REFERENCES
  1. O. Alsac, B. Stott, Optimal load flow with steady-state security, IEEE Trans Power Apparatus Syst 93 (1974), 745-751.
  2. J. Radosavljević, D. Klimenta, M. Jevtić, N. Arsić, Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm, Electric Power Components and Systems 43 (2015), 1958-1970.
  3. J. Radosavljević, Metaheuristic Optimization in Power Engineering, The Institution of Engineering and Technology (IET), London, 2018.
  4. G. T. Tziasiou, G. A. Orfanos, P. S. Georgilakis and N. D. Hatziargyriou, Transmission pricing software for power engineering education, Computer Applications in Engineering Education, Vol. 22 ,Iss. 3, 2014, pp. 410-428.
  5. S. Janković, Heuristic approach to solving problem of location and relocation of ambulance vehicles in base stations, Master thesis, University of Belgrade, Faculty of Mathematics, 2015.
  6. R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory. In: Micro machine and human science, Proceedings of the 6th international symposium, Vol. 1, 1995, pp.39-43.
  7. S. Mirjalili and S. Z. M. Hashim, A new hybrid PSOGSA algorithm for function optimization, International Conference on Computer and Information Application (ICCIA 2010), pp. 374–377, Tianjin, China, 3–5 December 2010.
  8. E. Rashedi, H. Nezamadi-pour and S. Saryazdi, GSA: A gravitational search algorithm, Information Sciences, Vol. 179, 2009, pp. 2232-2248.
  9. D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J Global Optim, Vol. 39, 2007, pp. 459-471.
  10. I. Ilhan, Mobile device based test tool for optimization algorithms, Computer Applications in Engineering Education, Vol. 24, Iss. 5, 2016, pp: 744–754.
  11. M. Rezaei Adaryani, A. Karami, Artificial bee colony algorithm for solving muli-objective optimal power flow problem, Electr. Power Energy Syst., Vol. 53, 2013, pp. 219-230.
  12. Z. Bayraktar, M. Komurcu, and D. H. Werner, Wind driven optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics, Proceedings of the 2010 IEEE International Symposium on Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting, Toronto, Ontario, Canada, July 11-17, 2010.
  13. Z. Bayraktar, M. Komurcu, Z. H. Jiang, D. H. Werner and P. L. Werner, Stub-loaded inverted F-antenna synthesis via wind driven optimization, in Proc. IEEE Int. Symp. Antennas Propag., USNC/URSI Nat. Radio Sci. Meet., Spokane, WA, Jul. 3–8, 2011, pp. 2920–2923.
  14. Z. Bayraktar, M. Komurcu, J. A. Bosard and D. H. Werner, The wind driven optimization technique and its application in electromagnetic, IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2013, pp. 2745-2757.
  15. X. S. Yang, Nature-inspired metaheuristic algorithms, UK: Luniver Press; 2008.
  16. P. Balachennaiah, M. Suryakalavathi and P. Nagendra, Firefly algorithm based solution to minimize the real power loss in a power system, Ain Shams Eng J, 2015, http://dx.doi.org/10.1016/j.asej.2015.10.005
  17. S. Mirjalili, S.M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, Vol. 69, 2014, pp. 46-61.
  18. X.- S. Yang and S. Deb, Cuckoo search via Levy flights, Proc. of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), Dec 2009, India. IEEE Publications, USA, pp. 210-224.
  19. A. A. Mohamed, Y. S. Mohamed, A. A. M. El-Gaafary and A. M. Hemeida, Optimal power flow using moth swarm algorithm, Electric Power System Research, Vol. 142, 2017, pp. 190-206.
  20. P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems, Applied Mathematics and Computation, Vol. 219, 2013, pp. 8121-8144.
  21. R.V. Rao, V.J. Savsani and D.P. Vakharia, Teaching-learning-based optimization: anovel method for constrained mechanical design optimization problems, Comput. Aided Des. Vol 43 Iss. 3, 2011, pp. 303–315.
  22. H. R. E. H. Bouchekara, M. A. Abido and M. Boucherma, Optimal power flow using Teaching-Learning-Based Optimization technique, Electr. Power Syst. Res., Vol. 114, 2014, pp. 49-59.