
A signal of competitive dominance in mid-latitude herbaceous plant
communities
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Abstract1

Understanding the main determinants of species coexistence across space and time is a central question in2

ecology. However, ecologists still know little of the scales and conditions at which biotic interactions matter3

and how these interact with the environment to structure species assemblages. Here we use recent theory devel-4

opments to analyze plant distribution and trait data across Europe and find that plant height clustering is related5

to both evapotranspiration and gross primary productivity. This clustering is a signal of interspecies competi-6

tion between plants, which is most evident in mid-latitude ecoregions, where conditions for growth (reflected in7

actual evapotranspiration rates and gross primary productivities) are optimal. Away from this optimum, climate8

severity likely overrides the effect of competition, or other interactions become increasingly important. Our9

approach bridges the gap between modern coexistence theory and large-scale species distribution data analysis.10

Keywords: Ecological community dynamics Plant diversity Species coexistence Biogeographic pattern11

Null hypotheses testing Stochastic processes in continuous time.12
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Introduction13

Modern coexistence theory (Chesson, 2000, HilleRisLambers et al., 2011, Mayfield & Levine, 2010) is based14

on species difference and their interplay to determine effective competitive (biotic) interactions among species in15

natural communities. The balance between stabilizing trait differences and species dominance among competitors16

is crucial to understand species coexistence under this framework. In communities driven by fitness differences,17

species turn out to be clustered around similar trait values selected through competitive dominance. Therefore, trait18

clustering may be interpreted as a fingerprint of competition even in the absence of environmental filtering (Kraft19

et al., 2015, Mayfield & Levine, 2010). Community ecology, however, still needs a comprehensive theoretical20

framework able to describe quantitatively the role of biotic, species-to-species interactions that are relevant to21

determine species composition and diversity across large spatial scales. Empirical studies, while they may be22

able to independently assess environmental stress and species competitive abilities, are often limited to small23

community sizes (Violle et al., 2011) or restricted to single habitats (Kunstler et al., 2012). Very few studies have24

explored the idea of competition as a driver of community assembly across biogeographic regions (Kunstler et al.,25

2016, Swenson et al., 2012). Here we attempted a continent-wide macro-ecological study of species assemblage26

patterns based on theoretical predictions from modern coexistence theory (Capitán et al., 2020, Chesson, 2000,27

Mayfield & Levine, 2010) at large geographical scales.28

Light and water availability (Fig. 1) impose significant limitations on gross primary productivity which is re-29

flected in actual evapotranspiration rates (Garbulsky et al., 2010). These two resources vary at regional scales,30

placing strong, sometimes opposing constraints on how tall a plant can grow within the limits of structural stabil-31

ity. Plant height is a fundamental trait that reflects the ability of the individual to optimize its own growth within its32

local biotic environment and regional physical constraints (see Falster & Westoby (2003), Holmgren et al. (1997)33

and references therein). How plant height adapts to these opposing constraints has been studied in trees (King,34

1990, Law et al., 1997, Midgley, 2003) and herbaceous plants (Givnish, 1995, 1982). Here we analyzed presence-35

absence matrices of floral herbaceous taxa across different European ecoregions to determine if competitive ability36

(reflected in maximum stem height) could help explain assemblage patterns at local scales across gradients of37

relevant environmental factors such as evapotranspiration. We examined how well observed plant assemblages at38

macro-ecological scales match theoretical predictions generated by a synthetic, stochastic framework of commu-39

nity assembly (Capitán et al., 2015, 2017, Haegeman & Loreau, 2011, McKane et al., 2000), which we described40

in full detail in Capitán et al. (2020). By assuming that competition between hetero-specifics is driven by signed41

height differences, we found a significant positive correlation between the degree of clustering and actual evapo-42

transpiration rates. Across Europe, actual evapotranspiration is lower at more southern latitudes (due to reduced43

precipitation levels) as well as at more northern latitudes (due to colder temperatures and low levels of sunlight).44

