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Abstract. We consider an age-size structured cell population model
based on the cell cycle length. The model is described by a first order
partial differential equation with initial-boundary conditions. Using the
theory of semigroups of positive operators we establish new criteria for
an asynchronous exponential growth of solutions to such equations. We
discuss the question of exponential size growth of cells. We show how
to incorporate into our description models with constant increase of size
and with target size division. We also present versions of the model
when the population is heterogeneous.

1. Introduction

The cell cycle is a series of events that take place in a cell leading to its
replication. It is regulated by a complex network of protein interactions [28].
Modern experimental techniques concerning the cell cycle [7, 15, 26, 29, 39,
40, 41, 44] allow us not only to understand processes inside single cells, but
also to build more precise cellular populations models.

Most of populations are usually heterogeneous. Thus it is important to
consider the distribution of the population according to some significant pa-
rameters such as age, size, maturity, or proliferative state of cells. Models of
this type are called structured. This type of models are usually represented
by partial differential equations with some nonlocal perturbations and spe-
cific boundary conditions. Knowing the length of cell cycle allows us to
predict the development of unicellular populations and tissues growth and
maintenance.

The aim of the paper is twofold. Firstly, to construct an age-size struc-
tured model assuming that we know the growth of individual cells and the
distribution of the cell cycle length. Secondly, to study the long-time be-
haviour of the solution of this model.

We consider a model which based on the following assumptions. The
population grows in steady-state conditions. Cells can be described by their
age a and size x alone and reproduction occurs by fission into two equal parts.
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The distribution of the cell cycle length depends only on the initial size xb of
a cell. The velocity of growth of an individual cell depends only on its size x,
i.e. x′(t) = g(x(t)). We also assume that sizes of cells and cell cycle durations
are bounded above and bounded away from zero. Moreover, we assume that
the initial daughter cell sizes are distributed in some interval which contains
the mother initial size. We formulate a mathematical model which describes
the time evolution of distribution of cellular age and size. The model consists
of a partial differential equation with an integral boundary condition and an
initial condition. The novelty of our model is that we use the distribution
of the length of the cell cycle, instead of a size dependent probability of
division usually used in size-structured models [6, 8, 9, 12, 13, 14]. Such
probability is difficult to measure experimentally in contrast to the length
of the cell cycle.

We check that the solutions of our model generate a continuous semigroup
of operators {U(t)}t≥0 on some L1 space. Under additional assumption
that g(2x) 6= 2g(x) for some x, we prove that the semigroup {U(t)}t≥0 has
asynchronous exponential growth (AEG), i.e.

U(t)u0(xb, a)→ Ceλtv(xb, a) for t→∞,

where λ is the Malthusian parameter and v is a stable initial size and age
distribution, which does not depend on the initial distribution u0. The
property AEG plays important role in the study of structured population
models [4, 8, 12, 45], because we can expect that the real process should
be close to a stationary state and then it is easy to estimate biological
parameters [21].

The proof of AEG of {U(t)}t≥0 is based on the reduction of the problem
to a stochastic (Markov) semigroup [19] by using the Perron eigenvectors
and on the theorem that a partially integral stochastic semigroup having
a unique invariant density is asymptotically stable [31]. A similar tech-
nique was applied to study other population models [5, 30, 37] and to some
piecewise deterministic Markov processes [23, 32, 38]. We note that AEG
property can be proved by using known results on compact semigroups but
it seems to be difficult to check compactness and analyze the spectrum of
the generator of our semigroup. It is interesting that even nonlinear models
of cell population (cf. [22, 34]) can be reduced to stochastic semigroups.

The last two sections contain corollaries from our results (Section 6) and
some remarks concerning other models and experimental data (Section 7).
One of the main points of these sections is what can happen when g(2x) =
2g(x) for all x ? This is an important question because it is usually assumed
that the size (volume) of a cell grows exponentially, which means that g(x) =
κx and in this case g(2x) = 2g(x). If we include in a model the assumption
that g(x) = κx, then we can obtain some paradoxical results. For example,
if the size discrepancy between newborn cells is small, then the descendants
of one cell can have the same size at the same time and the size of the
population does not grow exponentially even in steady-state conditions. Of
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course the law of exponential size growth is statistical in nature and we
can modify it by considering some random fluctuations in the growth rate.
Another problem considered in Section 7 is how to incorporate into our
description some models of the cell cycle: a constant ∆ model and a model
with target size division. Finally, we present versions of the model when the
population is heterogeneous, e.g. with an asymmetric division or with fast
and slow proliferation.

2. Model

We consider the following model of the cell cycle. Denote, respectively,
by a, xb, and x — the age, the initial size, and the size of a cell. We assume
that xb and xb are the minimum and maximum sizes of newborn cells. We
also assume that cells age with unitary velocity and grow with a velocity
g(x), i.e. if a cell has the initial size xb, then the size at age a satisfies the
equation

(1) x′(a) = g(x(a)), x(0) = xb.

We denote by πaxb the solution of (1). The length τ of the cell cycle is a ran-
dom variable which depends on the initial cell size xb; has values in some in-
terval [a(xb), a(xb)]; and has the probability density distribution q(xb, a), i.e.

the integral
∫ A

0 q(xb, a) da is the probability that τ ≤ A. According to the

definition of q, if a cell has the initial size xb, then Φ(xb, a) =
∫∞
a q(xb, r) dr

is its survival function, i.e. Φ(xb, a) is the probability that a cell will not split
before age a. We assume that if the mother cell has size x at the moment of
division, then the daughter cells have size x/2, i.e. if the initial size of the
mother cell is xb and τ = a is the length of its cell cycle, then the initial size
of the daughter cell is Sa(xb) = 1

2πaxb.
Now we collect the assumptions concerning the functions g and q used in

the paper:

(A1) g : [xb, 2xb]→ (0,∞) is a C1-function,
(A2) q : [xb, xb] × [0,∞) → [0,∞) is a continuous function and for each xb
the function a 7→ q(xb, a) is a probability density,
(A3) 0 < a(xb) < a(xb) < ∞, q(xb, a) > 0 if a ∈ (a(xb), a(xb)), and
q(xb, a) = 0 if a /∈ (a(xb), a(xb)) for each xb ∈ [xb, xb],
(A4) xb 7→ a(xb) and xb 7→ a(xb) are continuous functions,
(A5) Sa(xb)(xb) ≥ xb and Sa(xb)(xb) ≤ xb for each xb ∈ [xb, xb],
(A6) Sa(xb)(xb) < xb < Sa(xb)(xb) for each xb ∈ (xb, xb).

Fig. 1 and Fig. 2 illustrate our assumptions. Only assumption (A6) needs
some explanation. We assume that a daughter cell can have the same initial
size as the initial size of a mother cell. In Section 5 we will add an extra
assumption (A7) which will be used only to show the long-time behaviour
of the distribution of (xb, a).

Assume that a cell with initial size xb and age a splits in the time interval
of the length ∆t with probability p(xb, a)∆t + o(∆t). Since Φ(xb, a) =
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Figure 1. An example of functions xb 7→ a(xb) and xb 7→
a(xb). The function q is positive in the interior of the set Xa.

xb xb xb

Sa(xb)(xb)

Sa(xb)(xb)

Sa(xb)

Figure 2. The relation between the initial sizes of mother
and daughter cells (A5,A6).

exp
(
−
∫ a

0 p(xb, r) dr
)
, an easy computation shows that

(2)

q(xb, a) = p(xb, a) exp
(
−
∫ a

0 p(xb, r) dr
)
,

p(xb, a) =
q(xb, a)∫∞

a q(xb, r) dr

for a < a(xb). As Φ(xb, a(xb)) = 0, we have
∫ a(xb)

0 p(xb, a) da =∞.
In order to derive a master equation for the distribution of the population

with respect to xb and a we need to introduce a family of Frobenius-Perron
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operators which describe the relation between the initial sizes of mother
and daugther cells. Assume that f0(xb) is the density of initial sizes of
mother cells, and that they have the fixed length of cell cycle τ = a for some
a ∈ (a, a), where a = min a(xb) and a = max a(xb). Let xa be the minimum
initial size of cells which can split at age a. Then xa = xb if Sa(xb) ≥ xb or
xa = S−1

a (xb) otherwise. It is clear that q(xb, a) = 0 for xb < xa. If f1(xb)
is the density of initial sizes of daughter cells then

(3)

∫ Sa(y)

Sa(xa)
f1(xb) dxb =

∫ y

xa

f0(xb) dxb for y ≥ xa

or, equivalently,

(4)

∫ x

Sa(xa)
f1(xb) dxb =

∫ S−1
a (x)

xa

f0(xb) dxb for x ≥ Sa(xa).

