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ABSTRACT: This paper presents a MATLAB GUI based software tool to solve the optimal power flow (OPF) problem in power systems. The computer program, called optimal power flow graphical user interface (opfgui), has been developed to present the efficiency of different metaheuristic optimization methods in solving the OPF problem. The opfgui program offers a choice of seven standard IEEE test systems, six objective functions, and ten optimization methods. The program generates not only optimal solution, that is, optimum control variables and objective function, but also important results such as, convergence profile, bus voltages and bus powers, brunch power flows and losses, violating constraints (if exist), and statistical evaluation of the results. The software aims to support students in the course of power system analysis that includes studies of the OPF. Using opfgui, the students can compare the performances of different optimization methods in solving the OPF problem.
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INTRODUCTION
The OPF is one of most important tool for achieving the economic and secure operation of the power system. The OPF problem solution aims to optimize a chosen objective function through optimal adjustment of the power system control variables while at the same time satisfying various operating constraints [1]. In its most general formulation, the OPF is a nonlinear, non-convex, large-scale, static optimization problem with both continuous and discrete control variables [2].
In recent years, various population-based metaheuristic optimization methods has been suggested for solving the OPF problem. Their main advantage compared to the classical (deterministic) optimization methods is that they are not limited with requirements for differentiability, non-convexity and continuity of the objective function or types of control variables. Moreover, these methods can be used for practical power systems taking into account various types of objective function and constraints. The essence of metaheuristic methods is iterative correction of solutions, ie. generating new populations by applying stochastic search operators on individuals from the current population. The main performances of metaheuristics are fast search of large solution spaces, ability to find global solutions and avoiding local optimum [3].
This paper presents an innovative approach to education in the field of optimal power flow. A computer program, called optimal power flow graphical user interface (opfgui), has been developed to present the efficiency of different metaheuristic optimization methods in solving the OPF problem. In this context, the opfgui can be used as an experimentation tool during the practical lectures. The aim of this program is to encompass the main steps in solving the OPF problem using metaheuristic methods. These steps include: (i) selection of test system, display single-line diagram and edit system data; (ii) selection of objective function; (iii) selection of solution method, setting the algorithm parameters; (iv) program execution; (v) display of the results.
The opfgui has been implemented in MATLAB, because it integrates computation, programming, analyze data, and producing graphical displays and graphical user interfaces in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation [4]. When designing the program, special care was paid to its graphical user interface, so the opfgui is very friendly to the students. 
The opfgui program offers a choice of seven standard IEEE test systems, six objective functions, and ten optimization methods. The program generates not only optimal solution, that is, optimum control variables and objective function, but also important results such as, convergence profile, bus voltages and bus powers, brunch power flows and losses, violating constraints (if exist), and statistical evaluation of the results. Using opfgui, the students can compare the performances of different optimization methods based on statistical evaluation of the results.
The rest of the paper is organized as follows: In the Optimal Power Flow Problem Formulation, the OPF problem is mathematically formulated. In the section Metaheuristic Optimization Methods, ten optimization methods are briefly described. The program is described in OPF Software section. The use of opfgui is presented in section Educational Example.  In the final section the main conclusions of the paper are given.
OPTIMAL POWER FLOW PROBLEM FORMULATION
[bookmark: heading2]Generally, the OPF problem can be formulated as follows [1]:
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Subject to: 
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where J is objective function to be minimized. x is the vector of dependent variables consisting of slack bus power PG1, load bus voltages VL, generator reactive power outputs QG, and transmission line loadings Sl. Accordingly, vector x can be expressed as:

                                                                            (5)
where NL, NG and NTL are number of load buses, number of generators, and number of transmission lines, respectively.  
u is the vector of control variables, consisting of generator active power outputs PG (except at the slack bus PG1), generator voltages VG, transformer tap settings T, and shunt VAR compensations QC. Hence, u can be expressed as: 

                                                                       (6)
where NT and NC are the number of the regulating transformer and VAR compensators, respectively. 
Equality Constraints
The equality constraints (2) are the typical nonlinear power flow equations. 