Herbaceous plant height clustering is significant only over a latitudinal band where environmental constraints to45

plant growth are weaker, which suggests that the signature of competitive dominance can only be detected in the46
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assemblage patterns of mid-latitude ecoregions.47

Theoretical predictions48

In order to make to make this contribution self-contained, we first provide a summary of the main predictions49

derived by our suite of models. Recent theoretical approaches have focused on predicting analytically the ex-50

pected fraction of species that survive in competitive scenarios (Serván et al., 2018). A spatially-implicit model51

of Lotka-Volerra type (Capitán et al., 2020) allowed us to predict on average how many species are expected to52

survive as a function of mean competitive strengths. We observed that the fraction of extant species pc, which we53

called “coexistence probability”, decays with the average competitive strength 〈ρ〉 as a power law above a certain54

threshold in competition, and curves for different pool sizes S can be collapsed into the same curve following the55

mathematical dependence,56

pc ∼ (〈ρ〉S)−γ , (1)

which was observed numerically and justified analytically (see Capitán et al. (2020)). We showed that the exponent57

γ is controlled by the immigration rate µ. This is the first prediction of the spatially implicit model.58

In order to explore the significance of competitive dominance in empirical communities, we applied first ran-59

domization tests to model communities. In this way, we established a second prediction for this model. Null models60

for community assembly (Chase et al., 2011, Gotelli et al., 2010, Webb et al., 2002) compare the properties of61

actual communities against random samples of the same size extracted from a species pool (observed diversity62

at the ecoregion level). This approach assumes that realized communities are built up through the independent63

arrival of equivalent species from the pool (Alonso et al., 2015, MacArthur & Wilson, 1967) regardless of species64

preferences for particular environments or species interactions. Our randomization tests were based on a single65

statistic, the competitive strength averaged over species present in realized model communities, which were then66

compared to random samples of the same size drawn from the species pool. The null hypothesis (i.e., empirical67

communities are built as random assemblages from the ecoregion) can be rejected in both sides of the distribution,68

implying signals of ‘significant trait overdispersion’ (’clustering’) if average trait differences are larger (smaller)69

than expected at random. In the low immigration regime, the model predicts a significant signal of clustering. This70

regime is characterized by a low non-dimensional immigration rate (λ = µ/(αK) much lower than 0) —here α71

stands for the average species growth rate in isolation, and K is the carrying capacity of the environment.72

The spatially-explicit model incorporates a trade-off between potential growth and alternative mechanisms73

other than growth that allow shorter individuals to overcome being out-competed by taller plants (see Capitán74

et al. (2020)). While the latter are better competitors for light, the former allocate more energy in allelopathic75

compounds (Fig. 1). Height hierarchies alone, as assumed in our spatially-implicit model, lead to the selection of76

taller plants in species assemblages. In the more realistic spatially-explicit model, species processes take place on77
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a lattice where locally taller plants grow faster than neighbors because they are less shaded, but in the presence of78

heterospecific neighbors, they are also more prone to die. Computer simulations show that the balance of these two79

mechanisms can end up selecting plant sizes characterized by an optimal potential height that can be either shifted80

toward lower or higher values depending on the choice of model parameters. This is the first prediction of the81

spatially-explicit model: species abundance distributions are not necessarily biased towards taller individuals, and82

they can peak at species at intermediate or even shorter heights. In any case, and consistently, in this more complex83

scenario, a balance between the gains of potential growth and the gains of energy allocation in allelopathy (as an84

example of a non-size-related, alternative mechanism) may result in a selection for plants exhibiting significant85

height clustering at stationarity.86

A second result that can be derived from the spatially-explicit model is related to the persistence of trait87

clustering when species are aggregated over spatial scales larger than local interaction distances. Our spatially-88

explicit model can help explain why clustering patterns persist over large scales. The distributions of species within89

a region may reveal more information about the underlying assembly processes than the co-occurrence of species90

at any given location (Ricklefs, 2008). As species are aggregated over lattice cells of increasing size, clustering91

patterns hold even at scales much larger than local interaction distances. The model predicts consistent clustering92

patterns regardless of the aggregation scale used to define species communities. This was the second prediction,93

derived and carefully analyzed in Capitán et al. (2020), from our spatially-explicit model.94