From (4) it follows that

(5) f1(xb) =
d

dxb

(
S−1
a (xb)

)
f0

(
S−1
a (xb)

)
1[Sa(xa),xb](xb).

Using the formula S−1
a (xb) = π−a(2xb) we check that

(6)
d

dxb

(
S−1
a (xb)

)
=

2g(π−a(2xb))

g(2xb)
.

In order to do it we introduce two functions:

ϕ(xb, a) = π−a(2xb) and ψ(xb, a) =
∂ϕ

∂xb
(xb, a).

From ϕ(xb, 0) = 2xb we obtain ψ(xb, 0) = 2. Since ∂ϕ
∂a (xb, a) = −g(ϕ(xb, a)),

we have

∂ψ

∂a
(xb, a) =

∂

∂a

∂ϕ

∂xb
(xb, a) =

∂

∂xb

∂ϕ

∂a
(xb, a)

=
∂

∂xb

(
− g(ϕ(xb, a))

)
= −g′(ϕ(xb, a))ψ(xb, a).

We have received the linear equation ∂ψ/∂a = −g′(ϕ(xb, a))ψ with the
initial condition ψ(xb, 0) = 2 which has the solution

(7) ψ(xb, a) = 2 exp

(
−
∫ a

0
g′(ϕ(xb, r)) dr

)
.

Substituting y = ϕ(xb, r) we receive dy/dr = −g(y) and

(8) ψ(xb, a) = 2 exp

(∫ π−a(2xb)

2xb

g′(y)

g(y)
dy

)
=

2g(π−a(2xb))

g(2xb)
.

Finally we introduce a family of operators {Pa} given by the formula

(9) Paf(xb) =
2g(π−a(2xb))

g(2xb)
f(π−a(2xb))1[Sa(xa),xb](xb).
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The operators Pa are well defined for a ∈ (a, a) but we extend the definition
of Pa setting Paf ≡ 0 for others a’s.

For each a the operator Pa : L1[xb, xb]→ L1[xb, xb] is linear and positive,
i.e. if f ≥ 0, then Paf ≥ 0. Moreover ‖Paf‖L1 ≤ ‖f‖L1 . The adjoint
operator of Pa acts on the space L∞[xb, xb] and it is given by P ∗a f(xb) =
f(Sa(xb)) = f(1

2πaxb) for xb ≥ xa and P ∗a f(xb) = 0 for xb < xa.
We denote by u(t, xb, a) the number of individuals in a population having

initial size xb and age a at time t. Then, according to our assumptions
concerning the model, p(xb, a)u(t, xb, a)∆t is the number of cells of initial
size xb and age a which split in a time interval of the length ∆t. It means
that 2∆t

∫∞
0 Pa(p(xb, a)u(t, xb, a)) da is the number of new born cells in this

time interval. It should be noted that the operator Pa in the last integral
acts on the function ψ(xb) = p(xb, a)u(t, xb, a) at fixed values t and a. If
there are no limitations concerning the growth of the population and all cells
split then the function u satisfies the following initial-boundary problem:

∂u

∂t
(t, xb, a) +

∂u

∂a
(t, xb, a) = −p(xb, a)u(t, xb, a), a < a(xb),(10)

u(t, xb, 0) = 2

∫ ∞
0

Pa(p(xb, a)u(t, xb, a)) da,(11)

u(0, xb, a) = u0(xb, a).(12)

We assume that u0 is a nonnegative measurable function such that

(13)

∫ xb

xb

∫ ∞
0

u0(xb, a)Ψ(xb, a) da dxb <∞,

where Ψ(xb, a) = exp
( ∫ a

0 p(xb, ā) dā
)
. In (13) we have assumed that the

initial condition u0 is integrable with weight Ψ(xb, a) = Φ(xb, a)−1 because
Φ(xb, a) is a fraction of cells which will survive beyond age a. Since a(xb) is
the maximum age of a cell with initial size xb, it is reasonable to consider
variables xb and a only from the set

X = {(xb, a) : xb ≤ xb ≤ xb, 0 ≤ a ≤ a(xb)}.

Though we consider a ≤ a(xb), it will be convenient to keep the notation of
integral

∫∞
0 with respect to a as in formula (11) assuming that u(t, xb, a) = 0

for a > a(xb).
Most of experiments concerning microorganisms are conducted in chemo-

stats, where cells can be grown in a physiological steady state under constant
environmental conditions. Then cells are removed from the system with the
outflow with rate D. In this case we add to the right-hand side of equation
(10) the term −Du(t, xb, a). Similarly, if cells die with rate d(t, xb, a), then
we add to the right-hand side of (10) the term −d(t, xb, a)u(t, xb, a). One
can consider more advanced models with cellural competition, but in this
case all functions q, g, and d can depend also on the total number of cells
and we do not investigate such models.
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3. A semigroup approach

It is convenient to substitute z(t, xb, a) = u(t, xb, a)Ψ(xb, a) and z0(xb, a) =
u0(xb, a)Ψ(xb, a) in (10)–(12). Then the system (10)–(12) takes the form

∂z

∂t
(t, xb, a) +

∂z

∂a
(t, xb, a) = 0, a < a(xb),(14)

z(t, xb, 0) = 2

∫ ∞
0

Pa(q(xb, a)z(t, xb, a)) da,(15)

z(0, xb, a) = z0(xb, a).(16)

Observe that z0 is an integrable function.
The general solution of (14) and (16) is given by

(17) z(t, xb, a) =

{
z0(xb, a− t), a ≥ t,
z(t− a, xb, 0), a < t.

Both above formulae for z(t, xb, a) coincide for a = t if z(0, xb, 0) = z0(xb, 0).
Now we substitute (17) to (15) splitting the integral

∫∞
0 into two integrals∫ t

0 and
∫∞
t . We obtain

(18) z(t, xb, 0) = 2

∫ t

0
Pa(q(xb, a)z(t− a, xb, 0)) da+ F (t, xb),

where

(19) F (t, xb) = 2

∫ ∞
t

Pa
(
q(xb, a)z0(xb, a− t)

)
da.

The function F (t, xb) is known because it depends only on z0.
If we prove the existence and uniqueness of the solution of integral equa-

tion (18), then according to (17) the same holds for the problem (14)–(16).
We will write z(t)(xb) = z(t, xb, 0) and treat z as a function with values in
the space L1[xb, xb], i.e. z describes the time evolution of density distribu-
tion of xb. Let us fix T > 0. Let F be the space of continuous functions from
the interval [0, T ] with values in the space L1[xb, xb]. Then F is a Banach
space with norm

‖z‖0 = max
0≤t≤T

‖z(t)‖L1 , L1 = L1[xb, xb].

We will prove the existence and uniqueness of solution of (18) using the
Banach contraction principle, but we will use the Bielecki norm

‖z‖λ = max
0≤t≤T

e−λt‖z(t)‖L1

with properly chosen λ > 0. The norms ‖ · ‖0 and ‖ · ‖λ are equivalent but
the second one is more convenient.

Proposition 1. For each T > 0 equation (18) has a unique solution z ∈ F .
Moreover if z0 ≥ 0, then z ≥ 0.
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Proof. As q is a bounded function, there is an M such that 0 ≤ q(xb, a) ≤M
for all xb and a. Let F (t)(xb) := F (t, xb). We check that F ∈ F . Indeed,
from (19) we have∫ xb

xb

|F (t, xb)| dxb ≤ 2M

∫ xb

xb

∫ ∞
t

Pa
(
|z0(xb, a− t)|

)
da dxb

= 2M

∫ ∞
t

∫ xb

xb

Pa
(
|z0(xb, a− t)|

)
dxb da

≤ 2M

∫ ∞
t

∫ xb

xb

|z0(xb, a− t)| dxb da <∞,

and consequently F (t) ∈ L1[xb, xb]. Continuity of F as a function with
values in L1 easily follows from the fact that we can write F in the following
form

(20) F (t)(xb) =

∫ ∞
t

j(xb, a)z0(π−a(2xb), a− t) da,

where j is a continuous bounded function and z0 is an integrable function.
Now we define the operator P by the formula

Pz(t)(xb) = 2

∫ t

0
Pa(q(xb, a)z(t− a)(xb)) da+ F (t)(xb).

We prove that P : F → F and that P is a contraction in the space F
equipped with the norm ‖ · ‖λ for some λ. If z ∈ F , then we check that
Pz ∈ F by using similar arguments as for the function F (t). As in the proof
that F (t) ∈ L1[xb, xb], we show the inequality

(21) ‖Pz(t)− Pv(t)‖L1 ≤ 2M

∫ t

0
‖z(s)− v(s)‖L1 ds.

