
1

TDMA Based Numerical Approach on Modeling of
Charge Carrier Transport and Ion Vacancy Motion

in Perovskite Solar Cells
Daniyal Khosh Maram

Department of Electrical Engineering,
Amirkabir University of Technology

Tehran, Iran
Danialkhoshmaram@aut.ac.ir

Abstract
Drift-diffusion models that account for the motion of both electronic and ionic charges are important tools for

explaining the hysteretic behaviour. Furnishing numerical solutions to such models for realistic operating conditions
is challenging owing to the extreme values of some of the parameters. We present a finite difference scheme with time
step that provides second order accuracy in the mesh spacing. The method is able to use realistic parameters values
whilst providing high accuracy. Also, three diagonal matrix approximation (TDMA) method is exploit due to matrix
solve simplification. This method is robust and fast way to solve. Ion vacancy density, electron concentration, and
hole concentration profiles are calculated in transient time-scale. In following, built-in potential is varied and profiles
are illustrated. This approach paves the way to have a better insight of device physics and its related phenomena such
as ionic motion, hysteresis.

Index Terms
Perovskite, device physics, ion vacancy migration, drift-diffusion, charge transport model, dimensionless model,

three diagonal matrix approximation (TDMA).

I. Introduction
Recently improvement in power conversion efficiency (PCE) of perovskite solar cell (PSC) in which has increased

enormously from around 3% to above 20% within five years and makes this type of solar cells a attractive topic [1]–[4].
Also outstanding optoelectronic properties made perovskite materials as absorber layers in thin-film architectures
[5], [6]. The growth development of PSCs is a remarkably intense area of research because of high performance,
facile processing methods, and low cost of manufacture [7]–[9]. The PSCs integrate based on the typical structure of
PSCs consisting of the perovskite absorber that is sandwiched between a hole transport layer (HTL) and an electron
transport layer (ETL). Generally, methylammonium lead tri-iodide (CH3NH3PbI3) is using as a perovskite absorbing
material in PSCs [10]. Spiro-MeOTAD is using as a common material for HTL and also titanium dioxide (TiO2) for
ETL. According to the conduction band of HTL and the valence band of ETL, the transport layer materials are
chosen in which the conduction band in the HTL is above that in the perovskite, and the valence band in the ETL is
below in the perovskite [11]. In the perovskite structure for leading holes towards the HTL and electrons towards the
ETL, could be using of generating a built-in electric field arising from the discrepancies in the band energies of the
different layers and these make a potential barrier exists to the entry of electrons into HTL and holes into ETL from
perovskite [12]. Long-timescale transient behavior occurring on the order of tens of seconds is one of the distinguishing
characteristics of PSCs. According to the current transients [13], [14] and according to current-voltage (J-V) curves,
there is a phenomenon which has been termed hysteresis by the field [14], [15]. Various approaches can be used to the
modeling of PSCs, including density functional theory (DFT), drift-diffusion models of charge carriers, and ion motion
to equalizing the parameters of devices. DFT calculations are incapable of describing the behavior of a full cell, but
practically they are used to obtain estimates of macroscopic quantities from the atomistic structures of the materials
forming the device including ion vacancy densities and mobilities [16]. To describe the motion of electrons, holes,
and ion vacancies drift-diffusion models are used in which these models are applicable on the nanometre length scale
and upward, such as [17]–[21]. However, these works except [22], [23] use unrealistic parameter. Also, probably this
because of ion accumulation/depletion at the edges of the perovskite layer in which cause extreme numerical stiffness
of the problem owing to very narrow (∼2 nm) Debye (boundary) layers. Eames et al. performed DFT calculations and
obtained estimates for the equilibrium ion vacancy density and mobility [16] and based on this a combined numerical
and asymptotic approach presented by Richardson et al. in which the electrical properties of the Debye layers modeled
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by a non-linear surface capacitance [23]. That work was to demonstrate experimental J–V hysteresis data explained by
the motion of ion vacancies in the perovskite layer. Since computational costs are some expensive causes that DFT can
only be used to a few atoms and extremely short timescales, On the other hand, equivalent circuit models although
are facile to solve, but they are arduous to connect directly to the device physics. A common pathway leading to a
flexible computational model that can be directly interpreted in terms of device physics and is yielded by equivalently
drift-diffusion or charge transport modeling. Prominently, this method permits to incorporated parameters in which
obtained from DFT calculations of perovskite structure into the model [24]. At first, ion movements in PSCs was
not recognized as a significant model and also as a result of charge transport models that treated the only hole and
electron carrier was expressed. Afterward, models incorporating ion movements were examined. The newly developed
methods for additional physics in this revised model have compelled. To date, numerical approaches are just using
to obtain solutions for simplified models. The presented solution methods in [21], [25] are based on decoupling the
relatively slow ion motion from the charge carrier transport. Decoupling the relatively slow ion movement from the
charge carrier transport is base of the solution methods in Ref. [21], [25]. In Ref. [26] ion motion is decoupled from
those carriers in which ion accumulation included in the form of narrow layers of uniform charge adjacent to each
interface in the perovskite. Under illumination, accidental photons with energies above the bandgap are absorbed in
the perovskite layer and generate an exciton that rapidly dissociates into a free electron which towards ETL and a
hole which towards HTL [27]. Approximations have been utilized due to the incorporation of realistic densities of
ion vacancies (as high as 1019 cm−3 [28]) resulting in a computationally challenging to determine model because of
narrow Debye layers across which rapid changes in solution occur, the significant disparity between the timescales for
ion vacancy motion and electron and hole transport, and substantial changes in the magnitude of the solution across
the device [29]. In these studies, the analysis depends on approximation, including the assumption that the carrier
densities remain extremely smaller than the ion vacancy density the pertinent experimental method whereas these
approximations are convincing in most scenarios and lead to authentic approximate solutions, numerical treatment
of the full system of equations that is capable of furnishing solutions across all relevant timescales, and operating
regimes without simplification are highly desirable [29]. In this paper, aims to present a numerical scheme for obtaining
authentic solutions to a fully coupled charge transport model of a PSC. The tridiagonal matrix algorithm (TDMA)
has been used, which is a facilitated form of Gaussian elimination that can be applied to determine the tridiagonal
system of equations. Although the TDMA is a direct method for 1D situation, it can be applied iteratively in a
line-by-line method to solve multi-dimensional problems. The TDMA is an efficient way of solving tridiagonal matrix
systems and utilized because it is fast, and tridiagonal matrices often occur in practice [30].