                                                                          (7)

                                                                         (8)
where, i=1, …, NB; NB is the number of busses; PD is the load active power, QD is the load reactive power, δij is voltage angle between busses i and j, Gij and Bij are the real and imaginary terms of bus admittance matrix corresponding to i-th row and  j-th column, respectively.  
Inequality Constraints
Inequality constraints (3) are the functional operating constraints, such as: load bus voltage magnitude limits, generator reactive power output limits and branch flow limits.
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Constraints (4) define the feasibility region of the problem control variables such as: generator active power output limits, generator bus voltage magnitude limits, transformer tap setting limits and shunt VAR compensation limits.
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Objective Function
The objective function can take different forms. Six cases with different objectives such as minimization of fuel cost, minimization of power loss, minimization of voltage deviation, simultaneous minimization of  fuel cost and power loss, simultaneous minimization of  fuel cost and voltage deviation, and simultaneous minimization of  fuel cost, power loss and voltage deviation have been included in the OPFGUI program. 
Minimization of Fuel Cost (Fcost)
The generator cost characteristics f are defined as quadratic cost function of generator power output PG. The objective function J is minimization of fuel cost for all generators:

                                                       (16)
where ai, bi and ci are the cost coefficients of the ith generator. For PGi in (MW), the cost coeficient ai is in ($/h), bi is in ($/MWh) and ci is in ($/MW2h).
Minimization of Real Power Loss (Ploss)
In this case the objective function (1) has the following form:

                              			                                    (17)
where Ploss,L is the real power losses at line L and NTL is the number of transmission lines. 
Minimization of Voltage Deviation (VD)
One of the most important and significant safety and service quality indices is bus voltage [2].  In this case the objective is minimization of the load bus voltage deviations (VD):

            	  		      	                                    (18)

where NL is the number of load buses and   is the reference value of the voltage magnitude of the ith bus, which is usually set to 1 p.u. 
Simultaneous Minimization of  Fuel Cost and Power Loss (Fcost_Ploss)
In this case, the minimization of the system fuel cost and real power loss are approached. These two competing objectives are optimized simultaneously with the proposed algorithm. The objective function balances the two objectives in such a way that one objective should not dominate the other. The new objective function may be expressed as

                                                                               (19)
where Ploss is the total system real power loss and wPloss is the weighting factor for the real power loss, to be chosen by the user.
Simultaneous Minimization of Fuel Cost and Voltage Deviation (Fcost_VD) 
Though the minimization of total generation fuel cost may give a feasible solution, the voltage profile may not be acceptable. Therefore, in the present case a twofold objective function is taken in consideration to minimize the fuel cost and improve voltage profile by minimizing the load bus voltage deviations from 1.0 p.u. The objective function can be expressed as

                                                                                       (20)
where wV is a weighting factor for voltage deviation.  
Simultaneous Minimization of Fcost, Ploss and VD (Fcost_Ploss_VD) 

                                                       (21)
Expanded Objective Function
It is worth mentioning that the control variables are self-constrained. Inequality constraints of the dependent variables contain PG1, VL, QG and Sl is added to the objective function as a quadratic penalty terms [2]. The new expanded objective function to be minimized becomes:

             (22)
where  λP, λV, λQ and λS are defined as penalty factors. 
xlim is the limit value of the dependent variable x and given as:   
if x > xmax, then xlim = xmax
elseif  x < xmin, then xlim = xmin
else, then xlim = x
end
METAHEURISTIC OPTIMIZATION METHODS
Metaheuristic optimization methods are the population-based stochastic search techniques. The population is defined by a set of individuals which represent potential solutions of the optimization problem. The number of individuals (N) is named as the size of the population. In general, an individual can be represented as vector whose elements are the values of the control variables of the optimization problem. The number of control variables (n) is the search space dimension of the optimization problem. 
The essence of metaheuristic methods is iterative correction of the solution, ie. generating a new population by applying algorithmic operators with stochastic search mechanism on individuals from the current population. The way in which are defined the algorithmic operators constitutes the essence of a particular metaheuristic optimization method. The efficiency and performance of metaheuristic optimization methods are dependent on the proper setting of the corresponding algorithmic parameters.
General structure of metaheuristic optimization methods can be represented as follows [3,5]
Initialization 

Defining  the objective function F(ui) and the space of possible solutions ;


where:  is the ith search agent, that is ith potential solution of the optimization problem,  defines the position of the ith agent in the dth dimension, that is value of the dth control variable in the ith potential solution of the optimization problem, n is the problem dimension (number of control variables).