Set λ = 4M and w(t) = z(t) − v(t). Then ‖w(s)‖L1 ≤ eλs‖w‖λ and from
(21) we obtain

‖Pw‖λ = max
0≤t≤T

e−λt‖Pw(t)‖L1 ≤ 2M max
0≤t≤T

e−λt
∫ t

0
‖w(s)‖L1 ds

≤ 2M max
0≤t≤T

e−λt
∫ t

0
eλs‖w‖λ ds = 2M max

0≤t≤T
e−λt

eλt − 1

λ
‖w‖λ

≤ 1

2
‖w‖λ.

Thus P is a contraction, which proves that equation (18) has a unique
solution z ∈ F . Let F+ = {z ∈ F : z(t) ≥ 0}. If z0 ≥ 0, then F ∈ F+ and
we have P(F+) ⊂ F+. Consequently, z ∈ F+. �

It is worth to mention that the solution of (18) satisfies the initial condi-
tion

z(0)(xb) = 2

∫ ∞
0

Pa
(
q(xb, a)z0(xb, a)

)
da.
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Now we return to study properties of the solutions of (14)–(16). Let B(X)
be the σ-algebra of Borel subsets of X, ` be the Lebesgue measure on X, and
E be the space L1(X,B(X), `). By ‖ · ‖E we denote the norm in E. We will
consider the solutions of (14)–(16) as continuous functions z : [0,∞) → E
defined by z(t)(xb, a) = z(t, xb, a).

We first check that z(t) ∈ E for each t ≥ 0 and the existence of a con-
tinuous function C : [0,∞) → R independent on z0 such that ‖z(t)‖E ≤
C(t)‖z0‖E for t ≥ 0. Indeed from (17) it follows that

(22) ‖z(t)‖E ≤
∫ t

0

∫ xb

xb

|z(s, xb, 0)| dxb ds+ ‖z0‖E .

Let ϕ(s) =
∫ xb
xb
|z(s, xb, 0)| dxb. According to (18) we have

ϕ(t) ≤ 2M

∫ t

0
ϕ(s) ds+ 2M‖z0‖E .

Using Gronwall’s inequality we obtain

(23) ϕ(t) ≤ 2Me
∫ t
0 2Msds‖z0‖E ≤ 2MeMt2‖z0‖E .

We conclude from (22) and (23) that

(24) ‖z(t)‖E ≤
∫ t

0
ϕ(s) ds+ ‖z0‖E ≤

∫ t

0
2MeMs2‖z0‖E ds+ ‖z0‖E ,

which gives ‖z(t)‖E ≤ C(t)‖z0‖E with C(t) =
∫ t

0 2MeMs2 ds + 1. Thus the
maps T (t) defined by T (t)z0 = z(t) are bounded linear operators on E.

Now we check that {T (t)}t≥0 is a C0-semigroup of positive operators on
the space E. First we observe that if we set

(25) z(t, xb, 0) = z0(xb,−t) for t ≤ 0,

then equation (17) can be written with a single expression

(26) z(t, xb, a) = z(t− a, xb, 0)

and the function (t, xb) 7→ z(t, xb, 0) satisfies the equation

(27) z(t, xb, 0) = 2

∫ ∞
0

Pa
(
q(xb, a)z(t− a, xb, 0)

)
da.

We check that T (s2)T (s1)z0 = T (s1 + s2)z0 for s1, s2 ≥ 0. Let z̄0(xb, a) =
T (s1)z0(xb, a) and let z̄ be the solution of (14)–(15) with the initial condition
z̄(0, xb, a) = z̄0(xb, a). Then

z̄(t, xb, 0)
(25)
= z̄0(xb,−t) = z(s1, xb,−t)

(26)
= z(s1 + t, xb, 0) for t ≤ 0.

Since the function q and the operator Pa do not depend on t, we conclude
that z̄(t, xb, 0) = z(s1 + t, xb, 0) for all t and xb. Finally (26) implies that
z̄(t, xb, a) = z(s1 + t, xb, a) for all t, xb, and a, which gives T (s2)T (s1)z0 =
T (s1 + s2)z0.

It remains to prove that limt↓0 T (t)z0 → z0. It is enough to check this
condition for continuous functions with compact supports because the set of
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these functions is dense in E and there is some C > 0 such that ‖T (t)z0‖E ≤
C‖z0‖E for z0 ∈ E and t ≤ 1. Now, we write the function T (t)z0 as a
sum of two functions z1(t)(xb, a) = 1[t,∞)(a)z(t, xb, a) and z2(t)(xb, a) =
1[0,t)(a)z(t, xb, a) and we use the formula (17). Since z0 is a continuous
function with a compact support and

z1(t)(xb, a) = 1[t,∞)(a)z0(xb, a− t),
the functions z1(t) converge uniformly to z0 on each set {(xb, a) ∈ X : a ≥ ε},
ε > 0, as t ↓ 0. As the functions z0 and z1(t), t ≤ ε, are uniformly bounded
and vanish outside the same compact set, we have z1(t)→ z0 in E as t ↓ 0.
Since

‖z2(t)‖E ≤
∫ t

0

∫ xb

xb

|z(t− a, xb, 0)| dxb da,

from Proposition 1 we conclude that limt↓0 ‖z2(t)‖E = 0. We have thus
proved the following theorem.

Theorem 1. The family {T (t)}t≥0 is a C0-semigroup of positive operators
on the space E.

The operator

Af(xb, a) = −∂f
∂a

(xb, a)

with the domain

D(A) =
{
f ∈ E, ∂f

∂a
∈ E, f(xb, 0) = 2

∫ ∞
0

Pa(q(xb, a)f(xb, a)) da
}

is the infinitesimal generator of the semigrup {T (t)}t≥0. Let z(t) = T (t)z0.
We recall that if z0 ∈ D(A), then z(t) ∈ D(A), z′(t) exists and z′(t) = Az(t).

Remark 1. Till now we have considered the solution of (14)–(16) as a con-
tinuous function z from [0,∞) to E. Let us assume that z0 is a continuous

bounded function and the derivative
∂z0

∂a
exists and it is also a continuous

bounded function. Additionally we assume that

(28) z0(xb, 0) = 2

∫ ∞
0

Pa
(
q(xb, a)z0(xb, a)

)
da.

Then the problem (14)–(16) has a unique classical solution. By the classi-
cal solution we understand a continuous function z, which has continuous

derivatives
∂z

∂a
and

∂z

∂t
outside the plane a = t, z satisfies (14) outside the

plane a = t, and z satisfies conditions (15), (16). In order to prove this
statement it is sufficient to prove that the solution of equation (18) is a
continuous function with values in the space C[xb, xb] and has the derivative
z′(t) which has also values in this space. In the proof of this fact we use the
same method as in the proof of Proposition 1. First we obtain that z(t) is a
continuous function with values in the space C[xb, xb]. Then we check that
the function v(t)(xb) = z′(t)(xb) satisfies some integral equation similar to
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(18), which has also a continuous solution. In the rest of the paper we will
only study generalized solutions given by z(t) = T (t)z0, z0 ∈ E.

4. Eigenvectors of A and A∗

Our aim is to study the long-time behaviour of the semigroup {T (t)}t≥0.
The strategy is the following. First we will check that the adjoint opera-
tor A∗ of A has a positive eigenvector v = v(xb, a) corresponding to some
positive eigenvalue λ. Then we introduce the semigroup {P (t)}t≥0 given
by P (t)f = e−λtT (t)f defined on the space E1 = L1(X,B(X), µ) with the
measure µ given by dµ = v d`. Then we prove that semigroup {P (t)}t≥0 has
an invariant density fi and limt→∞ P (t)f = fi for each density f . Finally,
we translate this result in terms of the semigroup {T (t)}t≥0.

We first find the adjoint operator ofA. Denote byH the operatorH : E →
L1[xb, xb] defined by (Hf)(xb) = 2

∫∞
0 Pa(q(xb, a)f(xb, a)) da. Then the op-

erator H∗ : L∞[xb, xb]→ E∗ is given by

(29) (H∗f)(xb, a) = 2q(xb, a)P ∗a f(xb) = 2q(xb, a)f(Sa(xb)).

It should be noted that we omit in the last product the factor 1[xa,xb](xb)
because q(xb, a) = 0 for xb ≤ xa.