Materials and methods95

Plant community data were drawn from Atlas Florae Europaeae (Jalas & Suominen, 1964–1999). The distribution96

of flora is geographically described using equally-sized grid cells (∼ 50×50 km) based on the Universal Transverse97

Mercator projection and the Military Grid Reference System, see Fig. 2. Each cell was assigned to a dominant98

habitat type based on the WWF Biomes of the World classification (Olson et al., 2001), which defines different99

ecoregions, i.e., geographically distinct assemblages of species subject to similar environmental conditions. We100

consider each cell in an ecoregion to represent a species aggregation.101

Each herbaceous species in an ecoregion was characterized by its maximum stem heightH , an eco-morphological102

trait that relates to several critical functional strategies among plants (Dı́az et al., 2015). It represents an optimal103

trade-off between the gains of accessing light (King, 1990, Law et al., 1997), water and nutrient transport from104

soil (Midgley, 2003, Ryan & Yoder, 1997), and additional constraints posed by the local biotic environment of105

each individual plant, such as competition, facilitation, or herbivory.106

Mean height values were obtained from the LEDA database (Kleyer et al., 2008) for as many species as there107

were available in the database. Missing values were taken from (Ordonez et al., 2010) or inferred using a MICE108

(Multivariate Imputation by Chained Equations) approach (Buuren & Groothuis-Oudshoorn, 2011) together with109

a predictive mean matching algorithm based on other available traits (leaf and seed traits), genus, and growth110
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forms as predictors. Based on plant growth forms, 2610 herbaceous species (aquatic, herbs, or graminoid) were111

considered in this work.112

Maximum stem height values spanned several orders of magnitude, so we used a log-transformed variable113

(h = logH) to measure species differences (using non-transformed heights yielded comparable results, here not114

shown). The values of h were standardized within ecoregions as t = (h−hmin)/(hmax−hmin) so that 0 ≤ t ≤ 1.115

Results116

For all the species reported in an ecoregion, we formed an empirical competition matrix with pairwise ρij signed117

height differences ρij = ρ̂(tj−ti), where ti are height values standardized across ecoregions and sorted in increas-118

ing order. The advantage of having these values represent trait differences between pairs of species is that any trend119

in competitive strengths can be immediately translated into patterns of functional clustering or overdispersion. As120

in Capitán et al. (2020), we calculated the average competitive strength as 〈ρ〉 = 2
S(S−1)

∑S
i=1

∑S
j=i+1 |ρij |, S121

standing for ecoregion richness.122

In an ecoregion with richness S, a number sk ≤ S of species will form a species assemblage at cell k. The123

coexistence probability was calculated from data as the average fraction of species that survive per cell,124

pc =
〈s〉
S

=
1

SNC

NC∑
k=1

sk, (2)

with NC representing the number of cells in the ecoregion. This quantity, together with the distribution of trait125

differences in cells, was used to compare model predictions with real data.126

Larger plants capture more resources. Therefore, evolution should favor investment in potential growth (max-127

imum height) as a competitive mechanism. However, investment in alternative mechanisms, such as allelopathy,128

may help smaller plants stave off competitors, reducing local heterospecific plant cover and giving them a com-129

petitive advantage over potentially taller plant species. As a consequence, the maximum species stem height can130

be regarded as the outcome of an evolutionary game (Givnish, 1982) that balances opposing constraints, both131

physical (Craine & Dybzinski, 2013, Falster & Westoby, 2003) and biotic (King, 1990, Law et al., 1997). To132

explore these opposing constraints, we analyzed plant data in the light of the two community assembly models.133

