(dfRefSeq$nucleotides, 20, nchar(dfRefSeq$nucleotides)-19)  1093 

#Check sequence length 1094 

dfRefSeq$seqLength <- nchar(dfRefSeq$nucleotides) 1095 

#Subset centroid sequences by those found in reference sequence dataframe 1096 

dfAllSeq <- subset(dfAllSeq, dfAllSeq$order_name %in% dfRefSeq$taxa)  1097 

#Break down dataframe into families 1098 

taxalistcomplete <- lapply(unique(dfAllSeq$family_taxID), function(x) 1099 

dfAllSeq[dfAllSeq$family_taxID==x, ]) 1100 

 1101 

#Extract sequences and bin_uri 1102 

familyBin <- foreach(i=1:length(taxalistcomplete)) %do% taxalistcomplete[[i]]$bin_uri 1103 

familySequences <- foreach(i=1:length(taxalistcomplete)) %do% 1104 

taxalistcomplete[[i]]$nucleotides 1105 

familySequenceNames <- familyBin 1106 

 1107 

#Take reference sequences 1108 

alignmentref <- as.character(dfRefSeq$nucleotides) 1109 

dfRefSeq$reference <- "reference" 1110 

#Name reference as a reference 1111 

alignmentRefNames <- dfRefSeq$reference 1112 

#Merge reference with other sequences 1113 

alignmentSequencesPlusRef <- foreach(i=1:length(taxalistcomplete)) %do% 1114 

  append(familySequences[[i]], alignmentref[[1]]) 1115 

 1116 

#Merge names together 1117 

alignmentNames <- foreach(i=1:length(taxalistcomplete)) %do% 1118 

  append(familySequenceNames[[i]], alignmentRefNames[[1]]) 1119 
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 1120 

#Convert sequences to DNAStringSet format  1121 

dnaStringSet3 <- foreach(i=1:length(alignmentSequencesPlusRef)) %do% 1122 

  DNAStringSet(alignmentSequencesPlusRef[[i]]) 1123 

 1124 

#Name each sequence  1125 

for(i in 1:16){ 1126 

  names(dnaStringSet3[[i]]) <- alignmentNames[[i]]  1127 

} 1128 

 1129 

#Multiple sequence alignment  1130 

alignmentFinal <- foreach(i=1:length(dnaStringSet3)) %do% 1131 

  muscle(dnaStringSet3[[i]], diags=TRUE, gapopen=-3000) 1132 

#Check Alignment 1133 

familyFileNames2 <- foreach(i=1:length(alignmentFinal)) %do% 1134 

  paste("alignmentFinal", dfRefSeq$taxa[i], ".fas", sep="") 1135 

alignmentFinalFasta <- foreach(i=1:length(alignmentFinal)) %do% 1136 

  DNAStringSet(alignmentFinal[[i]]) 1137 

foreach(i=1:length(alignmentFinal)) %do% 1138 

  writeXStringSet(alignmentFinalFasta[[i]], file=familyFileNames2[[i]], format="fasta", 1139 

width=1500) 1140 

 1141 

#Convert to dnaStringSet format 1142 

dnaStringSet4 <- foreach(i=1:length(alignmentFinal)) %do% 1143 

  DNAStringSet(alignmentFinal[[i]]) 1144 

 1145 

#Remove unneeded info 1146 

rm(alignmentFinal, alignmentNames, alignmentSequencesPlusRef, dnaStringSet3, familyBin, 1147 

alignmentref, alignmentRefNames, i, dfAllSeq2, dfOutliers, distanceMatrix, DNABin, 1148 



47 
 

familySequences, iqr, lowerQuantile, upperQuantile, upperThreshold, dfRefSeq, 1149 

familySequenceNames, alignmentFinal, familyFileNames2) 1150 

 1151 

#Part 4: Create Maximum Likelihood tree---- 1152 

 1153 

#Create function to convert DNAStringSets to dataframes 1154 

dna_string_to_df = function(dna_string_set){ 1155 

  out_df = as.data.frame(dna_string_set[[1]]) 1156 

  for(i in 2:length(dna_string_set)){ 1157 

    new_df = as.data.frame(dna_string_set[[i]]) 1158 

    out_df = rbind(out_df, new_df) 1159 

  } 1160 

  return(out_df) 1161 

} 1162 

#convert stringsets to dataframes  1163 

FamilyDNA = dna_string_to_df(dnaStringSet4) 1164 

 1165 

#Add the bin_uri 1166 

FamilyDNA$bin_uri <- row.names(FamilyDNA) 1167 

#Merge with the information for dfAllSeq 1168 

dfFamilyDNA <- merge(FamilyDNA, dfAllSeq, by.x = "bin_uri", by.y = "bin_uri", all.x = 1169 