We check that

D(A∗) = {f ∈ E∗, ∂f

∂a
∈ E∗, f(xb, a(xb)) = 0},

and

(30) A∗f =
∂f

∂a
+H∗f̃ , f̃(xb) = f(xb, 0).

Indeed, if f ∈ D(A∗) and ϕ ∈ D(A) then

〈A∗f, ϕ〉 = 〈f,Aϕ〉 = −
∫ xb

xb

∫ a(xb)

0
f(xb, a)

∂ϕ

∂a
(xb, a) da dxb

=

∫ xb

xb

f(xb, 0)ϕ(xb, 0) dxb +
〈∂f
∂a
, ϕ
〉

=

∫ xb

xb

f(xb, 0)(Hϕ)(xb) dxb +
〈∂f
∂a
, ϕ
〉

= 〈H∗f̃ , ϕ〉+
〈∂f
∂a
, ϕ
〉
.

Now we will check that the operator A∗ has a positive eigenvector v for
some eigenvalue λ > 0. Let A∗v = λv. From (30) it follows that

(31) λv − ∂v

∂a
= H∗ṽ.

The problem is that the adjoint semigroup {T ∗(t)}t≥0 is not continuous.
Instead of this semigroup we may use the sun dual semigroup, but it will be
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more convenient to consider a little modification of the sun dual semigroup.
Consider a semigroup {T�(t)}t≥0 defined on the space

C̃(X) = {f ∈ C(X) : f(xb, a(xb)) = 0}

with the infinitesimal generator A� with the domain

D(A�) = {f ∈ C̃(X) :
∂f

∂a
∈ C(X)}

and given by the same formula as A∗. Let A�0 f = ∂f
∂a , D(A�0 ) = D(A�).

Then A�0 is the infinitesimal generator of a C0-semigroup {T�0 (t)}t≥0 on the

space C̃(X) given by the formula

T�0 (t)f(xb, a) =

{
f(xb, a+ t) for a ≤ a(xb)− t,
0 for a > a(xb)− t.

Let H� : C([xb, xb])→ C̃(X) be given by (H�f)(xb, a) = 2q(xb, a)f(Sa(xb)).

Then A�f = A�0 f +H�f̃ for f ∈ D(A�).

Denote by R(λ,A�0 ) the resolvent of the operator A�0 . If v ∈ C̃(X)
satisfies the equation

(32) v = R(λ,A�0 )H�ṽ,

then v also satisfies (31). Since R(λ,A�0 )f =
∫∞

0 e−λsT�0 (s)f ds we find that

R(λ,A�0 )f(xb, a) =

∫ ∞
a

f(xb, s)e
−λ(s−a) ds.

Now (32) can be written as the following integral equation

(33) v(xb, a) =

∫ ∞
a

(H�ṽ)(xb, s)e
−λ(s−a) ds.

Observe that in order to find v(xb, a) it is enough to solve (33) for a = 0.
Equation (33) for a = 0 takes the form

(34) v(xb, 0) =

∫ ∞
0

(H�ṽ)(xb, s)e
−λs ds.

In the above formula we replace s by a and apply (29). Then

v(xb, 0) =

∫ a(xb)

a(xb)
2e−λaq(xb, a)v(Sa(xb), 0) da.

Let

(35) Kλṽ(xb) =

∫ a(xb)

a(xb)
2e−λaq(xb, a)ṽ(Sa(xb)) da.

We want to prove that there exists a constant λ > 0 and a positive
function ṽ ∈ C[xb, xb] such that Kλṽ = ṽ. We split the proof of this fact
into two lemmae.
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Lemma 1. For each λ ≥ 0 the spectral radius r(Kλ) of Kλ is a positive,
isolated and simple eigenvalue of Kλ associated with a positive eigenfunction
ṽλ ∈ C[xb, xb].

Proof. In order to check this property we write the operator Kλ in the
standard integral form. We substitute y(a) = Sa(xb) in (35). Then da =
2 dy/g(2y) and we find that the operator Kλ can be written in the form

Kλṽ(xb) =

∫ xb

xb

kλ(xb, y)ṽ(y) dy, kλ(xb, y) =
4e−λa(y;xb)q(xb, a(y;xb))

g(2y)
,

where

a(y;xb) =

∫ 2y

xb

dr

g(r)
.

The expression a(y;xb) has the following interpretation. If xb is the initial
size of a mother cell and it splits at the age a(y;xb), then y is the initial size
of its daughter cells. Since the function g is continuous and positive, the
kernel kλ is continuous and nonnegative. Moreover, kλ(xb, xb) > 0 for all
xb ∈ (xb, xb). Indeed, kλ(xb, xb) > 0 if and only if q(xb, a(xb;xb)) > 0. The
last inequality follows from (A6) (see Fig. 2). This implies that the spectral
radius r(Kλ) is a positive, isolated and simple eigenvalue of Kλ associated
with an eigenfunction ṽλ ∈ C[xb, xb] such that ṽλ(xb) > 0 for xb ∈ (xb, xb)
(see comments after the proof of Theorem 7.4 of [2]). Observe that ṽλ is also
positive at xb and xb, because ṽλ(y) > 0 for y ∈ (xb, xb) and the functions
y 7→ q(xb, a(y;xb)) and y 7→ q(xb, a(y;xb)) are positive on some nontrivial
intervals. �

Lemma 2. There exists λ > 0 such that r(Kλ) = 1.

Proof. Since kλ1 ≥ kλ2 for λ1 ≤ λ2, the function λ 7→ r(Kλ) is nonincreasing.
We check that this function is also continuous. Indeed, let Tλ1,λ2 = Kλ1 −
Kλ2 . Then

r(Kλ1) = r(Kλ2 + Tλ1,λ2) ≤ r(Kλ2) + r(Tλ1,λ2)

≤ r(Kλ2) + ‖Tλ1,λ2‖.

Since
∫
q(xb, a) da = 1 and e−λ1a − e−λ2a ≤ a(λ2 − λ1), we have

‖Tλ1,λ2‖ ≤ max
xb≤xb≤xb

∫ a(xb)

a(xb)
2
(
e−λ1a − e−λ2a

)
q(xb, a) da ≤ 2a(λ2 − λ1).

Thus r(Kλ2) ≤ r(Kλ1) ≤ r(Kλ2) + 2a(λ2− λ1), which proves the continuity
of the function λ 7→ r(Kλ). Observe that, r(K0) = 2, because ‖K0‖ = 2 and

K01[xb,xb] = 2 · 1[xb,xb]. Now, let λ̄ > 0 be a constant such that e−λ̄a ≤ 1/4.
Then

Kλ̄ṽ(xb) ≤
1

2

∫ a(xb)

a(xb)
q(xb, a)ṽ(Sa(xb)) da ≤

1

2
‖ṽ‖ for ṽ ≥ 0,
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and consequently r(Kλ̄) ≤ ‖Kλ̄‖ ≤ 1
2 . From the continuity of the function

λ 7→ r(Kλ) it follows that there exists a λ ∈ (0, λ̄) such that r(Kλ) = 1. �

Now we apply formula (33) to find a nonnegative eigenfunction v(xb, a)
of the operator A∗.

Proposition 2. The operator A∗ has an eigenvalue λ > 0 and a corre-
sponding eigenfunction v such that

(36) c1Φ(xb, a) ≤ v(xb, a) ≤ c2Φ(xb, a)

for some positive constants c1 and c2 independent of xb and a.

Proof. According to Lemma 2 there exists λ > 0 such that r(Kλ) = 1. Let
ṽλ be a positive fixed point of Kλ. Then from formulae (29) and (33) it
follows that

v(xb, a) =

∫ ∞
a

2q(xb, s)ṽλ(Ss(xb))e
−λ(s−a) ds

is the eigenfunction of the operator A∗ corresponding to λ. Since the func-
tions ṽλ(Ss(xb)) and e−λ(s−a) are bounded above and bounded away from
zero, there exist positive constants c1 and c2 such that

c1

∫ ∞
a

q(xb, s) ds ≤ v(xb, a) ≤ c2

∫ ∞
a

q(xb, s) ds

and (36) follows from the definition of Φ. �

From now on λ denotes the eigenvalue from Proposition 2. If a func-
tion fi(xb, a) is an eigenvector of A corresponding to λ, then the function
z̃(t, xb, a) = eλtfi(xb, a) is a solution of (14)–(16). Substituting z̃ = eλtfi
into (14)–(15) we obtain

λfi(xb, a) +
∂fi
∂a

(xb, a) = 0, fi(xb, 0) =

∫ ∞
0

2Pa(q(xb, a)fi(xb, a)) da.