The first one is a spatially-implicit model of Lotka-Volterra type, and the second one is a straightforward spatially-134

explicit extension including height-driven competition and allelopathic effects. Both have been carefully defined135

and studied in Capitán et al. (2020).136

Two predictions from the implicit model tested against data137

The collapse of curves predicted by Eq. (1) helps eliminate the variability in S, so that empirical coexistence138

probabilities, which arise from different ecoregion sizes, can be fitted together (Fig. 3). Confirming the first139
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prediction of the spatially-implicit model, we found a significant correlation between the probability of coexistence140

and the scaled competitive overlap based on empirical data (Fig. 3), indicating that a model driven solely by141

dominant competitive interactions reliably predicts the average richness of plant communities across ecoregions.142

In addition, this theoretical prediction allowed an indirect estimation of the relative importance ρ̂ of average inter-143

vs. intraspecific effects: the average ratio of inter- to intraspecific competition strength is about 5% (see Supporting144

Information, section A for details on the estimation procedure).145

As a second prediction, the implicit model implies high levels of trait clustering for low immigration rates and146

high carrying capacity values. Importantly, this parameter regime precisely emerges from the data. In Capitán147

et al. (2020) we derived a deterministic prediction for the exponent, γ = 1, which does not match the one obtained148

from data (γ = 0.61). As shown in that paper, it is a non-zero (but small) value of the immigration rate that149

determines the power-law exponent γ being lower than 1. Indeed, for a realistic fit in Fig. 3, the exponent of the150

empirical power law is obtained for µ/α ∼ 0.1 individuals per generation. Since plant communities operate in151

a low-immigration regime, the non-dimensional immigration rate λ = µ/(αK) must satisfy λ = 0.1/K � 1,152

hence the carrying capacity must be large. In a regime of low immigration rate and high carrying capacity, which153

best fits empirical coexistence probabilities, the implicit model predicts a significant degree of species clustering154

[see Fig. 3 in Capitán et al. (2020)].155

Following Triadó-Margarit et al. (2019), our randomization tests applied to empirical communities were based156

on the average competitive strength observed in a cell C formed by s species,157

〈ρ〉C =
2

s(s− 1)

s∑
i=1

s∑
j=i+1

|ρCij |, (3)

where (ρCij) is the submatrix of the ecoregion competition matrix restricted to the species present in the cell.158

Compared to ecoregion samples, the lower (higher) the empirical community average 〈ρ〉C is, the higher (lower)159

is the degree of species clustering in the cell. For each cell we calculated the probability p = Pr(〈ρ〉Q ≤ 〈ρ〉C)160

that the the competition average 〈ρ〉Q randomly-sampled from the pool is smaller than the empirical average. At161

a 5% significance level, if p > 0.95 the empirical competition average is significantly larger than the average162

measured for random pool samples, which implies that average trait differences in realized communities are larger163

than would be expected at random. On the other hand, if p < 0.05, observed trait differences are significantly164

smaller than would be expected at random. Therefore, if p > 0.95, the community exhibits ‘significant trait165

overdispersion’, whereas if p < 0.05, there is evidence for ‘significant trait clustering’ in the observed species166

assemblage.167

Testing the second prediction against empirical observations yields a mixed picture. We calculated p-values for168

randomization tests applied to every cell in each ecoregion, which represent the empirical distribution of p-values169

(Fig. 4). At the parameter values that make plant data consistent with the first prediction, the spatially-implicit170

model predicts significant trait clustering. We observe that some ecoregions are consistent with this theoretical171
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expectation. However, other ecoregions clearly do not comply with this prediction. In addition, no ecoregion is172

consistent with trait overdispersion (Fig. 4). Selecting species in randomization tests according to species dispersal173

abilities portrays the same picture (results not shown).174

Ecoregion clustering and actual evapotranspiration rates175

In order to better quantify the propensity of an ecoregion to exhibit clustering in maximum stem height, we defined176

a clustering index q for an ecoregion as the fraction of its cells that lie within the 5% range of significant clustering177

(randomization tests yield p-values smaller than 0.05 for those cells). An ecoregion for which significant clustering178

is found in most of its cells will tend to score high in the q index. We examined how the clustering index varied179

across the continent in terms of the geographical location of ecoregion centroids as well as with actual evapotran-180

spiration (Fig. 5). Evapotranspiration maps were obtained from data estimated through remote sensing (Mu et al.,181