TRUE) 1170 

#Rename the column with your aligned sequences 1171 

colnames(dfFamilyDNA)[2] <- "FinalSequences" 1172 

 1173 

#create function to get reference names   1174 

get_reference_names <- function(top_ref_num = 16){ 1175 

  ref_names <- c("reference") 1176 

  prefix <- "reference" 1177 
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  for(i in 1:top_ref_num){ 1178 

    new_str <- paste(prefix, as.character(i), sep='') 1179 

    ref_names <- c(ref_names, new_str) 1180 

  } 1181 

  return(ref_names) 1182 

} 1183 

#create list of reference names  1184 

reference_names = get_reference_names() 1185 

#remove reference from dataframe  1186 

dfFamilyDNA <- dfFamilyDNA[!dfFamilyDNA$bin_uri %in% reference_names , ] 1187 

 1188 

#Pull names from dataframe 1189 

familyList <- lapply(unique(dfFamilyDNA$family_name),  1190 

                     function(x) dfFamilyDNA[dfFamilyDNA$family_name == x, ]) 1191 

#Create new dnaStringSet 1192 

dnaStringSet5 <- sapply(familyList, function(x) DNAStringSet(x$FinalSequences)) 1193 

#Pull BIN names from list 1194 

binNames <- sapply(familyList, function(x)(x$bin_uri)) 1195 

#Name the stringsets 1196 

for(i in seq(from = 1, to = length(dnaStringSet5), by = 1)) { 1197 

  names(dnaStringSet5[[i]]) <- binNames[[i]] 1198 

} 1199 

 1200 

#Save family as a fasta file 1201 

#For file names make sure to list each family name 1202 

familyFileNames <- list("Carabidae", "Curculionidae", "Dytiscidae", "Coccinellidae", 1203 

"Leiodidae", "Chrysomelidae", "Staphylinidae", "Buprestidae", "Hydrophilidae", "Haliplidae", 1204 

"Cantharidae", "Gyrinidae", "Elateridae", "Cryptophagidae", "Scirtidae", "Latridiidae") 1205 

 1206 
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#Add alignment and .fas to each family name  1207 

familyFileNames <- foreach(i=1:length(familyFileNames)) %do%  1208 

  paste("Alignment", familyFileNames[[i]], ".fas", sep="") 1209 

#Send to your desired working directory 1210 

foreach(i=1:length(dnaStringSet5)) %do% writeXStringSet(dnaStringSet5[[i]], 1211 

file=familyFileNames[[i]], format="fasta") 1212 

 1213 

#create a list of alignment files 1214 

#Calling the alignments in alphabetical order allows for easier analysis during the NRI/NTI step  1215 

list_of_files <- c("AlignmentBuprestidae.fas", "AlignmentCantharidae.fas", 1216 

"AlignmentCarabidae.fas",  1217 

                   "AlignmentChrysomelidae.fas", "AlignmentCoccinellidae.fas", 1218 

"AlignmentCryptophagidae.fas",  1219 

                   "AlignmentCurculionidae.fas", "AlignmentDytiscidae.fas", 1220 

"AlignmentElateridae.fas", 1221 

                   "AlignmentGyrinidae.fas","AlignmentHaliplidae.fas", 1222 

"AlignmentHydrophilidae.fas", 1223 

                   "AlignmentLatridiidae.fas", "AlignmentLeiodidae.fas", "AlignmentScirtidae.fas",  1224 