Generate initial population of N agents:  
The initial positions of each agent are randonly selected between minimum and maximum values of the control variables.

Calculate:  
Set the iteration counter:  t=1
Iterative procedure




Calculate the fitness value  for each agent ,  in the current population 


Generate new population  by applying the algorithmic operators on search agents from the current population 

Calculate:     



if , then  and 


Repeat the iterative procedure until the stop criteria is reached, that is, maximum number of iterations.

The optimal solution  is determined.
End
Particle Swarm Optimization Algorithm (PSO)
The PSO algorithm was developed by Kennedy and Eberhart [6], and is based on simulation of bird flocking in two-dimension space. It uses a number of particles (candidate solutions) which fly around in the search space to find best solution [7]. Meanwhile, the particles all look at the best particle (best solution) in their paths. In other words, particles consider their own best solutions as well as the best solution found so far. Each particle tries to modify its position using the following information: the current position, the current velocity, the distance between the current position and pbest, and the distance between the current position and gbest. 
In each iteration, the velocities of particles are calculated using the following equation: 

                                     (23)

After updating the velocities, the positions of particles can be calculated as:                                                                                                       (24)


where  is velocity of particle i at iteration t, w is a weighting function, C1 and C2 are positive constants, r1 and r2 are uniformly distributed random numbers in [0, 1], is the current position of particle i at iteration t, pbesti is the individual best of particle i at iteration t, and gbest is the best solution so far. The first part of (23), provides exploration ability for PSO. The second and third parts represent private thinking and collaboration of particles, respectively. 
Gravitational Search Algorithm (GSA)
The GSA is a metaheuristic optimization algorithm developed by Rashedi et al. [8]. In GSA, the search agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The position of the mass corresponds to the solution of the problem, and its gravitational and inertial masses are determined using a fitness function. In other words, each mass presents a solution. The algorithm is navigated by properly adjusting the gravitational and inertial masses. 
After evaluating the current population fitness, the mass of each agent is calculated as follows:

                                                                                                          (25)
where:

                                                                                                       (26)
where fiti(t) represent the fitness value of the agent i at iteration t. best(t) and worst(t) is the best and worst fitness of all agents, respectively. According to Newton gravitation theory, the total force that acts on the ith agent at iteration t is specified as follows:

                                                                 (27)
where r is a random number within the interval [0, 1]. G(t) is gravitational constant at iteration t, Mi(t) and Mj(t) are masses of agents i and j, ɛ is a small constant and Rij(t) is the Euclidian distance between the two agents i and j, Kbest is the set of first K agents with the best fitness value and biggest mass. 
According to the law of motion, the acceleration of the ith agent, at iteration t is given by the following equation:

                                                                                                                   (28)
The velocity and position of an agent are updated as follows:


                                                                                                        (29)                                                                                                       (30) 
where ri is a uniform random variable in the interval [0, 1]. 
The gravitational constant G(t) in Eq. (27) is a function of the initial value G0 and time t:

                                                                                                  (31)
The parameters of maximum iteration tmax, population size N, initial gravitational constant G0 and constant α control the performance of GSA.
Artificial Bee Colony Algorithm (ABC)
Artificial bee colony algorithm was inspired by the intelligent behavior of bees and developed by Karaboga and Basturk [9].  In the ABC algorithm, there are three types of bees: employed bees, onlookers, and scouts. The position of a food source represents a possible solution to the optimization problem, and the nectar amount of a food source corresponds to the quality of the solution represented by that food source [10].
In the employed bee phase, the employed bees are responsible for searching for new food sources in the neighborhood of current food sources, and calculating the nectar amount of these sources. The location of the new food sources is determined as follows:


                 i=1, 2, …, N;                                (32)