2011).182

Water availability acts as a factor limiting plant growth at geographical scales (Fig. 1a), and correlates with183

gross primary productivity (Garbulsky et al., 2010), see Fig. 5d. Therefore, for a given region, mean annual evap-184

otranspiration is a reliable measure of environmental constraints on plant growth (Garbulsky et al., 2010). Panels a185

and b of Fig. 5 show a clear latitudinal trend: there is an intermediate range of ecoregion latitudes where both clus-186

tering indices and evapotranspiration are large, indicating that evapotranspiration measures can robustly predict187

clustering indices (Fig. 5c). The same pattern can also be seen in the relation between mean relative height differ-188

ences and actual evapotranspiration across individual grid cells. The intensity of the clustering pattern increases189

with actual evapotranspiration rates across Europe, not only at the ecoregional level (Fig. 5c), but also at the lower190

spatial scale of grid cells (see Fig. C1, Supporting Information). More importantly, since evapotranspiration is191

a powerful proxy of environmental constraints on plant growth, this clustering in maximum stem height appears192

to be stronger at ecoregions less limited by environmental conditions. As environments become harsher and less193

optimal for plant growth, these clustering patterns disappear. This is particularly true for the severe climatic con-194

ditions characteristic in the Mediterranean (with erratic rainfall, limited water availability and drought), as well as195

of boreal zones (with low radiation incidence and cold temperatures). According to model predictions, the overall196

clustering patterns found at middle-range latitudes are consistent with species competitive dominance controlling197

species height differences.198

Two predictions from the explicit model tested against data199

The spatially-explicit model allows for either the dominance of tall, mid-sized or short plants, as a consequence200

of the trade-off between investment in either potential growth or alternative mechanisms other than growth (see201

Fig. 5 in Capitán et al. (2020)). We have tested whether taller or shorter plants are most commonly represented202

in ecoregions via the correlation of cell-averaged heights and evapotranspiration (Fig. 6a), which shows a mixed203
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picture. With few exceptions, mid-latitude ecoregions exhibit positive correlation (taller plants are selected in204

regions favoring plant growth), whereas negative dependencies are often observed in latitudinal extremes (Fig. 6b).205

Correlations are significant but, in some cases, very weak. These results are consistent with our interpretation in206

terms of a signal of competitive dominance in mid-latitude ecoregions.207

Our spatially-explicit model predicts the persistence of trait clustering as species are aggregated at larger spa-208

tial scales (much larger than the typical range of species interactions). This is important because real individual209

plants interact at much lower spatial scales (1 to 1000ha) compared to the spatial resolution of our dataset (grid cell210

sizes about 50 km). To assess the robustness of our results, we further investigated the effect of aggregation scales211

on clustering patterns using plant data. In line with the spatially-implicit model, the analysis of herbaceous plant212

communities from mid-latitude ecoregions reveals that our results are robust to both up- and down-scaling com-213

munity sizes (see Fig 6c). Height clustering remains significant in a range of aggregated scales, and extrapolates to214

smaller areas (under a random placement hypothesis, communities of smaller sizes were built by randomly select-215

ing a number of species as predicted by the empirical species-area relation, see Supporting Information, section B.216

We conclude that clustering patterns at large scales is an emerging pattern that can be interpreted as a signature of217

competitive dominance operating at much smaller spatial scales.218

Discussion219

In this work we have tested predictions from modern coexistence theory (Chesson, 2000) and the competition-220

similarity paradigm (Mayfield & Levine, 2010) using macro-ecological trait data at large spatial scales (Kunstler221

et al., 2016). While potential evapotranspiration decreases with latitude, actual evapotranspiration peaks at in-222

termediate latitudes, and is strongly associated with higher levels of trait clustering. Critically, actual evapotran-223

spiration is positively correlated with gross primary productivity (GPP) across terrestrial ecosystems [see Fig. 5d224

and Garbulsky et al. (2010)], which also peaks at intermediate latitudes across Europe. Consistently, our results225

were reproduced using GPP instead of ET, although both variables yield similar results. The agreement of model226