II. MATERIAL & METHOD
Here we formulated a charge transport model based on the typical structure of PSCs consisting of the perovskite

absorber that is sandwiched between HTL and ETL. To treating these layers as quasi-metals, doped transport layers are
utilized and cause the electric potential equal and uniform to that on their contacts. Also, this structure approximated
to a single-layer model that all the relevant physics can be applied within the perovskite layer. The model describes
the critical physical processes including motion, generation, and recombination of highly mobile charge carriers and
their interaction with anion vacancies and a uniformly distributed stationary cation vacancy distribution. This work
aims to solve this model using numerical method and details presented in [9], [25]. Notably, the numerical scheme
that utilized for the single-layer model also can be extended to more realistic multi-layer models.

A. Physics Model in PSCs
In order, the model equations are presented in a dimensionless form to present the most straightforward possible

method. The critical variables in the problem are time, t; the perpendicular distance from the interface of the perovskite
layer with the ETL, x; the mobile anion vacancy density, P; the free-electron density, n; the hole density, p; the electric
field (in the x-direction), E; the electric potential, the anion vacancy flux (in the x-direction), FP; and the electron
and hole current densities, Jn and jp, respectively. The dimensionless model consists of three conservation equations
for the three mobile charged species [29]:

∂P
∂t
+ λ
∂FP

∂x
= 0 (1)

ν
∂n
∂t
=
∂ jn

∂x
+G(x) − R(n, p) (2)