where  is a randomly chosen solution different from , and  is the new solution (food source).   is a uniform random number between [-1, 1]. 
If the new food source has equal or better nectar than the old source, it is replaced with the old one in the memory. Otherwise, the old one is retained in the memory. 
In the onlooker bee phase, onlooker bees select a food source for themselves with a probabilistic calculation method by using the fitness values of the food sources. The onlookers search for better food source in the neighborhood of current food source by using equation (32). If the new nectar amount is better than the nectar amount of the old resource, then the old resource is abandoned. Otherwise, the abandonment counter of that food resource is increased by one. This process is repeated until all onlookers are distributed among the food sources [10].
If the nectar amount of a food source has been exhausted or the profitability of the food source decreases under a certain level, the employed bee associated with that food source becomes a scout. This scout starts searching a new food source randomly without any guidance in the search space. This abandoning and scouting mechanism assist the algorithm to escape local optimums [11].
Wind Driven Optimization Algorithm (WDO)
The WDO was developed by Bayraktar et al. [12-14]. The core equations of WDO are inspired by the wind in the Earth's atmosphere where the motion of an infinitesimally small air parcel is analyzed. To find the velocity and position displacement of the air parcel, the Newton's second law of motion is used. There are four major forces that can either cause the wind to move in a certain direction or deflect it from its existing path. These forces are the pressure gradient force, the friction force, the gravitational force and the Coriolis force. The physical equations that govern each of these forces and detailed descriptions are given in [13].  The sum of these forces can be inserted into Newton's second law of motion and then the velocity and position displacement of each air parcel can be computed. The parcel’s velocity is calculated using the following equation [14]:

                                           (33)





where  is the current iteration velocity,   is the current position of the air parcel in the search space,   is the optimum position of the air parcel’s in the search space at the current iteration, i represents the ranking among all air parcels (the best solution  has the lowest pressure with rank 1),   is the velocity in one of the other dimensions, α is the friction coefficient, g is the gravitational constant, R is the universal gas constant, T is the temperature, and c is a constant that represents the rotation of the Earth. The coefficients α, g, RT, and c are the algorithm parameters that must be specified prior to starting an optimization. 
At each iteration, the velocity and the position of all parcels need to be updated. Once the new velocity is calculated according (33), the position can be updated as follows:

                                                                                                                    (34)

where  is the new  position of the air parcel in the search space for the next iteration.  
Firefly Algorithm (FFA)
The firefly algorithm was inspired by the flashing light of fireflies and developed by Xin-She Yang [15]. All the fireflies are considered unisexual and their attraction is directly proportional to the intensity of their flash. Therefore if a firefly particle had the choice of moving towards either of two fireflies, it will be more attracted towards the firefly with higher brightness and moves in that direction. If there are no fireflies nearby, the firefly will move in a random direction. The brightness of flash is associated with the fitness function. As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies, the attractiveness β of a firefly can be defined as a function of the Cartesian distance r between the fireflies [15,16]:

                                                                                                                   (35)
where β0 is the attractiveness at r = 0 and γ is the absorption coefficient. The movement of a firefly i is attracted to another more attractive (brighter) firefly j is determined by

                                                                 (36)
where α is the randomization parameter and ε is the vector of random numbers taken from Gaussian distribution. At the end of all generations, the firefly with the highest brightness i.e. the best fitness value is concluded as the optimal solution to the problem
Grey Wolf Optimizer Algorithm (GWO)
The GWO algorithm is based on mimics the leadership hierarchy and hunting mechanism of grey wolves in nature and developed by Mirjalili et al [17]. In the hierarchy of GWO four types of members (search agents) can be considered: alpha (α), beta (β), delta (δ), and omega (ω). The dominance gradually decreases from α wolves to ω wolves.  
The mathematical model of hunting mechanism of grey wolves consists of the three steps, such as searching for prey, encircling prey, and attacking prey [17]:

         							                        (37)
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    										(39)

    											(40)

   				 				(41)
where t is the current iteration, A and C are coefficient vectors, up is the position vector of prey, u is the position vector of a grey wolf  (α, β and δ), a is vector which components are lineary decreased from 2 to 0 over the course of iterations, r1 and r2 are random vectors in [0,1]. The search agents ω update their positions according to the position of three best search agents. The grey wolves finish the hunt by attacking the prey when it stops moving. This can be mathematically modeled by decreasing the value of vector a from 2 to 0 with iterations.