Thus

(37) fi(xb, a) = e−λafi(xb, 0) for a ≤ a(xb)

and the function xb 7→ fi(xb, 0) satisfies the following integral equation

(38) fi(xb, 0) =

∫ ∞
0

2e−λaPa
(
q(xb, a)fi(xb, 0)

)
da.

Let J be the integral operator on L1[xb, xb] given by

Jf(xb) =

∫ ∞
0

2e−λaPa
(
q(xb, a)f(xb)

)
da.

The operators J and Kλ are adjoint, i.e.

(39)

∫ xb

xb

g(xb)Jf(xb) dxb =

∫ xb

xb

Kλg(xb)f(xb) dxb
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for f ∈ L1[xb, xb], g ∈ L∞[xb, xb]. Since

Pa
(
q(xb, a)f(xb)

)
=

d

dxb

(
S−1
a (xb)

)
q
(
S−1
a (xb), a

)
f
(
S−1
a (xb)

)
,

the substitution y = S−1
a (xb) gives

(40) Jf(xb) =

∫ 2xb

xb

2e−λa(xb;y)q(y, a(xb; y))f(y) dy.

From the above formula it follows that J is an integral operator with a
continuous kernel. In particular Jf ∈ C[xb, xb] for f ∈ L1[xb, xb] and the
operator J restricted to C[xb, xb] is a continuous and positive.

Lemma 3. There exists f̃i ∈ C[xb, xb] such that Jf̃i = f̃i and f̃i(xb) > 0 for

xb ∈ (xb, xb). The function f̃i is the unique, up to a multiplicative constant,
fixed point of J .

Proof. Using the same arguments as in Lemma 1 we prove that there ex-
ists an eigenfunction f̃i ∈ C[xb, xb] of J such that f̃i(xb) > 0 for xb ∈
(xb, xb). This eigenfunction is indeed a fixed point of J because 〈Jf̃i, ṽλ〉 =

〈f̃i,Kλṽλ〉 = 〈f̃i, ṽλ〉. Since r = 1 is an isolated and simple eigenvalue of J ,

the function f̃i is the unique, up to a multiplicative constant, fixed point
of J . �

Remark 2. It is generally not true that f̃i(xb) > 0 and f̃i(xb) > 0. If we
assume additionally that Sa(xb)(xb) = xb for xb ∈ [xb, xb + δ], δ > 0, then

f̃i(xb) > 0 because a mother cell with the initial size xb ∈ [xb, xb + δ] can
have a daughter cell with the initial size xb. Analogously, if Sa(xb)(xb) = xb
for xb ∈ [xb − δ, xb], δ > 0, then f̃i(xb) > 0.

From Lemma 3 and from formulae (37) and (38) we have

Proposition 3. Let f̃i be the function from Lemma 3. If fi(xb, a) =

e−λaf̃i(xb), then Afi = λfi. The function fi is the unique, up to a mul-
tiplicative constant, eigenfunction of A corresponding to the eigenvalue λ.

5. Asymptotic behaviour

We precede the formulation of the main result of this section by some
definitions and some general theorem concerning asymptotic stability of sto-
chastic semigroups.

Let a triple (X,Σ,m) be a σ-finite measure space. Denote by D the subset
of the space L1 = L1(X,Σ,m) which contains all densities

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.

A C0-semigroup {P (t)}t≥0 of linear operators on L1 is called stochastic semi-
group or Markov semigroup if P (t)(D) ⊆ D for each t ≥ 0.
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A stochastic semigroup {P (t)}t≥0 is asymptotically stable if there exists a
density fi such that

(41) lim
t→∞
‖P (t)f − fi‖ = 0 for f ∈ D.

From (41) it follows immediately that fi is invariant with respect to {P (t)}t≥0,
i.e. P (t)fi = fi for each t ≥ 0.

A stochastic semigroup {P (t)}t≥0 is called partially integral if there exists
a measurable function k : (0,∞) × X × X → [0,∞), called a kernel, such
that

(42) P (t)f(x) ≥
∫
X
k(t, x, y)f(y)m(dy)

for every density f and∫
X

∫
X
k(t, x, y)m(dx)m(dy) > 0

for some t > 0. The following result was proved in [31].

Theorem 2. Let {P (t)}t≥0 be a partially integral stochastic semigroup. As-
sume that the semigroup {P (t)}t≥0 has a unique invariant density fi. If
fi > 0 a.e., then the semigroup {P (t)}t≥0 is asymptotically stable.

New results concerning positive operators on Banach lattices similar in
spirit to Theorem 2 may be found in [11, 25].

Investigation of the long-time behaviour of the semigroup {T (t)}t≥0 can
be reduced to study asymptotic stability of some stochastic semigroup. Let λ
and v be the eigenvalue and the eigenfunction from Proposition 2. We define
a semigroup {P (t)}t≥0 as the extension of semigroup {e−λtT (t)}t≥0 to the
space E1 = L1(X,B(X), µ) with measure µ given by dµ = v d`. Observe that
we can indeed extend the semigroup {e−λtT (t)}t≥0 to a stochastic semigroup
on E1. Since A∗v = λv, we have T ∗(t)v = eλtv. If f ∈ E then P (t)f =
e−λtT (t)f and∫∫

X

P (t)f(xb, a)µ(dxb, da) =

∫∫
X

e−λtT (t)f(xb, a)v(xb, a) dxb da

=

∫∫
X

f(xb, a)e−λtT ∗(t)v(xb, a) dxb da =

∫∫
X

f(xb, a)v(xb, a) dxb da

=

∫∫
X

f(xb, a)µ(dxb, da).

Since the function v is bounded and positive almost everywhere, E is dense
in E1. If f ∈ E1, we choose a sequence (fn) from E such that fn → f in E1

and define P (t)f = lim
n→∞

P (t)fn in E1. Since the operators P (t) are positive

and preserve the integral with respect to µ, this extension is uniquely defined
and {P (t)}t≥0 is a stochastic semigroup on E1.
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In order to prove asymptotic stability of the semigroup {P (t)}t≥0 we need
to add an additional assumption concerning function g:
(A7) there exists x ∈ (xb, xb) such that g(2x) 6= 2g(x).

We precede the formulation of a theorem on asymptotic stability of {P (t)}t≥0

by the following lemma.

Lemma 4. Assume (A1)–(A7). Then the semigroup {T (t)}t≥0 is partially
integral.

Proof. Observe that the operator T (t) has the kernel k(t, x, y) if and only
if the operator T ∗(t) has the kernel k∗(t, x, y) = k(t, y, x). Thus, in order
to prove that the semigroup {T (t)}t≥0 is partially integral it is sufficient to
check that the semigroup {T�(t)}t≥0 has the similar property. The semi-
group {T�(t)}t≥0 is given by the Dyson-Phillips expansion

(43) T�(t)f =
∞∑
n=0

T�n (t)f,

where

(44) T�n+1f(t) =

∫ t

0
T�0 (τ)HT�n (t− τ)f dτ, n ≥ 0,

where (Hf)(xb, a) = 2q(xb, a)f(Sa(xb), 0) and T�0 (t)f(xb, a) = f(xb, a + t).
Since HT�0 (t− τ)f(xb, a) = 2q(xb, a)f(Sa(xb), t− τ), we have

T�1 f(t)(xb, a) =

∫ t

0
T�0 (τ)HT�0 (t− τ)f(xb, a) dτ

=

∫ t

0
2q(xb, a+ τ)f(Sa+τ (xb), t− τ) dτ.

Analogously, since

T�1 (t− τ1)f(xb, a) =

∫ t−τ1

0
2q(xb, a+ τ)f(Sa+τ (xb), t− τ1 − τ) dτ,

we have

HT�1 (t−τ1)f(xb, a) = 2q(xb, a)

∫ t−τ1

0
2q(Sa(xb), τ)f(Sτ (Sa(xb)), t−τ1−τ) dτ,

and finally

T�2 f(t)(xb, a) =

∫ t

0
T�1 (τ1)HT�1 (t− τ1)f(xb, a) dτ1

=

∫ t

0
2q(xb, a+ τ1)

∫ t−τ1

0
2q(Sa+τ1(xb), τ)

· f(Sτ (Sa+τ1(xb)), t− τ1 − τ) dτ dτ1.
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We substitute in the last integral x̃ = Sτ (Sa+τ1(xb)) and ã = t − τ1 − τ .
Then

∂x̃

∂τ
=

1

2
g
(
Sτ (Sa+τ1(xb))

)
,

∂x̃

∂τ1
=

1

2

g(πτSa+τ1(xb))

g(Sa+τ1(xb))
· 1

2
g
(
Sa+τ1(xb)

)
=

1

4
g(πτSa+τ1(xb)),

∂ã

∂τ
=

∂ã

∂τ1
= −1.