                   "AlignmentStaphylinidae.fas") 1225 

 1226 

#read the alignments into phyDat format  1227 

phylo_dat <- lapply(list_of_files, function(x){ 1228 

  read.phyDat(x, format="fasta", type="DNA") 1229 

}) 1230 

 1231 

#create distance matrices  1232 

dm <- lapply(phylo_dat, function(x){ 1233 

  dist.ml(x) 1234 

}) 1235 

 1236 
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#creating NJ tree 1237 

tree <- lapply(dm, function(x){ 1238 

  NJ(x) 1239 

}) 1240 

 1241 

#run model tests  1242 

model_tests <- lapply(phylo_dat, function(x){ 1243 

  modelTest(x) 1244 

}) 1245 

 1246 

#create environments 1247 

env <- lapply(model_tests, function(x){ 1248 

  attr(x, "env") 1249 

}) 1250 

 1251 

#create function to find best model for each family  1252 

get_best_model = function(model_df){ 1253 

  best_model = model_df['Model'][model_df['BIC'] == min(model_df['BIC']) ] 1254 

  return(best_model) 1255 

} 1256 

#create a vector containing the best models  1257 

list_of_models = unlist(lapply(model_tests, function(x){ 1258 

  get_best_model(x) 1259 

})) 1260 

 1261 

#get parameters for each model  1262 

model_fit <- lapply(env, function(x){ 1263 

  eval(get(list_of_models, x),x) 1264 
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}) 1265 

 1266 

#create vector containing inv_values  1267 

inv_values <- lapply(1:length(model_fit), function(i){ 1268 

  model_fit[[i]]$inv 1269 

}) 1270 

 1271 

#compute likelihood  1272 

ml_out = lapply(1:length(tree), function(i){ 1273 

  pml(tree[[i]], phylo_dat[[i]], k=4, inv = inv_values[[i]]) 1274 

}) 1275 

 1276 

#Drop the suffix from each of the model names 1277 

new_list_of_models = unlist(lapply(list_of_models , function(x){unlist(strsplit(x, "\\+"))[[1]]})) 1278 

 1279 

#compute likelihood and optimize parameters  1280 

ml_families = lapply(1:length(ml_out), function(i){ 1281 

  optim.pml(ml_out[[i]], optNni = TRUE, optGamma = TRUE, optInv = TRUE, model = 1282 

new_list_of_models[[i]]) 1283 

}) 1284 

 1285 

#Create separate variable for trees 1286 

ML_Trees <- lapply(ml_families, function(x){ 1287 

  x$tree}) 1288 

   1289 

#Remove unneeded variables  1290 

rm(env, tree, model_tests, model_fit, dm, binNames, familyFileNames, familyList, 1291 

dfFamilyDNA, dnaStringSet4, dnaStringSet5, FamilyDNA, ml_families, ml_out, 1292 

alignmentFinalFasta, inv_values, i, list_of_files, list_of_models, new_list_of_models, 1293 

reference_names, phylo_dat) 1294 
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#Part 5: NTI and NRI---- 1295 

 1296 

#Create a filter for BINs found in Churchill 1297 

ChurchillFilter <- which(dfAllSeq$bin_uri %in% dfOrder_Churchill$bin_uri) 1298 

#Create a filter for the BINs not found in Churchill  1299 

NotChurchillFilter <- which(!(dfAllSeq$bin_uri %in% dfOrder_Churchill$bin_uri)) 1300 

#Apply the filters  1301 

dfFilter_Churchill <- dfAllSeq[ChurchillFilter, ] 1302 

dfFilter_NotChurchill <- dfAllSeq[NotChurchillFilter, ] 1303 

#Change to data table and set to 1 if present in Churchill and 0 if not in Churchill 1304 

dfFilter_Churchill <- as.data.table(dfFilter_Churchill) 1305 

dfFilter_Churchill <- dfFilter_Churchill[, churchill := 1] 1306 

dfFilter_NotChurchill <- as.data.table(dfFilter_NotChurchill) 1307 

dfFilter_NotChurchill <- dfFilter_NotChurchill[, churchill := 0] 1308 

#Bind the new data frames to taxalistcomplete  1309 

dfAllSeq <- rbind(dfFilter_Churchill, dfFilter_NotChurchill) 1310 

 1311 

#Create a presence absence matrix for bin_uri in Churchill 1312 

#Create new data frame   1313 

dfAllSeq2 <- dfAllSeq [, c("bin_uri", "churchill", "family_name")] 1314 

#Split into family dataframes  1315 

dfAllSeq2 <- split(dfAllSeq2, list(dfAllSeq$family_name)) 1316 

#Remove the family name column  1317 

dfAllSeq2 <- lapply(dfAllSeq2, function(x){ 1318 

  x[,-3] 1319 

}) 1320 

 1321 

#Create family matrices  1322 
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Family_matrices <- lapply(dfAllSeq2, function(x){ 1323 

  melt(x, id.var="churchill") 1324 

}) 1325 

Family_matrices <- lapply(Family_matrices, as.data.frame) 1326 

Family_matrices <- lapply(Family_matrices, function(x){ 1327 

  with(x, table(churchill, value)) 1328 

}) 1329 

Family_matrices <- lapply(Family_matrices, unclass) 1330 

 1331 

#Calculate net relatedness index (NRI) and nearest taxon index (NTI) using ML Tree 1332 