Cuckoo Search Algorithm (CS)

Cuckoo search algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Lévy flight behaviour of some birds and fruit flies [18]. This algorithm uses three idealized rules: (i) Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest; (ii) The best nests with high quality of eggs (fitness) will carry over to the next generations; (iii) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird with a probability pa [0, 1]. In this case, the host bird can either throw the egg away or abandon the nest, and build a completely new nest.
A new cuckoo (solution) by Lévy flights is generated as follows: 

                                                                                                  (42)
where α > 0 is the step size which should be related to the scales of the problem of interest. The Lévy flight essentially provides a random walk while the random step length is drawn from a Lévy distribution which has an infinite variance with an infinite mean. Here the steps essentially form a random walk process with a powerlaw step-length distribution with a heavy tail. Some of the new solutions should be generated by Lévy walk around the best solution obtained so far, this will speed up the local search. However, a substantial fraction of the new solutions should be generated by far field randomization and whose locations should be far enough from the current best solution, this will make sure the system will not be trapped in a local optimum [18].
Moth Swarm Algorithm (MSA)
In the MSA, the possible solution of optimization problem is represented by position of light source, and the fitness/quality of this solution is considered as luminescence intensity of the light source [19]. These assumptions have been used to approximate the characteristics of the proposed algorithm. In addition, the proposed moth swarm is considered to consist of three groups of moths, as follows: 
Pathfinders, which main task is to discriminate the best positions as a light sources to guide the movement of the main swarm (i.e, light the way); 
Prospectors, that tends to wander into a random spiral path within the neighborhood of the light sources, which have been marked by the pathfinders; 
Onlookers is a group of moths that drift directly toward the best global solution (moonlight), which has been obtained by prospectors.
At any iteration, each moth (search agent) is incorporated into the optimization problem to find the luminescence intensity of its corresponding light source (fitness). The best fitnesses in the swarm are considered as the positions of the pathfinders, and guidance for the next update iteration. Hence, the second and third best groups take the name of the prospectors and onlookers, respectively. The equations for updating the positions of moths are given in [19].
Backtracking Search Optimization Algorithm (BSA)
The BSA is a stochastic search algorithm developed by Civicioglu [20]. The author of BSA was motivated by studies that attempt to develop simpler and more effective search algorithm with as few control parameters. The general structure of BSA can be explained by dividing its functions into five segments: initialization, selection-I, mutation, crossover and selection-II.
BSA initializes the population P by random selection between lower and upper limits of the control variables. In Selection-I stage, BSA determines the historical population oldP in order to calculating the search direction. In the mutation process of BSA, a trial population Mutant is formed as a function of P and oldP. Because the historical population is used in the calculation of the search-direction matrix, BSA generates a trial population, taking partial advantage of its experiences from previous generations. BSA’s crossover process generates crossover population T as the final form of trial population. The initial value of the trial population is Mutant, as obtained in the mutation process.  Crossover process contains of two steps. The first step calculates a binary integer-valued matrix (map) of size N‧n that indicates the individuals of T to be manipulated by using the relevant individuals of P. In Selection-II stage, the individual Ti that have better fitness values than the corresponding individual Pi are used to update the Pi based on a greedy selection. If the best individual of P (Pbest) has a better fitness value than the global minimum value obtained so far by BSA, the global minimizer is updated to be Pbest , and the global minimum value is updated to be the fitness value of Pbest . Detailed equation of BSA can be find in [20].
Teaching Learning Based Optimization Algorithm (TLBO)
TLBO is a metaheuristic optimization method proposed by Rao et al [21]. This optimization algorithm does not require any algorithm-specific parameters, except population size and maximum number of iterations. Like other population-based algorithms, TLBO starts with a randomly generated population of candidate solutions. Then, the process of TLBO is divided into two parts namely: the ‘Teacher Phase’ and the ‘Learner Phase’. In the ‘Teacher Phase’ a teacher improves the mean level of learners. The knowledge of a class increases depending upon a good teacher because he/she brings the level of his/her learners to his/her level of knowledge. However, in actual life this is not always the case because the level of learners depends on other factors like their aptitudes and their efforts and commitment to learn. Thus, a teacher can only increase the mean level of his/her learners. In the ‘Learner Phase’ the learners improve their knowledge by interacting with other learners i.e. between themselves. A learner i interacts with another learner j randomly selected. A learner learns something new i.e. increases his knowledge if the second learner has more knowledge than him. Detailed explanations of  TLBO are given in [21,22].
Metaheuristic Optimization Methods Implementation for OPF Problem
Presented optimization methods have been employed to solve the OPF problem. The elements of search agent ui are generator active power output (except the slack generator), generator bus voltages, tap positions of regulating transformers, and reactive power outputs of shunt VAR compensators (see Eq. 6). In a system with N search agents, the position of the ith agent is defined by:



          for      and                        (43) 
General flow chart for the OPF solution using metaheuristic optimization methods is shown in Fig. 1. 
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Figure 1. Flow chart of metaheuristic optimization method based OPF solution.