predictions with plant community data can be interpreted as a signature of competitive dominance in empirical227

communities in the environmentally conducive middle-range latitudes. Significant height clustering would be the228

trace that competition leaves on community assembly pattern by filtering out subdominant species. This result229

does not necessarily mean that competition is the main driver of community assembly. It rather highlights the230

potential role of competitive dominance, along with other processes, in the assembly of herbaceous communities231

at intermediate latitudes. On the contrary, as environmental conditions get increasingly extreme, no significant232

clustering in plant height is observed. Although the interplay between facilitation and competition is far from sim-233

ple (Hart & Marshall, 2013), the harshness of extreme conditions likely override the effects of competition, and234

other processes such as species tolerances and facilitation (Maestre et al., 2009, Valiente-Banuet & Verdú, 2007)235

may be critical community drivers at climatic extremes.236
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Throughout this work, species assemblages within each grid cell (∼ 50× 50 km) have been defined as distinct237

communities. Current consensus about the concept of ecological community emphasizes the importance of biotic238

interactions. An ecological community is defined as a set of species that live in the same area and can potentially239

interact (Stroud et al., 2015). In spite of the size and heterogeneity within each grid cell at the 50× 50 km spatial240

scale, cells are much smaller than the ecoregion they belong to, and are, of course, much more homogeneous, both241

in species composition and in environment, than the the ecoregion itself. Therefore, in principle, grid cells could242

be regarded as communities in an operational and relative sense. In addition, we assumed that the European Flora243

database represents species composition at a steady state, this is, we examined the stationary patterns resulting244

from eco-evolutionary processes associated to long time scales. Although real individual plants interact at much245

lower spatial scales, two species from the same ecoregion will eventually interact within a grid cell given enough246

time. The larger the temporal scale, the larger is the area where two species will have a chance to interact through247

generations and repeated dispersal events. The scale at which a set of local communities reveal information248

about underlying assembly processes is very often the regional scale (Diniz-Filho et al., 2009, Olalla-Tárraga &249

Rodrı́guez, 2007, Ricklefs, 2015), which has led to the ”regional community concept” (Ricklefs, 2008, 2011).250

It is important to make a clear distinction between actual plant size and the species-level trait, “maximum251

stem height”. While a species-level trait is shaped by evolutionary constraints at longer temporal scales, actual252

plant size is determined by a host of contingent ecological constraints operating over shorter temporal scales.253

Although there is a large body of theory and experiments positively co-relating actual plant size and individual254

plant competition ability (Gaudet & Keddy, 1988, Weiner, 1993), there has been considerably less attention paid255

to the evolutionary establishment of functional trade-offs between different species-level traits (Adler et al., 2014,256

Stearns, 1989). The common wisdom that competition favors taller plants may not always hold [for instance, in257

low-nutrient, competition-intensive, undisturbed habitats, see Tilman & Wedin (1991)]. Our analysis shows that258

height clustering at middle-range latitudes is a fingerprint of a balance between energy invested in either potential259

growth or other mechanisms that may help plants overcome competitors. For instance, when competitors are260

close relatives in dense herbaceous communities, selection may favor the evolution of a low leaf height. In these261

situations, “for short conspecific herbs to exclude competitors from a highly productive site, they must possess262

alternative mechanisms to overcome competition, such as root competition or allelochemics” (Givnish, 1982).263

More generally, we argue that functional trade-offs tend to evolve in regions of higher primary productivity, where264

the relative role of biological interactions (competition, parasitism, herbivory) is expected to be higher.265

Competitive hierarchies have been theoretically investigated (Tilman, 1982, 2004), and empirically demon-266

strated in herbaceous plant communities at much smaller spatial scales (Stanley Harpole & Tilman, 2006, Tilman,267