#Ensure ML tree is in correct format  1333 

phy.dist <- lapply(ML_Trees, cophenetic) 1334 

 1335 

#Calculate NRI 1336 

NRI_Results = lapply(1:length(phy.dist), function(i){ 1337 

  ses.mpd(Family_matrices[[i]], phy.dist[[i]], null.model = "taxa.labels", abundance.weighted = 1338 

FALSE, runs = 1000) 1339 

}) 1340 

 1341 

#Calculate NTI  1342 

NTI_Results = lapply(1:length(phy.dist), function(i){ 1343 

  ses.mntd(Family_matrices[[i]], phy.dist[[i]], null.model = "taxa.labels", abundance.weighted = 1344 

FALSE, runs = 1000) 1345 

}) 1346 

 1347 

#Remove unneeded variables  1348 

rm(Family_phyDat, phy.dist, dfFilter_Churchill, dfFilter_NotChurchill, ChurchillFilter, 1349 

NotChurchillFilter, dfAllSeq2, Family_matrices, ML_Trees) 1350 

#Part 6: Trait Analysis: ANOVA---- 1351 
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 1352 

#Read in character matrix 1353 

Coleoptera_Matrix_NRI <- 1354 

read_csv(file="C:/Users/sammi/Documents/Coleoptera_Matrix_NRI.csv") 1355 

#Run ANOVAs for both traits  1356 

Coleoptera_ANOVA_NRI_Feeding <- aov(structure ~ adult_diet, data = 1357 

Coleoptera_Matrix_NRI) 1358 

Coleoptera_ANOVA_NRI_Habitat <- aov(structure ~ habitat, data = Coleoptera_Matrix_NRI) 1359 

#Get ANOVA summary  1360 

summary(Coleoptera_ANOVA_NRI_Habitat) 1361 

summary(Coleoptera_ANOVA_NRI_Feeding) 1362 

 1363 

#Repeat for NTI values 1364 

#Read in matrix 1365 

Coleoptera_Matrix_NTI <- 1366 

read.csv(file="C:/Users/sammi/Documents/Coleoptera_Matrix_NTI.csv") 1367 

#Run ANOVAs for both traits  1368 

Coleoptera_ANOVA_NTI_Habitat <- aov(structure ~ habitat, data = Coleoptera_Matrix_NTI) 1369 

Coleoptera_ANOVA_NTI_Feeding <- aov(structure ~ adult_diet, data = 1370 

Coleoptera_Matrix_NTI) 1371 

#Get ANOVA summary  1372 

summary(Coleoptera_ANOVA_NTI_Habitat) 1373 

summary(Coleoptera_ANOVA_NTI_Feeding) 1374 

 1375 

#Part 7: Trait Analysis: PGLS---- 1376 

 1377 

#Read in matrix 1378 

PGLSdata_NRI <- read.csv("Coleoptera_Matrix_NRI.csv") 1379 

#Read in tree 1380 

PGLStree <- read.nexus("Coleoptera_Tree") 1381 
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#Set branch lengths to one 1382 

PGLStree$edge.length <- replicate((length(PGLStree$edge[, 1])), 1) 1383 

PGLStree <- force.ultrametric(PGLStree, method="extend") 1384 

#Set the row names to family names  1385 

PGLSdata_NRI <- PGLSdata_NRI %>% 1386 

  column_to_rownames(var = 'family_name') 1387 

#Make sure tree and dataframe are in the same order 1388 

PGLSdata_NRI <- PGLSdata_NRI[match(PGLStree$tip.label, rownames(PGLSdata_NRI)), ] 1389 

#Run PGLS analysis  1390 

pglsModel_NRI1 <- gls(structure ~ habitat, correlation = corBrownian(phy = PGLStree), data = 1391 