OPF  SOFTWARE
Optimal Power Flow Graphical User Interface (opfgui) is an educational software tool for the optimal power flow solution using different metaheuristic optimization algorithms. The opfgui was developed in MATLAB program. 
Figure 2 shows the main window of opfgui while it operates on a Windows based computer.  Shown is an example of the execution of the program on IEEE-30 bus test system. Minimization of the fuel cost (Fcost) is selected as the objective function, and WDO algorithm is selected as the solution method. 
[image: ]
Figure 2. Main window of the OPFGUI.

As can be seen from the figure, the opfgui is organized in folowing components:
1. Panel TEST SYSTEM. It consists of one pop-up menu and two buttons. Pop-up menu enables to selection of a test sytem of seven available test systems. It is available 6-bus, 9-bus, 14-bus, 30-bus, 39-bus, 57-bus, and 118-bus standard IEEE test systems. When clicking on the button Single-Line Diagram, the selected test system will be displayed. The button System Data opens the input file of the selected test system. The input file contains branch data, bus data, generator data, transformer data, and VAR compensation data for the selected test system. The data are given in matrix form. The user can change the data and save those modifications.  
2. Panel OPTIONS. It consists of two pop-up menus. In the first pop-up menu the user perform selection of an objective function between six offered OPF objectives, such as: minimization of fuel cost, minimization of real power loss, voltage profile improvement, simultaneous minimization of fuel cost and real power loss, simultaneous minimization of fuel cost and voltage deviation, and simultaneous minimization of fuel cost, real power loss and voltage deviation. Popup-menu Method enables to choice of a metaheuristic optimization method to solution of the OPF problem. The user can select one of ten methods, such as: PSO, GSA, ABC, WDO, FFA, GWO, CS, MSA, BSA, and TLBO. When clicking on the optimization method, the panel to settings of the algorithm parameters will be opened. The user can used the default parameters by clicking on button Use default, or to enter the desired value for each of algorithm parameters.
3. After selection of appropriate options on the panels TEST SYSTEM and OPTIONS, the user can start the program by clicking the button run OPF. 
4. Panel OPF RESULTS. It manages the access to the different segments of the OPF results obtained from the program. The best results, that is objective function values in the last iteration, and convergence profile of the optimization algorithm will be displayed immediately after execution of the program (Fig. 2). Besides, the program generates other important results, also. When clicking the button Optimum Control Variables the obtained optimal values of control variables such as generator active powers, generator voltages, transformer tap settings, and shunt VAR compensations will be displayed, as shown in Fig. 3. 
[image: ]
Figure 3. Display of the results: Optimum control variables.
The buttons Bus Voltages & Powers and Branch Power Flow enables to display bus voltages and bus powers (Fig.4), as well as branch power flows and losses (Fig. 5) throughout the system under optimum control variables. 
[image: ]
Figure 4. Display of the results: Bus voltages and powers. 
[image: ]
Figure 5. Display of the results: Branch power flow and loss. 
The button Violating Constraints is used to check if operating constraints are violated (Fig. 6), as well as which operating constraints are violated. 
[image: ]
Figure 6. Display of the results: Checking of the operating constraints.
Because of the stochastic nature of metaheuristic optimization methods, a very important segment of the OPF program is statistical evaluation of the results. When the user clicks on the button Statistics, a statistical evaluation of the optimal results which are obtained using the selected optimization method in specified number of program execution will be displayed (Fig. 7). These statistical indicators are: number of program execution, the minimum value of the objective function, the maximum value of the objective function, the mean value of the objective function, the standard deviation of the objective function, and the mean time of execution of the program. On the basis of these statistical indicators, a relevant comparison of different metaheuristic optimization methods can be achieved.
[image: ]
Figure 7. Statistical evaluation of the results.
EDUCATIONAL EXAMPLE
The educational example is stated as follows: Carry out comparison and make a ranking list of the optimization methods for solution of the OPF problem on the on IEEE 30-bus test system in case minimization of fuel cost.
This section presents the OPF results obtained by using the opfgui program. The program was run thirty times for each of ten optimization methods. The parameter settings related to different optimization methods are shown in Fig. 8. In order to fair comparisons, the common parameters such as, population size (N), max iteration number (tmax), and number of runs (Nru) are same for each algorithm. Other parameter settings are adopted from the reference papers, as follows: for PSO and GSA [2], for WDO [14], for FFA [15], for GWO [17], for CS [18], for MSA [19], and for BSA [20]. 
Table 1 shows the best OPF results obtained over 30 runs of the program for each of optimization methods in case minimization of fuel cost. The statistical indicators, which are minimum, maximum, mean value and standard deviation of the OPF results, obtained by different optimization methods are shown in Table 2. Based on these indicators it is can be make an evaluation of performances of optimization methods. It can be seen from Table 2 that some methods have better some statistical indicators than other methods, and contrary. For example, the TLBO has best Min and Mean indicators, whereas the WDO algorithm has best Max and Standard Deviation indicators. To the assessment of the methods should be taken into account all statistical indicators. This can be achieved by introducing the normalized values of statistical indicators. They are calculated as ratio of the best value and corresponding value of the statistical indicators. For example, normalized value of statistical indicator Min for TLBO algorithm is 1, for PSO it calculated as 800.59/801.31=0.9991, etc. Table 3 shows the normalized values of statistical indicators. Based on these values, the optimization methods are ranked from best (WDO) to worst (GWO). This ranking applies only to the given OPF case. In case other objective functions and/or test systems, the ranking list of the optimization methods may be different. This is in accordance with the “No Free Lunch” theorem [18] which states that no single method is best in solving all optimization problems.
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Figure 8. Algorithm parameters.