Let Jτ,τ1 be the Jacobian matrix of the transformation (xb, a) 7→ (x̃, ã).
Then

detJτ,τ1(xb, a) =
1

4
g(πτSa+τ1(xb))−

1

2
g
(
Sτ (Sa+τ1(xb))

)
.

Let x ∈ (xb, xb) be such that g(2x) 6= 2g(x). We find x1
b ∈ (xb, xb) and τ0 > 0

such that q(x1
b , τ

0) > 0 and Sτ0(x1
b) = x, i.e. x and x1

b are the initial sizes of
daughter and mother cells. Next we find x0

b ∈ (xb, xb), a
0 > 0, and τ0

1 > 0
such that q(x0

b , a
0 +τ0

1 ) > 0 and Sa0+τ01
(x0
b) = x1

b . We also choose t > 0 such

that the point (x, t−τ0−τ0
1 ) lies in the interior of the set X. Then we find a

neighbourhood U of the point (τ0, τ0
1 , x

0
b , a

0) such that detJτ,τ1(xb, a) 6= 0,
q(xb, a + τ1) > 0, q(Sa+τ1(xb), τ) > 0, (Sτ (Sa+τ1(xb)), t − τ − τ1) ∈ X for
(τ, τ1, xb, a) ∈ U . Thus there exist neighbourhoods V1 and V2 of the points
(x0
b , a

0) and (x, t− τ0
1 − τ0) and there exist ε > 0 and a nonnegative kernel

k(t, xb, a, x̃, ã) such that k(t, xb, a, x̃, ã) ≥ ε for (xb, a, x̃, ã) ∈ V1 × V2 and

T�2 f(t)(xb, a) ≥
∫∫
X

k(t, xb, a, x̃, ã)f(x̃, ã) dx̃ dã.

From (43) it follows that the semigroups {T�(t)}t≥0 and {T (t)}t≥0 are par-
tially integral. �

Theorem 3. Assume (A1)–(A7). Then the semigroup {P (t)}t≥0 is asymp-
totically stable. The eigenfunction of A from Proposition 3 is the invariant
density of {P (t)}t≥0.

Proof. We need to check that the semigroup {P (t)}t≥0 satisfies assump-
tions of Theorem 2. Since the semigroup {T (t)}t≥0 is partially integral
and P (t)f = e−λtT (t)f for f ∈ E, the same property has the semigroup
{P (t)}t≥0. According to Proposition 3 there exists a function fi such that
Afi = λfi and fi > 0 a.e. As µ(X) < ∞ and fi is bounded, fi is in-
tegrable with respect to µ. Since the eigenfunction is determined up to a
multiplicative constant, we may assume that

∫
X fi dµ = 1. Also according to

Proposition 3 the function fi is the unique invariant density of {P (t)}t≥0. �
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Condition of asymptotic stability of the semigroup {P (t)}t≥0 can be writ-
ten in the following equivalent form: for every f ∈ E1 we have

(45) lim
t→∞

P (t)f = fi

∫∫
X

f(xb, a)v(xb, a) dxb da in E1.

We can extend the semigroup {T (t)}t≥0 to a C0-semigroup on E1 setting
T (t)f = eλtP (t)f for f ∈ E1. From (45) it follows that

(46) lim
t→∞

e−λtT (t)f = fi

∫∫
X

f(xb, a)v(xb, a) dxb da in E1.

Now we return to the problem (10)–(12). We recall that after substitution
z(t, xb, a) = u(t, xb, a)Ψ(xb, a) and z0(xb, a) = u0(xb, a)Ψ(xb, a) we have re-
placed this problem by the system (14)–(16) and the semigroup {T (t)}t≥0

describes the evolution of the solutions of this system. Since z = uΨ and
z0 = u0Ψ, we have u(t) = ΦT (t)(u0Ψ) because Φ = 1/Ψ. Thus we can
define a semigroup {U(t)}t≥0 corresponding to (10)–(12) by

(47) U(t)u0 = ΦT (t)(u0Ψ).

From inequalities (36) it follows that u0Ψ ∈ E1 if and only if u0 ∈ E and
{U(t)}t≥0 is a C0-semigroup on the space E. It should be noted that we
consider solutions of (10)–(12) for a wider class of initial conditions because
we do not assume that u0 satisfies inequality (13). From (46) it follows that

(48) lim
t→∞

e−λtΨU(t)u0 = fi

∫∫
X

u0(xb, a)Ψ(xb, a)v(xb, a) dxb da in E1.

Using again inequalities (36) we finally obtain

Theorem 4. For every u0 ∈ E we have

(49) lim
t→∞

e−λtU(t)u0 = Φfi

∫∫
X

u0(xb, a)Ψ(xb, a)v(xb, a) dxb da in E.

Moreover, Φfi and Ψv are eigenfunctions of the semigroups {U(t)}t≥0 and
{U∗(t)}t≥0 corresponding to the eigenvalue λ.

Property (49) is called the asynchronous exponential growth of the semi-
group {U(t)}t≥0. Precisely, we say that a semigroup {U(t)}t≥0 on a Banach
space X has asynchronous (or balanced) exponential growth if there exist
λ ∈ C, a nonzero xi ∈ X, and a nonzero linear functional α : X → C such
that

(50) lim
t→∞

e−λtU(t)x = xiα(x) for x ∈ X.

It should be mentioned that one can find in literature, e.g. [46], a more gen-
eral definition of asynchronous exponential growth, where it is only assumed
that e−λtU(t)x converges to a nonzero finite rank operator.
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6. Remarks

6.1. Chemostat. In Section 2 we have mentioned that if we consider ex-
periment in a chemostat, then we need to add to the right-hand side of
equation (10) the term −Du(t, xb, a). In this case we substitute u(t, xb, a) =
e−Dtū(t, xb, a) and then we check that the function ū satisfies the system
(10)–(12). From Theorem 4 we deduce that

(51) lim
t→∞

e(D−λ)tU(t)u0 = Φfi

∫∫
X

u0(xb, a)Ψ(xb, a)v(xb, a) dxb da in E.

From (51) it follows that in order to grow cells under constant environmental
conditions cells should be removed from the system with rate D = λ.

6.2. Age-size structured model. Now we consider an age-size structured
model consistent with our biological description. Let p̄(x, a)∆t be the prob-
ability that a cell with size x and age a splits in the time interval of the
length ∆t. Since such a cell had the initial size xb = π−ax, we see that

(52) p̄(x, a) = p(π−ax, a) = q(π−ax, a)
/∫∞

a q(π−ax, r) dr

for a < a(π−ax). We set p̄(x, a) = 0 for a ≥ a(π−ax). Let w(t, x, a) be
the number of cells having size x and age a at time t. Then the function w
satisfies the following initial-boundary problem:

∂w

∂t
(t, x, a) +

∂w

∂a
(t, x, a) +

∂(gw)

∂x
(t, x, a) = −p̄(x, a)w(t, x, a),(53)

w(t, x, 0) = 4

∫ ∞
0

p̄(2x, a)w(t, 2x, a) da,(54)

w(0, x, a) = w0(x, a).(55)

We have the following relationship between solutions of the systems (10)–
(12) and (53)–(55):

(56)

∫ a

0

∫ x

0
u(t, xb, r) dxb dr =

∫ a

0

∫ πrx

0
w(t, y, r) dy dr.

Differentiating both sides of (56) with respect to a and x we obtain

u(t, x, a) =
∂(πax)

∂x
w(t, πax, a) =

g(πax)

g(x)
w(t, πax, a).

Using the above formula and Theorem 4 we get

e−λt
g(πax)

g(x)
w(t, πax, a)→ (Φfi)(x, a)

∫∫
X

w0(πaxb, a)h(xb, a) dxb da

in E as t → ∞, where h(xb, a) = Ψ(xb, a)v(xb, a)g(πaxb)/g(xb). Finally we
conclude that

e−λtw(t, x, a)→ hi(x, a)

∫∫
X

w0(πaxb, a)h(xb, a) dxb da
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in L1, where hi(x, a) = (Φfi)(π−ax, a)g(π−ax)/g(x).