PGLSdata_NRI, method = "ML") 1392 

pglsModel_NRI2 <- gls(structure ~ adult_diet, correlation = corBrownian(phy = PGLStree), data 1393 

= PGLSdata_NRI, method = "ML") 1394 

#Get PGLS summary  1395 

summary(pglsModel_NRI1) 1396 

summary(pglsModel_NRI2) 1397 

 1398 

#Create boxplots for traits vs. clustering matrix 1399 

plot1 <- boxplot(PGLSdata_NRI$structure ~ PGLSdata_NRI$habitat) 1400 

plot2 <- boxplot(PGLSdata_NRI$structure ~ PGLSdata_NRI$adult_diet) 1401 

 1402 

#Repeat for NTI 1403 

PGLSdata_NTI <- read.csv("Coleoptera_Matrix_NTI.csv") 1404 

#Set row names to family names  1405 

PGLSdata_NTI <- PGLSdata_NTI %>% 1406 

  column_to_rownames(var = 'family_name') 1407 

#Make sure tree and dataframe are in the same order 1408 

PGLSdata_NTI <- PGLSdata_NTI[match(PGLStree$tip.label, rownames(PGLSdata_NTI)), ] 1409 

#Run PGLS analysis  1410 
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pglsModel_NTI1 <- gls(structure ~ habitat, correlation = corBrownian(phy = PGLStree), data = 1411 

PGLSdata_NTI, method = "ML") 1412 

pglsModel_NTI2 <- gls(structure ~ adult_diet, correlation = corBrownian(phy = PGLStree), data 1413 

= PGLSdata_NTI, method = "ML") 1414 

#Get PGLS summary  1415 

summary(pglsModel_NTI1) 1416 

summary(pglsModel_NTI2) 1417 

 1418 

#Create boxplots for traits vs. clustering matrix 1419 

plot3 <- boxplot(PGLSdata_NTI$structure ~ PGLSdata_NTI$habitat) 1420 

plot4 <- boxplot(PGLSdata_NTI$structure ~ PGLSdata_NTI$adult_diet) 1421 

 1422 

Appendix 2: Choice of COI Marker Gene 1423 

COI is commonly used for DNA barcoding animals and provides useful phylogenetic 1424 

signal at low taxonomic levels but has some limitations when used to construct deep phylogenies 1425 

(Boyle & Adamowicz 2015, Smith et al. 2014, Wilson 2010, 2011). This limited phylogenetic 1426 

signal can be helped by using a constraint tree when constructing phylogenies (Boyle & 1427 

Adamowicz 2015, Wilson 2011). Despite some limitations, COI can be readily sequenced from a 1428 

large number of taxa and provides high sequence quality compared to other gene regions (Wilson 1429 

2010). Barcode-based trees have also shown similar results when used for community 1430 

phylogenetics compared to other trees (Boyle & Adamowicz 2015, Smith et al. 2014). Because 1431 

of this, we decided COI was suitable to use for this study. Additionally, this marker had the 1432 

advantage of large-scale taxonomic and geographic coverage for North American beetles.  1433 

 1434 

 1435 
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Appendix 3: Net Relatedness Index/ Nearest Taxon Index  1436 

NRI and NTI use the pairwise distances among species to quantify the community 1437 

relatedness (Webb 2000). NRI averages the evolutionary distances between all pairs of tips in the 1438 

community, while NTI takes only the distances between nearest neighbours (Fig. A1) (Webb 1439 

2000). When the NRI/NTI value increases, this indicates increased phylogenetic clustering of the 1440 

species within the community (Webb 2000). The two tests detect patterns at different levels 1441 

within the phylogeny; therefore, in order to test for general patterns, both tests should be 1442 

performed (Kraft et al. 2007) 1443 

  1444 

Appendix 4: Sensitivity Analysis: Size of Regional Species Pool and Taxon Richness of Source 1445 
Pool 1446 

The regional species pool was restricted to the Canadian provinces and territories of 1447 

Manitoba, Nunavut, Northwest Territories, Saskatchewan, and Ontario. This restriction also 1448 

helps combat some patterns that may be based on biogeography. For example, the Rocky 1449 

