ON NEW GENERALIZED NON-INTEGRO-DERIVATIVES AND
APPLICATIONS

NECMETTIN ALP! AND MEHMET ZEKI SARIKAYA?2

ABSTRACT. With respect to the non-integro-fractional derivative, in previous
studies, the non-integro-fractional derivative of non-negative real numbers can
be calculated. However, by previous definitions, the non-integro-fractional de-
rivative of negative values can not be calculated due to t=%, o € (0,1). For

example, (72)_% ¢ Rfort = -2 and a = % So what should we do for
the non-integro-fractional derivative of "negative” real numbers? The pur-
pose of this paper is to introduce more general derivative definition and we
claim that we will obtain non-integro-fractional derivative of ”all” real num-
bers. Classic derivative, g-derivative, (p, ¢)-derivative, comformable fractional
derivative, Katugampola fractional derivative and backward-forward difference
operator in Time Scale are the special cases of these general derivative defini-
tions. These new definitions of ours must give us derivatives on both discrete
and continuous calculus.

1. INTRODUCTION

Fractional calculus is not a new topic; in reality it has almost the same history as
that of the classical calculus. Since the occurrence of fractional or fractional-order
derivative, the theories of fractional calculus fractional derivative plus fractional
integral has undergone a significant and even heated development, which has been
primarily contributed by pure but not applied mathematicians.

There exist many different definitions of fractional derivative, among which we
mention the Riemann—Liouville, Caputo, Hadamard, Edrlyi-Kober and Katugam-
pola types [9, 12]. Most of the fractional derivatives are defined via fractional
integrals [15]. Due to the same reason, those fractional derivatives inherit some
non-local behaviors, which lead them to many interesting applications including
memory effects and future dependence. All of these have important applications
in several different areas such as mathematics, physics, biology, medicine and en-
gineering. We must recall that to each definition of fractional derivative, there
corresponds a specific fractional integral [10, 12].

In 2014, Khalil [11] introduced a new fractional derivative and a correspond-
ing fractional integral with properties similar to the classical (integerorder) de-
rivative and integral. He called the derivative conformable fractional derivative
and the integral a-fractional integral. Abdeljawad [1] presented a generalization
of the conformable fractional derivative and the a-fractional integral. In the same
year, Katugampola [7] introduced the alternative fractional derivative and, from the
truncated exponential function, the truncated alternative fractional derivative; to
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both derivatives there corresponds a unique a-fractional integral. Recently, Sousa
and Oliveira [18, 19] introduced the M-fractional derivative and the truncated M-
fractional derivative, whose properties generalize the properties of integer-order
calculus derivatives and integrals.

With respect to the non-integro-fractional derivative, in previous studies, the
non-integro-fractional derivative of non-negative real numbers can be calculated.
However, by previous definitions, the non-integro-fractional derivative of negative

values can not be calculated due to =%, a € (0,1). For example, (—2)7% ¢ R for
1

t = —2 and a = 3. So what should we do for the non-integro-fractional derivative
of "negative” real numbers? The purpose of this paper is to introduce more general
derivative definition and we claim that we will obtain non-integro-fractional deriv-
ative of ”all” real numbers. For this we will use the absolute value and the modi-
fied signal functions. Classic derivative, g-derivative, (p, ¢)-derivative, comformable
fractional derivative, Katugampola fractional derivative and backward-forward dif-
ference operator in Time Scale are the special cases of these general derivative
definitions. These new definitions of ours must give us derivatives on both discrete
and continuous calculus.

We will benefit from the Mittag-Leffler function in this definitions. Too much
work has been done on the Mittag-Leffler function. Many updates of Mittag-Leffler
function are also available. In this study we will use a Mittag-Lefler function with
less parameters.

In third section, we will introduce two generalized derivatives for discrete and
continuous analysis and we’ll get some special cases of these definitions. In fourth
section, we will present the properties and theorems of generalized derivatives. In
last section, we will give some examples and simulate these examples with graphics.
In these examples, we will see that the fractional derivatives of the negative numbers
gives the classical derivative for av = 1.

