REFERENCES
[1] Ajao, K., & Akande, H. (2009). Energy Integration of Crude Distillation Unit Using Pinch Analysis. Researcher , 54-66.
[2] Ajay, M., & Amiya, K. (2010). A New intensified heat integration in distillation column. Ind. Eng. Chem. Res. , 9534-9541.
[3] Akande, H. (2008). Energy Integration of Thermal Hydro-dealkylation Plant. MEng Thesis. Minna, Niger State, Nigeria.: Federal University of Technology.
[4] Al-Mutairi, E., & Elkawad, H. (2013). Energy conservation and optimization in condensate splitter plant . Chemical Engineering Transactions , 1381-1386.
[5] Al-Riyami, B., Klemes, J., & Perry, S. (2001). Heat integration retrofit analysis of a heat exchanger network of a fluid catalytic cracking plant. Applied Thermal Engineering , 1449-1487.
[6] Azeez, O., Isafiade, A., & Fraser, D. (2012). Supply and target based superstructure synthesis of heat and mass exchanger networks.Chemical Engineering Research and Design , 266-287.
[7] Azeez, O., Isafiade, A., & Fraser, D. (2013). Supply-based superstructure synthesis of heat and mass exchange networks.Computers & Chemical Engineering , 184-201.
[8] Bonhivers, J.-C., Moussavi, A., Hack, R., Sorin, M., & Stuart, P. (2018). Improving the network pinch approach for heat exchanger network retrofit with bridge analysis. The Canadian Journal of Chemical Engineering .
[9] Cerda, J., Westerberg, A., Mason, D., & Linnhoff, B. (1983). Minimum utility usage in heat exchanger network synthesis: a transportation problem. Chemical Engineering Science , 373.
[10] Colberg, R., & Morari, M. (1990). Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients. Computers and Chemical Engineering , 1 - 22.
[11] Furman, K., & Sahinidis, N. (2001). Computational complexity of heat exchanger network synthesis. Computers and Chemical Engineering , 1371-1390.
[12] Furman, K., & Sahinidis, N. (2002). A Critical Review and Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th Century. Industrial and Engineering Chemistry Research , 2335-2370.
[13] Hohmann, E. (1971). Optimum networks for heat exchange. Ph.D. Thesis. Los Angeles: University of Southern California.
[14] Huang, K., & Karimi, I. (2013). Heat exchanger network synthesis with multiple utilities using a generalized stagewise superstructure with cross flows. Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA), 25 - 27 June 2013 , (pp. 44-49). Kuala Lumpur.
[15] Klemeš, J., & Kravanja, Z. (2013). Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP).Current Opinion in Chemical Engineering , 461–474.
[16] Klemeš, J., Varbanov, P., & Kravanja, Z. (2013). Recent developments in Process Integration. Chemical Engineering Research and Design , 2037-2053.
[17] Liebmann, K., & Dhole, V. (1995). Integrated crude distillation design. Computer in Chemical Engineering , S119–S124.
[18] Linhoff, B., & Ahmad, S. (1990). Cost optimum heat exchanger networks,minimum energy and capital using simple model for capital cost.Computers and Chemical Engineering , 729-750.
[19] Linnhoff, B., & Flower, J. (1978). Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks.AIChE Journal , 633.
[20] Martin, A., & Mato, F. (2008). Hint: an educational software for heat exchanger network design with the pinch method. Education for chemical engineers , e6 – e14.
[21] Masso, A., & Rudd, D. (1969). The synthesis of system designs. II. Heuristic structuring. AIChE Journal , 10–17.
[22] Morar, M., & Agachi, P. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers and Chemical Engineering , 1171-1179.
[23] Nakaiwa, M., Huang, K., Endo, T., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat integrated distillation columns: A review. . Chemical Engineering Research and Design , 162–177.
[24] Nishida, N., Kobayashi, S., & Ichikawa, A. (1971). Optimal synthesis of heat exchange systems: necessary conditions for minimum heat transfer area and their application to systems synthesis.Chemical Engineering Science , 1841.
[25] O’Young, D., Jenkins, D., & Linnhoff, B. (1988). The constrained problem table for heat exchanger networks. Understanding Process Integration II. IChemE Symp. Ser. , 75.
[26] Papoulias, S., & Grossmann, I. (1983). A structural optimization approach in process synthesis – II. Heat recovery networks. Computers and Chemical Engineering , 707.
[27] Papoulias, S., & Grossmann, I. (1983). A structural optimization approach in process synthesis—II: Heat recovery networks.Computers & Chemical Engineering , 707-721.
[28] Promptak, P., Siemanond, K., Bunluesriruang, S., & Raghareutai, V. (2009). Retrofit Design of Heat Exchanger Networks of Crude Oil Distillation Unit. Chemical Engineering Transactions , 99-104.
[29] Raghavan, S. (1977). Heat exchanger network synthesis: a thermodynamic approach. Ph.D. Thesis. Lafayette: Purdue University.
[30] Salomeh, C., Reza, D., & Afshin, M. (2008). Modification of Preheating Heat Exchanger Network in Crude Distillation Unit of Arak Refinery Based on Pinch Technology. WCECS 2008 , (pp. 123-127). San Francisco, USA.
[31] Yee, T., & Grossmann, I. (1990). Simultaneous optimization models for heat integration – II. Heat exchanger network synthesis.Computers & Chemical Engineering , 1165-1184.
[32] Yee, T., Grossmann, I., & Kravanja, Z. (1990). Simultaneous optimization models for heat integration – I. Area and energy targeting and modeling of multi-stream exchangers. Computers and Chemical Engineering , 1151-1164.
[33] Yoro, K., Sekoai, P., Isafiade, A., & Daramola, M. (2019). A review on heat and mass integration techniques for energy and material minimization during CO2 capture. International Journal of Energy and Environmental Engineering , 367–387.