Table 1 Best results obtained by different methods in case minimization of fuel cost on IEEE 30-bus test system.
	
	PSO
	GSA
	ABC
	WDO
	FFA
	GWO
	CS
	MSA
	BSA
	TLBO

	PG1
	175.07
	177.74
	172.88
	176.091
	179.05
	180.09
	176.32
	176.07
	179.16
	176.68

	PG2
	49.462
	48.974
	50.402
	47.8992
	46.235
	49.563
	48.444
	48.676
	54.926
	48.882

	PG5
	21.340
	21.356
	22.703
	21.8795
	23.076
	21.794
	23.386
	21.685
	20.240
	21.659

	PG8
	21.617
	21.054
	22.146
	20.7528
	18.417
	13.492
	19.567
	21.241
	16.762
	21.594

	PG11
	13.013
	11.426
	12.126
	13.6518
	13.911
	14.394
	12.161
	11.440
	10
	11.598

	PG13
	12
	12.001
	12
	12.1570
	12.307
	14.027
	12.675
	13.338
	12
	12

	VG1
	1.0795
	1.0837
	1.0802
	1.0797
	1.0708
	1.0580
	1.0783
	1.0802
	1.0798
	1.0827

	VG2
	1.0635
	1.0638
	1.0626
	1.0630
	1.0453
	1.0322
	1.0622
	1.0586
	1.0568
	1.0632

	VG5
	1.0328
	1.0334
	1.0279
	1.0309
	0.9990
	0.9920
	1.0207
	1.0304
	1.0225
	1.0311

	VG8
	1.0312
	1.0385
	1.0305
	1.0371
	1.0155
	1.0050
	1.0335
	1.0354
	1.0343
	1.0370

	VG11
	1.0240
	1.0368
	1.0342
	1.0442
	1.0433
	1.0480
	1.0526
	1.0563
	1.1000
	1.0999

	VG13
	1.0274
	1.0575
	1.0454
	1.0712
	1.0451
	1.0783
	1.0313
	1.0591
	1.0528
	1.0530

	T11(6-9)
	1.1000
	1.0034
	1.0681
	0.9679
	0.9887
	0.9466
	1.0386
	0.9892
	1.0571
	1.0319

	T12(6-10)
	0.9000
	0.9162
	0.9000
	0.9851
	1.0818
	0.9570
	1.0603
	0.9622
	0.9359
	0.9521

	T15(4-12)
	1.0582
	0.9883
	1.0307
	1.0026
	0.9905
	1.0126
	1.0233
	1.0185
	1.0057
	0.9725

	T36(28-27)
	0.9836
	0.9840
	0.9902
	0.9904
	0.9649
	0.9668
	1.0092
	0.9704
	1.0473
	0.9701

	QC10
	0.2704
	3.3585
	3.0746
	1.6899
	3.1447
	3.4845
	3.9461
	3.3690
	1.2924
	4.9674

	QC12
	5
	2.6878
	3.4037
	1.7675
	4.1852
	0.6017
	2.3302
	4.4888
	4.3425
	0.1561

	QC15
	0.1138
	4.4536
	4.5212
	4.0957
	4.7231
	0.9204
	3.7985
	3.7431
	5
	1.5492

	QC17
	5
	2.9463
	5
	3.4943
	1.5289
	4.2449
	3.4977
	3.0014
	5
	2.9325

	QC20
	4.9802
	3.6002
	4.8969
	2.6216
	3.0149
	1.6937
	2.2756
	4.7503
	5
	2.0318

	QC21
	5
	3.7654
	1.4867
	3.3031
	2.4308
	0.3408
	4.2539
	1.6993
	5
	4.8975

	QC23
	4.9654
	3.4680
	5
	3.7643
	3.4292
	3.5566
	1.1349
	3.8329
	1.2084
	3.3001

	QC24
	0
	2.8515
	5
	2.0499
	3.1744
	0.7235
	3.2360
	3.5581
	5
	5

	QC29
	0.0024
	2.8004
	4.1232
	0.7055
	1.5721
	2.5831
	0.2411
	1.3289
	3.7201
	2.4947

	Fcost 
	801.31
	800.73
	801.14
	 801.06