2. PRELEMINARIES

In 1905, Wiman [17] proposed and studied a generalization of the Mittag—Leffler
function, the so-called two-parameter Mittag—Leffler function.

Definition 1. The two-parameter Mittag-Leffler function is given by the series

RSO
Fot &)= 2 Fai 1)

with a,b € C, Re(a) > 0 and Re (b) > 0.

S

Throughout the study we will accept a € (0,1] and we need the following
definition bounded Mittag—Lefler function:

Definition 2. Bounded two-parameter Mittag—Leffler function is given by:

moy N~ ()
(21) a,b (Z) - ; F(az+b)

where m € N.

Some special cases of (2.1):
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i) Fora=b=1,t>0and m = oo, then

_ (Net‘ Nat‘ Net—
ES (Net™@ &
(Nt =2 T -
=0 =0
ii) Fora=b=m =1 and ¢t > 0, then
: (et™®)
Eq, (et™ :Z —1+5t_a.
1=
ili) Fora=b=m =1 and ¢t > 0, then
L (—0et—
1 - _
Bty (—0et Z - z+1 -

=0
Also for n € R and M < 0 < N, the following notation will be used:

e = 3 (e (Nl ) (e (i wele )
i=0

where sgn (¢) is a modified signal function is defined by

_ 1, ift>0
Sg”(t):{—l if t < 0.

3. NEwW GENERALIZED DERIVATIVES

In this section, we introduce two generalized derivatives for discrete and continu-
ous analysis. We claim that we will find fractional derivatives of all real numbers by
new definition of fractional derivative. Now let establish new definition derivative
for discrete analogue as follow:

Definition 3. Let a € (0,1], M <0 < N (N,M € R) with N # M, Re(a) > 0,
Re(b) > 0 (a,b€C), m € N and we denote a fuction f : I C R — R. The
generalized discreted derivative of the function f is defined as:

(3.1) TN I (1)
Tiar (m;a,b) f(t)

7 (e, (s9m () Nelt=)) = £ (¢Em, (597 (1) M=t ~))
(N—-M)e '

If f is TR, -differentiable in some (—tg,0)U(0, o), to > 0, and lim; o+ TR5,f (¢)
exist. Then, we define T3, f (0) such as T{5,f (0) = lim; o+ T3, f (t).

In (3.1) by using limit for ¢ — 0, we have defined generalized derivative for
continuous analogue as follow:

Definition 4. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,
Re(b) > 0 (a,beC), m € N and we denote a fuction f : I C R — R. The
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generalized derivative of the function f is defined as:

(3.2) TR m f (t)
= TNm (ms;a,b) f(1)

= Ehg(l) [TNM (t)}

= lim d (tE‘T” (59/\” (t) Ne |t|_a)) —f (tEZZfb (8’971 (t) M5|t\_a))_
e—0 (N — M) .

If f is Ty j-differentiable in some (—to, 0)U(0, %o), to > 0, and lim; o+ T 5, f ()
exist. Then, we define T ,f (0) such as T 5, f (0) = lim;_,o+ T 5, f () - /

We will write 755, f (t) instead of T3, (m;a,b) f (t) and Tx ,f (t) instead of
T ar (m;a,b) f(t) throughout the study.

The following results are obtained from (3.1) and (3.2) :
1) If we choose a = b = m = o = N = 1,M = 0 in the definition (3.2), we
recaptured classic derivative:

Tof () = lm 7 £ (1) = i TUFEZTW gy

2) If we choose a=b=m=N=a=1,M =0,¢t > 0in (3.1) we have
f(t+ett=) = f(t)

c )
f(t+et'™) = f(t)

9

I ift>0
Tl,o (t) =

, ift<0

In above by choosing ¢ = 1 + et~1, we have quantum g-derivative in [6]:

ft+et'=) = f(t) ,

f(t+et1§°‘)—f(t) P - (q— 1)t = Daf (1)
6 b

3) If we choose a=b=m=N=—-M =a=11n (3.1), we have

f(t+et'=) = f(t—ett™®)
2 Y

f(t+et'™e) —gf (t—et'™2)
2e ’

and by choosing ¢ = 1+et~® with p = 1—et~ replace respectively e = (¢ — 1) t7%,
e =(1—p)t~*, we have quantum (p, ¢)-derivative in [14]:

ft+et'=) = f(t—et'™)