1994, Tilman & Wedin, 1991). In these studies, a trade-off between competitive and colonization abilities has been268

shown to maintain plant diversity, although other hierarchies have been also suggested (Muller-Landau, 2010). In-269

terestingly, the relevant role of competitive dominance driven by species trait hierarchies has been also reported at270

much smaller spatial scales for forest trees along an altitudinal gradient in the French Alps (Kunstler et al., 2012).271
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Moreover, a recent study of the assembly of forest communities across East Asia shows that a phylogenetic-based272

species similarity index tends to be smaller the higher the minimum temperature of the coldest month is (Feng273

et al., 2015). Although traits are not generally related to competitive abilities, and they are diverse in their func-274

tionality and in their response to environmental stress, these studies, together with our results, suggest that trait275

clustering is generally likely to occur where conditions for plant growth are less restrictive. Our models indi-276

cate that the process underlying this pattern is competitive dominance rather than Darwin’s competition-similarity277

hypothesis, although it is likely that community assembly for other taxa may be driven by other biotic or environ-278

mental filters. For instance, phytoplankton communities from estuarine ecosystems (Segura et al., 2012) are more279

consistent with Darwin’s seminal hypothesis since they appear to be driven by limiting similarity creating clumpy280

species coexistence (Pigolotti et al., 2007, Scheffer & van Nes, 2006). Competitive hierarchies are, of course, not281

hard-wired in nature. Intransitivities may still play a key role in maintaining diversity in some systems (Allesina282

& Levine, 2011, Soliveres et al., 2015, Zhang & Lamb, 2012).283

In Capitán et al. (2020) we demonstrated how different coexistence vs. competition curves can be collapsed284

into a single curve. Here we showed that model predictions were quantitatively consistent with the observed285

decaying behavior of the probability of local coexistence as overall competition intensity increases. This general286

scaling behavior is typical for stochastic community models in the presence of both symmetrical (Capitán et al.,287

2015, 2017) and asymmetrical competition, as presented here. The scaling allowed us to give a rough estimate of288

ρ̂, an average ratio of inter- vs. intraspecific competition (see Fig 3a). Our indirect method is only able to estimate289

an average ρ̂ across ecoregions. Whenever direct empirical estimates of the ratio of inter- vs. intra-competition290

are obtained, a few similar species are typically studied using small-scale field experiments (Goldberg & Barton,291

1992, Schoener, 1983). It is, therefore, unsurprising that empirical estimations of this parameter tend to be higher292

than ours (Kraft et al., 2015), but see also Volkov et al. (2009) and Wang et al. (2016). Being able to provide293

rough estimates of this parameter at regional scales is also a novel result from our analysis. Our results are in294

agreement with a recent study of trees across six forest biomes where the authors found that trait variation is295

mostly related to competitive imbalances tending to drive inferior competitors to extinction (Kunstler et al., 2016).296

Further work is required to better relate the average ratio of inter- vs. intraspecific competition, which stabilizes297

species co-existence, to plant traits, and analyze how this aggregated parameter changes at increasing spatial scales298

and across taxa.299

In this paper we have explored several predictions from theoretical models aimed at describing plant dynamics,300

which have been derived and carefully studied in Capitán et al. (2020). In total, we have contrasted four model301

predictions against reported herbaceous plant diversity across Europe. As usual, our theoretical models represent302

a strong over-simplification of real plant community dynamics. However, in spite of disregarding the true com-303

plexity of these communities, our theory approach is useful, not only because it can reproduce macro-ecological,304

observational patterns with a small number of meaningful aggregated variables, but also because it provides new305

quantitative or qualitative predictions than may lead to new both empirical and observational studies. Finding a306

11



theoretically robust and ecologically meaningful rapprochement between theory and data at relevant scales remains307

a challenge for ecology, and we trust that our work will inspire new contributions in this direction.308
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P. M., Lacher, T. E., Monteagudo, A., Núñez-Vargas, M. P., Vasquez-Martı́nez, R. & Nolting, K. M. (2012). The497

biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and498

Biogeography, 21, 798–808.499

56.500

Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.501

57.502

Tilman, D. (1994). Competition and Biodiversity in Spatially Structured Habitats. Ecology, 75, 2–16.503

58.504

Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource compe-505

tition, invasion, and community assembly. Proc. Nat. Acad. Sci. USA, 101, 10854–10861.506