6.3. Solutions with values in the space of measures. If we study the
dynamics of population growth of microorganisms starting from a single cell,
then initial distribution of the population is described by a singular measure,
precisely with a delta Dirac measure. Thus it is natural to consider a model
which describes the evolution of measures instead of L1 functions. We can
introduce such a model by considering weak solutions. Let {U(t)}t≥0 be
the semigroup introduced in Section 5 and let {U�(t)}t≥0 be the “dual
semigroup” given by U�(t)u0 = ΨT�(t)(Φu0) (see formula (47)). Denote
by M(X) the space of all finite Borel measures on X. For any measure
ν0 ∈ M(X) we define the weak solution of the problem (10)–(12) as a
function u : [0,∞) → M(X), u(t) = νt, where the measures νt satisfy the
condition

(57)

∫∫
X

f(xb, a) νt(dxb, da) =

∫∫
X

U�(t)f(xb, a) ν0(dxb, da).

Since the set X is compact, the existence and uniqueness of the measures νt
is a simple consequence of the Riesz representation theorem.

One can ask about the long-time behaviour of the measures νt. We are
interested in convergence of measures in the total variation norm. For ν, ν̄
we denote by d(ν, ν̄)TV the distance between ν and ν̄ in the total variation
norm in M(X). We recall that

d(ν, ν̄)TV = (ν − ν̄)+(X) + (ν − ν̄)−(X),

where the symbols ν+ and ν− denote the positive and negative part of a
signed measure ν. We can formulate Theorem 4 in a slightly stronger form:

Proposition 4. Assume that conditions (A1)–(A7) hold. Let ν0 ∈ M(X)
and let ν∞ be the measure given by

ν∞(A) =

∫
A

(Φfi) dxb da ·
∫∫
X

Ψ(xb, a)v(xb, a) ν0(dxb, da)

for A ∈ B(X). Then

(58) lim
t→∞

d(e−λtνt, ν∞)TV = 0.

We only give some idea of the proof of Proposition 4. We consider weak
solutions connected with the semigroup {P�(t)}t≥0, i.e. we replace in (57)
the semigroup {U�(t)}t≥0 by {P�(t)}t≥0, where P�(t) = e−λtT�(t). It is
enough to check that if ν0 is a probability measure then limt→∞ d(νt, µ∗)TV =
0, where dµ∗ = fidµ. We write νt as a sum νat + νst , where νat is the abso-
lutely continuous part of νt with respect to the Lebesgue measure and νst
is the singular part of νt. We deduce from conditions (A6) and (A7) that
there exist t0 > 0 and ε > 0 independent of ν0 such that νst0(X) ≤ 1 − ε.
The proof of this part is very technical but it uses similar arguments as the
proof of Lemma 4. From the last inequality it follows that νst (X) ≤ (1− ε)n
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for t ≥ nt0. Fix η > 0 and let t1 > 0 be such that νst1(X) ≤ η. Let
f = dνat1/dµ. Then limt→∞ ‖P (t)f − fi

∫
f dµ‖E1 = 0. Since

∫
f dµ ≥ 1− η

and νst1(X) ≤ η, we have d(νt, µ∗)TV ≤ 2η. As η > 0 can be chosen arbitrary
small we finally obtain limt→∞ d(νt, µ∗)TV = 0.

It should be noted that a slightly weaker result than Proposition 4 can be
obtained by using the theory of positive recurrent and aperiodic Harris pro-
cesses [27], namely condition (58) holds for almost all delta Dirac measures
δ(xb,a).

6.4. Case g(2x) = 2g(x). A function g satisfying condition g(2x) = 2g(x)
for all x ∈ [xb, xb] can be constructed in the following way. Let g : [xb, 2xb]→
(0,∞) be a given C1-function such that g(2xb) = 2g(xb) and g′(2xb) =
g′(xb). Then we define g(x) = 2ng(2−nx) for x ∈ [2nxb, 2

n+1xb].
Observe that if g(2x) = 2g(x) for all x ∈ [xb, xb], then the semigroup

{U(t)}t≥0 has no asynchronous exponential growth. Indeed, consider a cell
with initial size xb. Fix time t > 0 and assume that the cell splits at age
a ≤ t. Then the daughter cells at time t have size

x(a) = πt−a(
1
2πaxb).

Since

x′(a) = −g(πt−a(
1
2πaxb)) +

g(πt−a(
1
2πaxb))

g(1
2πaxb)

· 1

2
g(πaxb) = 0,

the function x is constant and x(a) = 1
2πtxb. Thus the size of all daughter

cells is exactly twice smaller than the size of the mother cell. If xn(t) is the
size of a cell from the nth generation then its mother, grandmother, etc. cells
have sizes 2xn(t), 4xn(t), . . . But since cells have minimum and maximum
size xb and 2xb, the maximum number of existing generations at a given
time t is not greater than 2 + log2(xb/xb). Moreover, if x1 ∈ (xb, 2xb) and
f1(xb, a) = 1(xb,x1)(xb), f2(xb, a) = 1(x1,2xb)(xb), then U(t)f1 · U(t)f2 ≡ 0

for all t ≥ 0. Consequently, the semigroup {U(t)}t≥0 has no asynchronous
exponential growth.

Now we consider a special case when g(x) = κx, κ > 0. We start at time
t = 0 with a single cell with size x. Cells from the nth generation have size
2−neκtx at time t. Then p̄(2−neκtx, a)∆t is the probability that a cell from
the nth generation with age a splits in the time interval of the length ∆t.
This observation allows us to describe the evolution of the population using
discrete parameters. Denote by wn(t, a) the number of cells from the nth
generation with age a at time t. Then the functions wn satisfy the following
infinite system of partial differential equations with boundary conditions:

∂wn
∂t

(t, a) +
∂wn
∂a

(t, a) = −p̄
(
2−neκtx, a

)
wn(t, a),(59)

wn(t, 0) = 2

∫ ∞
0

p̄
(
21−neκtx, a

)
wn−1(t, a) da.(60)
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It should be noted that it is not easy to find a direct formula for the
eigenvector fi(xb, a) of the operator A even in the case g(x) = κx. Indeed,
we have π−a(2xb) = 2e−κaxb and

(61)
Paf(xb) =

2g(π−a(2xb))

g(2xb)
f(π−a(2xb)) =

2π−a(2xb)

2xb
f(π−a(2xb))

= 2e−κaf(2e−κaxb).

Then fi(xb, a) = e−λafi(xb, 0), where λ and fi(xb, 0) should be found by
solving the following equation

(62) fi(xb, 0) =

∫ ∞
0

4e−(λ+κ)aq(2e−κaxb, a)fi(2e
−κaxb, 0) da,

which is not a simple task.

7. Comparison with experimental data and other models

Modern experimental techniques enable studies of individual cells growth
in well-controlled environments. Especially interesting are experimental re-
sults concerning rod-shaped bacteria, for example E. coli, C. crescentus and
B. subtilis [7, 15, 39, 44], because they change only their length. Although
such bacteria have similar shape there are variety of distinct models of cell
cycle and cell division. For example, we consider models with symmetric or
asymmetric divisions, with different velocities of proliferation, deterministic
or stochastic growth of individuals or models based on special assumptions
as fixed cell length extension or models with target size division. We give
a short review of such models and show how to incorporate them to our
model.

7.1. Models with exponential growth. Since experimental data suggest
that cells grow exponentially, one can find a number of models with the
assumption g(x) = κx but with various descriptions of the cell cycle length.

In [7, 12, 39, 43] it is considered an additive model (or a constant ∆
model), where it is assumed that the difference ∆(xb) = xd − xb between
the size at division xd and the initial size xb of a cell is a random variable
independent of xb. From this assumption it follows that

τ(xb) = κ−1 ln((xb + ∆)/xb).

If h(x) is the density distribution of ∆, then

(63) q(xb, a) = κxbe
κah
(
xbe

κa − xb
)

is the density of τ(xb). We obtain a special case of our model if the density
distribution of ∆ is positive on the interval (xb, xb). According to experi-
mental data from [39] the coefficient of variation cv of ∆ for E. coli is in
the range of 0.17 to 0.28 depending on the different growth conditions. We
recall that cv = σ/µ, where σ is the standard deviation, and µ is the mean.