L ift>0
T1,€—1 (t):

ift<0

HE=0_ flat)— £ vt)
le — 2e =1\ P _
Tl,flf (t) f (t + Etl—a) _ f (t _ Etl_a) ) (q 7p)t Dp)qf (t) .
, ift<0
2e
4) If we choose a =b=m =N =1, M =0 and ¢t > 0 with o € (0,1) in (3.2), we
have comformable fractional derivative is obtained as below:

roor () = tim L) ZIG gy

e—0 €
which is defined by Khalil in [11].
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5) If we choosea =b=N=1,M =0,m =o0 and t > 0 with a € (0,1) in (3.1),
we recaptured

NGO
T f (t) = lim =D (f) @)

e—0 e

which is defined by Katugampola in [7].
6) If we choose a = fb=r=1,s=0,m =00 and t > 0 with a € (0, 1) in (3.2),
we recaptured

Tlaof (t) — lim / (tEB (dia)) -f (t) _ D?/I’B (f) (t)

e—0 e

which is defined by Vanterler in [20].
7) If we choose a =b=a=N=1,M =0,m=1and ¢ =1 in (3.1) we
recaptured

B, (5ga (0) Ne |t ™) =1+¢7!
and
Tisf () =ft+1)~f(t)=F>()
is the forward difference operator in Time Scale. Also fora =b=a = -M =
1,N =0,m =1 and € = 1 we recaptured
ET, (s’g?z (t) M5|t\_“) —1-+L
So
TS @ =f) —ft=1) =77t

is the backward difference operator by Hilger in [3].
8) If we choose a = b =m =N =1, M =0, « = p and t > 0 with

B (S’g?t (t)5|t\_a) = 9 (t,p) in (3.2), we have general conformable fractional
derivative is obtained as below:

T f (1) = lim ft+ep(t,p) - f(t)

e—0 3

— DYF (1)

which is defined by Zhao in [21].

4. PROPERTIES AND THEOREMS OF GENERALIZED DERIVATIVES

In this section, we will start the following theorem the properties of T35,
derivative:

Theorem 1. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,
Re (b) >0 (a,be C), m € N and f,g be TG, -differentiable functions. Then,

(1) Ty (ef +dg) = Tg5; (f) + dTg5, (9), for all c.d € R.
(2) TRG, (C) =0, for all constant functions, f(t) = C.
(3)
Ti (f9) (1
= g (tBm, (597 (1) Me |t ) ) T £ (6) + f (B2 (597 () N2t ™) ) Tiirg ()
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(4)
735 () 0
B g(tE;fj (sgn (t) Ne|t|™® )T]‘\Xﬁwf (tEm (s’gTz(t) Neltl‘“))T}ﬁwg (t)
(tE’” (sgn(t)Nsm )) (tEm (s/g%(t)Ms\tra))
where

g (B, (597 () N= 7)) g (¢E2, (597 (1) M= 1t7) ) £ 0.
(5) T (f o g) (t) = f' (9 (8)) TR (t) , for [ differentiable at g(t).

Proof. Proof of parts (1) and (2) are clear from definition in (3.1).
Proof part (3):

T (f9) (1)

(f9) (B2, (597 (6) Ne 7)) = (fo) (B, (597 (6) Mt ™))

(N-—M)e
(e (g @ Ne ) ) g (e, (597 () Nelt 7))
N (N—-M)e
7 (e, (590 (0 Neltl ™)) o (B2, (55 () Me ) )
B (N—M)e

7 (e, (590 () Neltl =) ) o (B2, (590 () Me ") )
(N-M)e

7 (tEg, (sgn () Me 1) ) g (B2, (597 (6) M=t )
B (N—M)e

+

= g (B, (590 () Me ™) ) TR s () + 1 (B2, (5970 () Ne t") ) Tigg (1) -

This completes the proof of (3). Similarly if « € (0, 1], we have

735 () 0

_ <£) (B, (597 (1) Nelt ™)) - <£> (t27, (597 (1) M= 117°))