ν
∂p
∂t
= −∂ jp

∂x
+G(x) − R(n, p) (3)
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where FP, jn and jp are [29]:

FP = −
(
∂P
∂x
+ P
∂ϕ

∂x

)
(4)

jn = κn

(
∂n
∂x
− n
∂ϕ

∂x

)
(5)

jp = −κp

(
∂p
∂x
+ p
∂ϕ

∂x

)
(6)

in which G(x) and R(n, p) represent rates of charge carrier generation and recombination, respectively. These
conservation equations couple to Poisson’s equation [29]:

∂E
∂x
=

1
λ2 (P − 1 + δ (p − n)) (7)

where E is:

E = −∂ϕ
∂x

(8)

B. Definition of dimensionless variables and parameters
The dimensional counterparts of the variables used in the model which we denote by a star, are retrieved from the

following rescaling [29]:

x∗ = bx, t∗ =
Ldb
D+

t, Φ∗ = VTΦ, Φ∗bi = VTΦbi,

p∗ =
Fphb

D̂
p, n∗ =

Fphb

D̂
n, P∗ = N0P, jp∗ = qFph jp,

jn∗ = qFph jn, F p∗ =
D+N0

b
F p, G∗ =

Fph

b
G, R∗ =

Fph

b
R,

R∗l = FphRl, R∗r = FphRr.

(9)

Here b denotes the width of the perovskite layer, Ld the Debye length, D+ the anion vacancy diffusion coefficient,
q the charge, VT the thermal voltage , Fph the incident photon flux, D̂ a typical electronic charge carrier diffusivity
and N0 the equilibrium anion vacancy density. The Debye length is calculated based on the most populous charged
species, which in this instance is the anion vacancies, as follows [29]:

Ld =

(
εkT
q2N0

)1/2
(10)

ν =
D+b
D̂Ld
, κp =

Dp

D̂
, κn =

Dn

D̂
, λ =

Ld

b

δ =
Fphb

D̂N0
, n̄ =

nbD̂
Fphb

, p̄ =
pbD̂
Fphb

, Φbi =
Vbi

VT

(11)

where Dn and Dp are free-electron and hole diffusivities, respectively, and nb and pb are the dimensional electron
density on the ETL interface and the dimensional hole density on the HTL interface, respectively. In [29] it is shown
that, for a typical planar device formed by a methylammonium lead tri-iodide perovskite absorber layer sandwiched
between a titania ETL layer and a spiro HTL layer, the dimensionless parameters take the values [11], [29]:

ν = 1.4 × 10−10, κp = 1, κn = 1, λ = 1 × 10−2

δ = 5.2 × 10−8, n̄ = 82, p̄ = 1.2, Φbi ≈ 40.
(12)
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C. Numerical Simplification Scheme
The method of lines is the basis of our numerical scheme. The spatial derivatives are discretized using second-

order accurate finite differences. The discrete system is forming as a system of coupled differential-algebraic equations
(DAEs) because the governing equation of the electric potential is elliptic. As such, temporal integration requires a
specialized algorithm. Also, accuracy satisfying with respect to time-scaling transient are to be considered. The basis
equations are provided below. By placing and solving the equations we get the following [29]:

∂P
∂t
+ λ
∂

∂x

(
−∂P
∂x
+ PE

)
= 0 (13)

ν
∂n
∂t
=
∂ jn

∂x
+G(x) − R(n, p) (14)

ν
∂p
∂t
= −∂ jp

∂x
+G(x) − R(n, p) (15)

D. Discretization of Equations
Finite difference method is a discrete approximation computation approach for differential equations; its calculation

results are not a continuous function in the domain but the approximate value of the functions at each mesh point.
The basic idea of the difference method is to use different coefficients to replace the derivative part in the equations.
In this simulation, it assumes the thickness of perovskite is L nm, and discretises the domain [0, L] with the distance
of h. Here, in order to obtain convenient calculation and accurate results, nested grid method is used to discretise
the device. Based on the discretisation model of the device, the Poisson’s equation and continuity equations with
the discrete form can be described below. For the electrons and holes a Dirichlet-type boundary condition is to be
imposed on x = 0 and x = 1, whilst a specified value of the flux is to be imposed at the boundary x = 1 and x = 0,
respectively [29]. Here ion vacancy density, P, related equation is discretized, as shown below [29]:

Pt+1
i − Pt

i

∆t
− λPi+1 − 2Pi + Pi−1

∆x2

+λ
(
−ϕi+1 − ϕi

∆x

) (Pi+1 − Pi

∆x

)
+λPi(−

ϕi−1 − 2ϕi + ϕi+1

∆x2 ) = 0

(16)

Here the boundary conditions are provided [29]:

i = 1
x = 0

→ ∂P
∂x
− PE = 0→ Pi − Pi−1

∆x
+ Pi(

∂ϕ

∂x
) = 0

→ Pi−1 = Pi

(
1 + ∆x(

∂ϕ

∂x
)
)

i = N

x = 1
→ ∂P
∂x
− PE = 0→ Pi+1 − Pi

∆x
+ Pi(

∂ϕ

∂x
) = 0

→ Pi+1 = Pi

(
1 + ∆x(−∂ϕ

∂x
)
)

(17)

Then, electron density, n, related equation is provided below [29]:

ν
nt+1

i − nt
i

∆t
= κn

nt+1
i+1 − 2nt+1

i + nt+1
i−1

∆x2

 − κnnt+1
i

(
ϕi+1 − 2ϕi + ϕi−1

∆x2

)
−κn

(
ϕi+1 − ϕi

∆x

) nt+1
i+1 − nt+1

i

∆x

 +G(x) − R(n, p)

(18)

Here the boundary conditions are provided [29]:
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i = 1
x = 0

→ ni = n̄i = N

x = 1
→

(
∂n
∂x
+ nE

)
= −Rr(n)

κn
→ ni+1 − ni

∆x
− ni
∂ϕ

∂x
= −Rr(n)

κn

→ ni+1 = −
Rr(n)
κn
∆x + ni ∆x

∂ϕ

∂x
+ ni

(19)

Then, hole density, p, related equation is assumed and simplified [29]:

ν
pt+1

i − pt
i

∆t
= κp

 pt+1
i+1 − 2pt+1

i + pt+1
i−1

∆x2


+κp p

(
∂2ϕ

∂x2

)
+ κp

(
∂ϕ

∂x

) ( pi+1 − pi

∆x

)
+G − R

(20)

Here the boundary conditions are provided [29]:

i = 1
x = 0

→
(
∂p
∂x
+ pE

)
= −Rl(p)

κp
→ pi+1 − pi

∆x
− pi
∂ϕ

∂x
= −Rl(p)

κp

→ pi+1 = −
Rl(p)
κp
∆x − pi ∆x

∂ϕ

∂x
+ pii = N

x = 1
→ pi = p̄

(21)

Also, Poisson’s equation becomes:

−
(
ϕi+1 − 2ϕi + ϕi−1

∆x2

)
=

1
λ2 (Pi − 1 + δ (p − n)) (22)

III. Result
We verify the performance of the scheme utilizing physically relevant test cases. Here we are comparing our numerical

results to the asymptotic solution presented in [5] in the particular case where the bulk recombination, R(n, p), is
monomolecular (depending solely on the local hole concentration p) and the surface recombination rates, are both
zero, such that [29]:

R(n, p) = γ
 np − N2

i

n + εp + K3

 (23)

R(n, p) = γp, Rr(n) = Rl(p) = 0. (24)

Here γ is a dimensionless rate constant. As noted in [9], when hole pseudo-lifetime is much higher than electron
pseudo-lifetime, monomolecular hole-dominated bulk recombination is the limit of the Shockley-Read-Hall (SRH)
recombination law. Also describes recombination in the perovskite material methylammonium lead tri-iodide [31]. The
numerical scheme that presented hither is easily capable of dealing with nonlinear recombination rates such as the full
SRH law. Generally, in such applications, we presume that the photo-generation rate, G(x), obeys the Beer-Lambert
law, which has the dimensionless form [29].