	802.97
	803.75
	801.64
	800.96
	802.36
	800.59

	Ploss
	9.1078
	9.1447
	8.8601
	9.0316
	9.5982
	9.9638
	9.1524
	9.04794
	9.6854
	9.0153

	VD
	0.3456
	0.7766
	0.4970
	0.6624
	0.2634
	0.3902
	0.4451
	0.71491
	0.6557
	0.8929


Table 2 Statistical indicators of the results obtained over 30 runs with different methods in Fcost minimization.
	
	PSO
	GSA
	ABC
	WDO
	FFA
	GWO
	CS
	MSA
	BSA
	TLBO

	Min ($/h)
	801.31
	800.73
	801.14
	801.06
	802.97
	803.75
	801.64
	800.96
	802.36
	800.59

	Max ($/h)
	824.73
	806.36
	810.45
	801.82
	837.96
	848.90
	805.43
	805.38
	808.82
	802.44

	Mean ($/h)
	807.58
	801.84
	802.78
	801.38
	811.70
	823.17
	802.74
	802.47
	804.70
	800.99

	St. Dev. ($/h)
	5.7931
	1.1656
	1.7482
	0.2063
	8.8086
	13.679
	0.8166
	1.1957
	1.5754
	0.5211



Table 3 Normalized values of statistical indicators.
	Method
	Normalized values of the statistical indicators
	Sum

	
	Min O.F.
	Max O.F.
	Mean O.F.
	St. Dev.
	

	WDO
	0.9994
	1
	0.9995
	1
	3.9989

	TLBO
	1
	0.9992
	1
	0.3959
	3.3951

	CS
	0.9987
	0.9955
	0.9978
	0.2526
	3.2446

	GSA
	0.9998
	0.9944
	0.9989
	0.1770
	3.1701

	MSA
	0.9995
	0.9956
	0.9982
	0.1725
	3.1658

	BSA
	0.9978
	0.9913
	0.9954
	0.1310
	3.1155

	ABC
	0.9993
	0.9894
	0.9978
	0.1180
	3.1045

	PSO
	0.9991
	0.9722
	0.9918
	0.0356
	2.9987

	FFA
	0.9970
	0.9569
	0.9868
	0.0234
	2.9641

	GWO
	0.9961
	0.9445
	0.9731
	0.0151
	2.9288



CONCLUSIONS
This paper presents the computer program opfgui for optimal power flow using metaheuristic optimization methods. The opfgui has been implemented in MATLAB. The purpose of this program is to use as a supporting tool during the practical lectures of the course of power system analysis. 
The program is described on an example of the OPF solution for standard IEEE 30-bus test system. The program was run thirty times for each of ten optimization methods. This example show the main steps in solving the OPF problem, including selection of test system, display single-line diagram, edit system data, selection of objective function, selection of solution method, setting the algorithm parameters, program execution, and display of the results. Moreover, the students can compare the performances of different optimization methods based on statistical evaluation of the OPF results.
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