(N-—M)e
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(tEm (sgn( ) Ne |t\_a)> (tE;’}b (sgn( ) Me |t|_a))
(N—M)eg (tEmb <sgn (t) Nelt|” )) (tEmb (sgn (t) Me |t|~ ))

(tEmb (sgn (t) Ne|t|” )) g (L‘Emb (sgn (t) Nelt|” ))
(N—M)eg (tEmb (5 t)Ne|t|” )) g (tEmb (5 t) Me|t|” ))
(tEmb (sgn (t) Ne|t|” )) g (tEmb (sgn (t) Net|” ))

(N —M)eg (tE b(s Na\t|_a))g(tEmb sgn (t M€|t|_a))
)

( (sgn(tM I )) (tEgb(@(t)Ne|t|—a))

(N = M)eg (tE:;?b (s 0 Neltl ™)) g (127, (S9m (1) Me ™))

_|_

—

g (B, (sm (O Nl ™)) Tiauf &) — £ (12, (597 (0 Ne |t ) ) Tiagg (8
(tEm (sgn(t)N€|t| )) (tE (sgn(t)M€|t|_a>)

The proof of (4) is completed. Finally let prove the part of (5)

T (fog) (1)

7 (o (t22 (sg @ Vel ™)) = £ (o (e, (sam (1) M= 1) ))

(N-—M)e

7 (9 (tB, (5am 0y Ne 1)) = £ (o (4B, (597 () M=t~ ) )

g (tE7, (59 0 Neltl =) — g (B2, (59 (1) M= 1))

g (tEm, (590 () N=1t7) ) = g (B2, (550 () M=) )
(N-—M)e

X

7 (9 (tB, (5m 0 Net7))) = £ (9 (B2, (590 () M= 1))

g (B, (san @) Nell ™)) = g (LB, (597 (1) Me |1 ~)) Iag (1)

o (2, (710 11 7)) =00 20 (25, (370301 )) -
g (t) + &1 there exist gg,e1 € R

T (fog)(t) = flg(t)+e0) = fgt)+e1)

€0 — €1

TRy (1) -
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For ¢g — 1 we have that

T (fog) (1)

= _lim TR (fog) (1)

EQ—E1

— oy O o)~ flg(t) +e)
B £0—€1 €0 — €1

= fg®) TN ()
which is completed the proof of the part of (5).

TN ().

O

The following theorem has been proved as Theorem 1 for the T§,,-derivative:

Theorem 2. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,

Re(b) >0 (a, b€ C), meN and f,g be T ,,-differentiable functions. Then,

(1) Ty (ef +dg) = Ty (f) +dT% s (9), for all e,d € R.
(2) TR, (C) =0, for all constant functions, f(t) = C.
(3)
Tia (f9) () = g (&) Tiarf () + f () TRarg (2) -
(4)

TN M (g) (t) = 90 T ] (tg)g_(tj; () Tiarg (1 , for g(t) #0.

(5) Tiine (fo9) (8) = [ (9 () TR arg (8), for [ differentiable at g(t).
Theorem 3. For all n € R, the T\5,-derivative of t" is that

(4.) T35 ) = (g +H ) Il 1" 57 (1)
where
H(e)
_ sga() (N+ M)elt|™ | (5gn(t)” (N2 + NM + M?) 2|t >
B I'(2a +b) I'(3a+b)
sgn (1) = “1—iqgim—1 1, —(m—1)a
Farry & N
and
n-! —1—i i
e =Y (Em (s @ Nel ™)) (B, (san ) Me ) )
1=0

Proof. From definition of T5,-derivative, we get

TN (")

o (B, (5am 0y Ne =) )" = (B, (597 () Me 1)) ]
(N—M)e '
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If we take t > 0

TN (")

m [(Eg}b (Nst*“)) " (Egjb (Mst*a)) n]