Mountain Range may act as a barrier to dispersal, and this could create a clustering pattern on its 1450 

own. By restricting the regional pool, we can remove this effect.  1451 

After the regional pool was reduced, Dytiscidae, Haliplidae, and Gyrinidae were still the 1452 

only families where local species richness was close to 30-60% of regional species richness 1453 

(Table A1).  The results for NRI and NTI did not substantially differ from the original analysis 1454 

(Fig. A2). This was confirmed with a t-test comparing the NRI and NTI values between the 1455 

original and restricted source phylogenies (NRI: t-statistic = -0.04, p-value =0.96. NTI: t-statistic 1456 

= -0.17, p-value=0.87).  Significance differed from the original analysis for some families. 1457 

Staphylinidae exhibited significant evidence of clustering in NRI and Dytiscidae exhibited 1458 

significant evidence of clustering in both. Carabidae lost its significance in NRI. The trends 1459 
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(clustering vs. phylogenetic overdispersion) remained the same for all families except 1460 

Curculionidae, which became overdispersed, and Latridiidae, which became clustered in NRI 1461 

only.  1462 

 1463 
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Tables 1464 

Table A1: Table showing the phylogenetic community structure results for the Coleoptera families after restricting the total BIN 1465 

source pool. Significant values are bolded.   1466 

Family Clustering 

Value NRI 

p-value 

NRI 

Clustering 

Value NTI 

p-

Value 

NTI 

Number 

of BINs 

in 

Canada 

and 

Alaska 

Number 

of BINs 

in 

Churchill 

% of 

Total 

Found in 

Churchill  

Number of 

Sequences 

in 

Regional 

Species 

Pool 

Number of  

Sequences 

in 

Churchill 

Habitat Feeding 

Mode  

Buprestidae 2.33 0.02 2.46 0.02 45 3 7% 159 3 Terrestrial  Scavenger  

Cantharidae 2.18 0.001 2.1 0.007 59 6 10% 1483 23 Terrestrial  Predator 

Carabidae 0.48 0.31 1.93 0.03 212 20 9% 1702 90 Terrestrial Predator 

Chrysomelidae -0.26 0.61 -0.51 0.69 199 5 3% 2903 71 Terrestrial Herbivore 

Coccinellidae -0.83 0.8 -1.1 0.9 70 4 6% 1113 9 Terrestrial Predator 

Cryptophagidae 1.14 0.12 1.75 0.05 34 3 9% 203 5 Terrestrial  Herbivore 

Curculionidae -0.67 0.75 -0.1 0.48 204 8 4% 3711 11 Terrestrial  Herbivore 

Dytiscidae 2.46 0.01 1.72 0.04 51 36 71% 1368 140 Aquatic  Predator 

Elateridae 0.12 0.46 -0.05 0.45 141 5 4% 1092 20 Terrestrial Herbivore 

Gyrinidae 2.89 0.01 1.34 0.09 11 7 64% 178 22 Aquatic Predator 

Haliplidae 1.91 0.04 1.19 0.15 7 6 86% 61 6 Aquatic Herbivore 

Hydrophilidae 0.6 0.27 2.72 0.007 40 6 15% 191 13 Aquatic Scavenger 

Lateridiidae 0.01 0.45 -0.05 0.52 52 3 6% 2252 11 Terrestrial Scavenger 

Leiodidae 1.13 0.12 1.11 0.13 68 5 7% 293 19 Terrestrial Scavenger 

Scirtidae 0.62 0.22 0.23 0.31 32 3 9% 1734 9 Aquatic  Herbivore 

Staphylinidae 1.65 0.04 2.9 0.006 485 31 6% 2509 35 Terrestrial Predator 

 1467 
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Figures 1468 

 1469 

Figure A1: Example phylogenetic tree with a chart showing nodal distances among members of 1470 

the community. NRI uses all the distances to find the mean pairwise distance ((1+2+3+2+3+2)/6 1471 

=2.16). NTI uses only the distances between nearest neighbors ((1+2+3)/3 =2).   1472 

 1473 

 1474 

 1475 

 1476 
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 1477 

Figure A2: Graph showing the clustering values for Coleoptera families in Churchill, MB, after 1478 

the sensitivity analysis. The results did not substantially differ from the original analysis, and the 1479 

main conclusions were supported.   1480 

 1481 

 1482 

 1483 

 1484 

 1485 

 1486 

 1487 

 1488 
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