59.507

Tilman, D. & Wedin, D. (1991). Plant Traits and Resource Reduction For Five Grasses Growing on a Nitrogen508

Gradient. Ecology, 72, 685–700.509

60.510
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Figure captions535

Figure 1. Conceptual framework for maximum height resulting from a trade-off between investing energy

either in potential growth, or in any other alternative, non-size-related strategy. In panel a, we illustrate

latitudinal patterns of potential light and water availability. The latitudinal gradient of actual evapotranspiration

(ET) is also shown along with the expected role of biotic interactions in determining community dynamics. At

middle-range latitudes, we expect competitive hierarchies to be at their maximum due to a greater relative role of

species interactions. Panel b shows how the trade-off between potential growth and any alternative mechanism

not related to size can be included in a spatially-explicit model: species that are either good at growing taller or

in investing energy in allelopathy remain short, but cause incremental death of their heterospecific neighbors. As

an outcome of this trade-off, the model predicts the dominance of taller, mid-sized, or shorter plants at stationarity

(panel c).

Figure 2. Geographical description of plant data across European ecoregions. a, 25 different habitats covering

most of Europe are shown in the map and listed below. Ecoregions are regarded as a pool comprising all plant

species observed in that region. b, The Military Grid Reference System divides ecoregions in grid cells, each one

considered as an assemblage formed by a species sample of the pool.

Figure 3. The implicit model predicts a power-law decay regardless of the ecoregion size S, which permits

fitting a power law to data (r2 = 0.51, p < 10−3, 95% confidence lines are shown). In order to match the

empirical exponent γ we need to choose the immigration rate µ = 5, the net growth rate α = 50 and the carrying

capacity K = 1000. To match the starting point of the decay we need to set ρ̂ = 0.04 in the calculation of ρij . For

completeness, we have reproduced here model expectations (triangles) for different pool sizes. Data colors match

ecoregion codes in Fig. 2.
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Figure 4. Empirical randomization tests.. The majority of ecoregions are consistent with model predictions as

the distributions (Tukey boxplots) lie in the 5% range of significant clustering (Methods). Data colors in panels a

and c match codes in Fig. 2.

Figure 5. Linking height clustering to geographical and environmental variables. a, Variation in the clustering

index (q) with latitude (ϕ). Quadratic fit: r2 = 0.63, p < 10−3. b, Latitudinal variation in mean annual actual

evapotranspiration (ET) data. Quadratic weighted regression: r2 = 0.63, p < 10−3. The shaded areas in panels a

and b represent the latitudinal range for which the adjusted dependence q(ϕ) ≥ 0.7, where both height clustering

and evapotranspiration are maximal. c, Linear weighted regression for ET as a function of the clustering index;

r2 = 0.49, p < 10−3. d, Correlation between mean gross primary productivity (GPP) and mean annual ET; linear

weighted fit: r2 = 0.73, p < 10−3. In the first four panels, the radius of each circle is proportional to the clustering

index. Symbol colors refer to ecoregions (Fig. 2). All the fits show the 95% confidence bands. e, Geographical

distribution of clustering indices for ecoregions across Europe.

Figure 6. Two predictions of the explicit model tested against data. a, Correlation of cell-averaged height

(relative to ecoregion means) and mean annual ET by ecoregion (colors used for data match codes in Fig. 2). b,

Correlation coefficient obtained in a vs. latitude. Circle radii are proportional to clustering indices. Observe that

positive correlations tend to associate with high clustering index (with some exceptions) and middle-range latitude

(quadratic fit: r2 = 0.44, p = 0.001). c, Clustering patterns of an ecoregion characterized by high clustering

index (Atlantic mixed forests) were analyzed at increasing aggregation scales. Communities were defined by

increasingly aggregating contiguous 50 × 50 km cells. Below a critical aggregation scale (eleventh log-area bin,

which corresponds to 105 km2), randomization tests show strong signals of clustering. The inset in c represents a

down-scaling of randomization tests. Clustering patterns robustly persist at smaller spatial scales.
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