(N—M)e
= e [P (V) — B ()
R~
i=0
= ﬁ [Em, (Net=) — BT, (Met=*)] [n]
s (VM) (et

=0

. {(N_M)W (N2 = 02) 22

(N—M)e I'(a+0b) I'(2a+0)
(N3 _ M3) E?’t_?’a (Nm _ Mm) gm—me
S A T (ma + b)

o 1 (N + M) et—o
= voane M (N - M)et {r(a+b)+ T (20 +b)

(N2 + NM + M?) e~ 1= .
. Nm—l—le m—lt—(m—l)a
T (3a +b) + +r(ma+b); c
_ 1 (N + M)et—
— tn «@
[”]E{P(a+b) T T Ra+0)
(N? + NM + M?) e2t~2 1 " .
. Nm—l—zMz m—lt—(m—l)a )
T (3a+b) T +F(ma+b); c
If we choose
m—1
(N+M)et= (N?+ NM + M?) 22> 1 it me e (m—1)
H —_ . Nm ’LMZ m t m (a7
(¢) Tath) T (3a + b) * +F(ma+b); c
g (N M)elt| | (sgn (1) (N2 + NM + M?) e |t
T (2a +b) T (3a +b)
(597 ()" 5~

N™m—1=ip i m—lt—(m—l)a
I (ma + b) ; c

then it follows that

(@2) T () = lilg

1),
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Also if we take t < 0, then we get

L

= e [Bo (-Nele) - £ (hele )]

5 (et (e )™ (e (e ) |

=0

X

- ﬁ [E;’}b (—Ne|t|’“) —-ET, (—Me Itlfaﬂ [n]p

m

1
M)e

w () = (b)) (=17 .

t
(N — : T (ai +b) e

(2

t" (=N +M)elt|™ (N?>—M?)2|t| >
v —an)e e Tatb) | T(a+h

4

(=N*+ M) St ((—N)’"—<—M>m>sm|t|‘"“}
I'(3a + b) I (ma + b)

- e [z (£, (s Ne ™))" (2, (sam (1) e |t‘a))i]
1=0

3 1 (N+M)e|t|®
X (=N + M)e|t| {F(a+b)_ I'(2a+ )

(N2 + NM + M?) e [t (- =
I'(3a+10) I'(ma+b

) Z N1 rigm—1 w—(m—l)a
i=0

o 1 (N+M)elt ™
= —t"|t [n]E{F(a+b)_ I'(2a+b)

—2a m—1 m-—1
(N2 + NM + M?) &2 |¢| (=1 S N gigmet [~
I'(3a+0b) I'(ma+b) .
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and
He = WM™ (N2 + NM + M?) |t
B I'(2a +b) I'(3a+b)
m— m—1
(-1) ' —1—iprim—1 | —(m—1a
Nm ZM’L m t
FMm+b)Z% el
_ Sga(t) (N4 M)elt|™*  (sgn(t)® (N> + NM + M?)e2|t|~>*
B ' (2a +b) ' (3a+b)
— m— —1
(597 (£)™ '} i i me1 y—(m—1)a
Nm ’LMZ m t
I (ma + b) ; c g
such that
1
4. TRa () = —t™ |t~ —+H :
@3) R () = =10 e gy + H )
Therefore, from (4.2) and (4.3) we have reached the desired (4.1). O

Corollary 1. Let o € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,
Re (b) >0 (a,b € C), m €N and for all n € R, the TS ,,-derivative of t" is that
n

(4.4) Ty (t7) = Tt

t"™ || sgn (¢
e UGINEZ0

Proof. Since T§ ,,-derivative has limit as ¢ — 0, if we take the limit of (4.1) and
a € (0,1] we have

lim 5, (") T (")
e—0

. 1 I
= gg% (F(a‘f'b) +H(€)> [n] g t" [t] " 5gn (1)

:twﬂ@mp%ulumﬁmmy

=0 a+b) e—0
Moreover
n-l n—1-i i

lim [n] =§%%J%¢@m@NWI)) (&, (597 (1) M=)

n—1 N n—1

= ( an(o)) ( 276(0)) :len

1=0 i=0

such that n
Ty (") = ——t"|t| *sgn (t).