In [1, 16] it is assumed that a cell with initial size xb attempts to divide
at a target size xd = f(xb). Then the expected length of the cell cycle is
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τ0(xb) = κ−1 ln(f(xb)/xb), but τ0(xb) is additively perturbed by a symmetric
random variable ξ, and finally τ(xb) = τ0(xb) + ξ. If h(a) is the density
distribution of ξ, then q(xb, a) = h(a− τ0(x0)) is the density of τ(xb). The
authors assume in these papers that h has a normal distribution but in this
case τ(xb) can be negative therefore a truncated normal distribution located
in some interval [−ε, ε] seems to be more suitable. They also assume that

f(xb) = 2x1−α
b xα0 , α ∈ [0, 1] and x0 > 0. If α > 0, xb = x0e

−κε/α and

xb = x0e
κε/α then we obtain a particular case of our model. If α = 0, then

τ0 ≡ κ−1 ln 2 and the length of cell cycle does not depend on xb. In this
case a daughter cell size is distributed in some neighbourhood of the initial
mother cell size, so there is no minimum xb and maximum size xb.

7.2. Paradoxes of exponential growth. Models with exponential growth
law can lead to some odd mathematical results. If the population starts with
a single cell of size x, cells from nth generation have size xn(t) = 2−neκtx at
time t. Since xb ≤ xn(t) ≤ xb, population consists of a few generations at
each time and all cells in each generation have the same size. Usually the
quotient xb/xb is not too large. The initial size for E. coli under steady-
growth conditions is xb = 2.32 ± 0.38 µm (mean±SD) [7]. Thus we can
assume that in this case xb/xb < 2. Then it is easy to check that if

t ∈
(
n+ log2(xb/x)

κ log2 e
,
1 + n+ log2(xb/x)

κ log2 e

)
,

the population consists only cells from the nth generation, thus all cells have
the same size and they cannot split in this time interval. Consequently the
size of the population never reaches an exponential (balanced) growth. On
this point we also observe that the large quotient xb/xb helps the population
to stabilize its growth, which explains why in the model with target size
division [16] it takes the population a longer time to reach its balanced

growth for greater α, because xb/xb = e2κε/α.
The exponential growth law of cells should be a little bit modified in or-

der to achieve AEG. For example it is enough to assume that κ depends on
the initial size xb. But according to the experimental results, the average
growth rate does not depend on the initial size of cells. On the other hand,
even if a population grows under perfect conditions the individual cells have
different growth rates: the standard deviation of the growth rate is 15%
of their respective means [39]. Thus there is other factor called maturity,
which decides about the growth rate of an individual cell. The mathematical
models based on the concept of maturity were formulated in the late sixties
[20, 36]. In such models the growth rate is identified with maturation veloc-
ity v which is constant during the life of cell and is inherited in a random
way from mother to daughter cells.
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Rotenberg [35] considered a version of maturity models with random
jumps of v during the cell cycle. If we replace random jumps of v by stochas-
tic fluctuations of κ, we obtain a cell growth model described by a stochastic
equation considered in the next subsection.

We consider here a simple generalization of our model assuming that
κ is a random variable with the distribution dependent on xb. Let the
function r 7→ k(r|xb) be the density of κ. The question is how to describe
the joint distribution of age and initial size in this case. Equations (10) and
(12) remain the same and it is enough to derive a version of the boundary
condition (11). Denote by f(x;xb, a) the density distribution of the random
variable ξxba = xbe

κa. Then (11) takes the form

(64) u(t, x, 0) = 4

∫∫
X

f(2x;xb, a)p(xb, a)u(t, xb, a) dxb da.

It remains to find the function f(x;xb, a). We have

Prob(xbe
κa ≤ x) = Prob

(
κ ≤ a−1 ln(x/xb)

)
=

∫ a−1 ln(x/xb)

0
k(r|xb) dr.

Hence

f(x;xb, a) =
1

ax
k(a−1 ln(x/xb)|xb).

At first glance formulae (11) and (64) differ significantly, but if we replace in
(64) the term f(2x;xb, a) by the delta Dirac δSa(xb)(x) we will receive (11).

7.3. Stochastic growth of x. The size of a cell having initial size xb grows
according to Itô stochastic differential equation

(65) dξxbt = κξxbt dt+ σ(ξxbt ) dBt,

where Bt, t ≥ 0, is a one dimensional Wiener process (Brownian motion),

and κ > 0. In [15, 33] the authors assume that σ(x) =
√
Dxγ , where D > 0

and γ ∈ (0, 1). The great strength of this formula is that equation (65)
was intensively studied for such σ and we can solve (65) and find various
properties of solutions. But there is one weak point: the size can go to
zero and even solutions can be absorbed at zero. To omit this problem we
propose to assume that σ : [xb,∞) → R is a C1-function and σ(xb) = 0.
Then ξxbt > xb for t > 0. It should be noted that solutions can decrease
at some moments, i.e. a cell can shrink, but if the diffusion coefficient
σ is small, we observe exponential growth with small stochastic noise. If
f(x;xb, a) is the density distribution of the random variable ξxba , then the
joint distribution of age and initial size u(t, xb, a) satisfies equations (10),
(12), (64).

7.4. Models with asymmetric division and with slow-fast prolifer-
ation. A lot of cellular populations are heterogeneous. For example, C.
crescentus has an asymmetric cell division; B. subtilis occasionally produces
minicells; melanoma cells have slowly and quickly proliferating cells [29]; and
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precursors of blood cells replicate and maturate going through the levels of
morphological development [24]. It is difficult to find one universal model
of the evolution of heterogeneous populations. Now we present a model of
the distribution of heterogeneous population based on similar assumptions
as the model presented in Section 2. We divide the population into a num-
ber of subpopulations. We assume that cells in the ith subpopulation grow
according to the equation x′ = gi(x) and their length of the cell cycle has
the probability density distribution qi(xb, a). We also assume that rij is the
probability that a daughter of a cell from the ith subpopulation belongs to
the jth subpopulation and the daughter has initial size βijx, where x is the
size of the mother cell at division. As in Section 2 we introduce the function

pi(xb, a) =
qi(xb, a)∫∞

a qi(xb, r) dr

and operators P ija which describe the relation between the density of the
initial sizes of mother and daughter cells satisfying the equation:

(66)

∫ βijπ
i
ay

xb

P ija f(xb) dxb = rij

∫ y

xb

f(xb) dxb.

Then

(67) P ija f(xb) =
rij
βij

g(πi−a(xb/βij))

g(xb/βij)
f(πi−a(xb/βij)).

We denote by ui(t, xb, a) the number of individuals in the ith population
having initial size xb and age a at time t. Then the system (10)–(12) will
be replaced by the following one

∂ui
∂t

(t, xb, a) +
∂ui
∂a

(t, xb, a) = −pi(xb, a)ui(t, xb, a),(68)

uj(t, xb, 0) = 2
∑
i

∫ ∞
0

P ija (pi(xb, a)ui(t, xb, a)) da,(69)

ui(0, xb, a) = ui0(xb, a).(70)

In some cases of asymmetric division the size of daughter cells is not
strictly determined and it is better to consider a model where the density
k(xb|xd) describes the distribution of the initial size of a daughter cell xb if
the mother cell has the size xd, see e.g. [3, 13, 14, 17, 37].

As an example of application of the model (68)–(70) we consider C. cres-
centus which has asymmetric cell division into a ”stalked” cell which can
replicate and a mobile ”swarmer” cell which differentiates into a stalked cell
after a short period of motility. Thus we have two subpopulations: the first
– stalked cells and the second – swarmer cells. Then rij = 1/2 for i = 1, 2
and j = 1, 2. The stalked daughter has length of 0.56 ± 0.04 (mean± SD)
of the mother cell [7]. Hence we can assume that β11 = β21 = 0.56 and
β12 = β22 = 0.44. If we assume that both stalked and swarmer cells have
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the same growth rate κ, i.e. gi(x) = κx, then q2(xb, a) = q1(xb, a−ρ), where
ρ satisfies the formula eκρ = 0.56/0.44 and q1 = q is given by (63).

A model for the growth B. subtilis should be more advanced. B. subtilis
can divide symmetrically to make two daughter cells (binary fission), but
some mutants split asymmetrically, producing a single endospore, which can
differentiate to a ”typical” cell. Assume that the first population consists of
typical cells and the second of minicells. If p is the probability of asymmetric
fission, then r11 = r21 = 1 − p + p/2 = 1 − p/2 and r12 = r22 = p/2. Some
information on the size of minicells can be found in [18].

In a model which describes slowly and quickly proliferating cells we should
assume that the length of the cell cycle of slowly proliferating cells is longer
than in quickly proliferating cells and slowly proliferating cells also grow
slower. Thus the sensible assumptions are: g1(x) < g2(x) and∫ a

0
q1(xb, r) dr <

∫ a

0
q2(xb, r) da for a < a1(xb).

We should also assumed that there is some transition between both sub-
populations. Other model of the growth of the population with slowly and
quickly proliferating cells was recently studied in [42].
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