G(x) = Υ exp(−Υx) (25)

in which Υ is the dimensionless absorption length. Estimates of these from [11], [29] are:

Υ = 0.92, γ = 0.15 (26)

A simple choice of initial conditions satisfying the boundary conditions is [29]:

Pinit = 1, ninit = n̄, pinit = p̄. (27)

Practically, choosing of primary conditions is not crucial for the modeling of PSCs because it is standard practice to
include a pre-conditioning step in any experimental procedure [29].
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Fig. 1: Electric potential profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=20v.
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Fig. 2: Electric potential profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=30v.

Reliable model with realistic parameters, with experimental results, which were reported in [29] is compared with
our proposed numerical method with simplified TDMA approach. There is an agreement between our calculated results
with those reported in Ref. [29]. In following, to prove flexibility of our proposed numerical method, possible reported
parameters are instantiated and utilized to investigate ion vacancy P, electron density n, and hole density p profiles
for a cell with perovskite width 150 nm thinner perovskite layer which a cell with 600 nm perovskite layer width has
reported in [11], [29]. Real device estimated parameters were illustrated in [11]. Based on this data, the dimensionless
parameters are assumed. In following, it is desirable to investigate ion vacancy density P, electron density n, and hole
density p profiles with respect to transient time-scaling. It facilitates better insight of device physics matters such
as ionic motion in perovskite, hysteresis, stability criterion and correlated phenomena. ETL and HTL are considered
as quasi-metals, as highly doped layers. Therefore, single-layer model approximation which is capable of relevant
physics justification, can be applied within the perovskite layer. After that, we consider a device with different Φbi to
observe this parameters role in profiles. It is noteworthy to mentioned that Vbi = Φbi × VT , Vbi as a built-in voltage,
determined by the difference in the Fermi levels in the TiO2 and the spiro layers, gives rise to an electric field Vbi

b
in the perovskite layer. This field drives positive charges towards the spiro layer and negative charges towards the
TiO2. At short circuit, free electron-hole pairs are separated by this field to create a current in which electrons are
extracted through the TiO2 layer and holes are extracted through the spiro layer. A positive applied bias, V, produces
an electric field that opposes the built-in field.In the absence of charge build up within the perovskite there is a net
electric field (Vbi−V)

b from left to right. When V < Vbi, this field drives the positively charged iodide vacancies into the
region of the perovskite adjacent to its interface with the spiro. Here we demonstrate profiles changes with built-in
potential variation respect to transient time-scale for Φbi=20, 30, and 40. Electric potential, electron concentration,
hole concentration, and ion vacancy density profiles are provided in Fig.( 1) - Fig.( 12).

IV. Conclusion
This paper mainly introduces a numerical model for perovskite solar cell and a specific computation and algorithm

process for Poisson’s and continuity equations. The simulation results are obtained by using the MATLAB program.
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Fig. 3: Electric potential profile in time-scale

t=0.2, 0.4, 0.6, 0.8, 1, at phi=40v.
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Fig. 4: Electron concentration profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=20v.

We have utilized a numerical scheme for determining PDE drift-diffusion model of ion vacancy and charge carrier
transport in a PSC. This numerical scheme to reduce the system of PDEs to a system of ordinary differential-algebraic
equations utilizes second-order finite difference approximations of spatial derivatives. The proposed numerical scheme
utilized for the single-layer model. Therefore, these approaches can be extended to more realistic multi-layer models
in upcoming researches.
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Fig. 9: Hole concentration profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=40v.
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Fig. 10: Ion vacancy density profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=20v.
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Fig. 11: Ion vacancy density profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=30v.
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Fig. 12: Ion vacancy density profile in time-scale
t=0.2, 0.4, 0.6, 0.8, 1, at phi=40v.