this is completed the proof of (4.4). O

Remark 1. Under the assumptation of Corollary 1, we have

S HE) ol

(45) 735 ) = (1o
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where
H (e)
_ Sga(t) (N +M)elt|™™  (5gn(t)® (N2 + NM + M?) 2|t~
N I'(2a +b) ' (3a+b)
—_— m— m—1
(sgm (t))" " —1—i i m—1 4~ (m—D)a
Nm ’LM’L m t
T (ma + b) ; c i
and
(4.6) T, () = — 2
’ NM - T(a+b)

Proof. In Theorem 3, if a € (0, 1], the domain of ¢t* function must be nonnegative,
SO

TaE (6%
o (£9) F(a+b

~ (g 1O ol

(1) +H (5)) [n] 5t

and by limit € — 0, we have

[e%

Ty (%) = Tath)

(]

In (4.4) if n = 1 is selected and by using equality ¢ [¢|”* sgn (t) = |t|'~* the
following result is obtained:

Corollary 2. For «a € (0,1], the TS ,,-derivative of t is that

735 ) = (g +HO) 0
and
NP s
Ty () = T(a+b)

Now in the following theorem we will prove the continuity of the T ,,f at point
c

Theorem 4. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,
Re(b) >0 (a,beC),meN. If f: I CR — R is T, - generalized differentiable
at c € I, then, f is continuous at c.

Proof. Since

! (cEg?b (sgn t) Nele|” )) ! (c (sgn( )M5|c|7a))

f (cE;’fb (sgn t) Nelc|™ a)) ( (sgn( )M€|C|_a)),(N— e

f
—M)e
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we get

tim [ (B2, (57 (1) Ne le| ™)) = f (eB2, (597 (1) Me e ™) )]

7 (B, (59 (0 Nele ) ) = £ (cE2, (590 () M= ™))

= g (N—M)e lim, (N — M)e
= Tyuf(e).0=0.
_ d
Let choose ¢ = B (03— ) then we have
E™, (s/gTL (t) Ne |c|*a) J
lim |f|d —f E™ (sgn (t) Me ||
0 —_ — — —o a,b
& B, (sgn (t) Me|c| ) B, (sgn (t) Me|c| )
= 0.
Let assume that
— ~a sga(Nelel =) | (5ga(t)Nele|=*)” sgA(t)Neld )"
Edy (59” (t) Ne el ) B 5+ ( T(atb) )4 T(2a+b) L4 T(ma+b) ) 4k
m (5o —a) (sgaMele| =) | (sgn()Melel )" (sgn(t)Mele|*)"
Ea,b (sgn (t) Me |C| ) % + T'(a+b) T'(2a+b) T'(ma+b)
and
sgn t) Nele|™ )
lim — f(d)
e—0 8/ng ME |C| )
= lim [f(d+hd)— f(d
h—)O
— lim [f(d+R) — ()] =0
h—0
such that
lim [f(d+h) — f(d)] =0
h—0
ie

lim f(d+5) = [ (d)

and replace as d = cEI", (sgn (t) Me |c\—“) by lim._,o [E (sgn( ) Ne |c|_w)} -
1 then we have

lim [hm f (CE (s/g% (t) Ne \c|7a) + h)} = gl_l;r(l)f (CE(Tb <8/ng (t) N5|c|7a)>

e—=0 | h—0
ie
lim f(c+h) = f(c)
h—0
which implies that f is continuous at c. O

Theorem 5. Let o € (0,1], M <0 < N (N,M € R) with N # M, Re(a) > 0,
Re(b) >0 (a,beC), meNand f: I CR— R is T{5,-generalized differentiable
on I. Then, we have

i) If TRS, f (x) > 0, then f is increasing on I.



14 NECMETTIN ALP! AND MEHMET ZEKI SARIKAYA?2

i) If TR, f (x) <0, then f is decreasing on I.
i) If TR, f () = 0, then f is constant on I.

Proof. Firstly we prove part ¢). For V¢ € I, let us assume that

7 (tB, (s () Ne 7)) = £ (eE2m, (597 (0) Me |1 7))

limy (N _M)< =0
(4.7)
e 2! (g (s 0) Nele™")) — £ (e (som () Me ™))

(N-M)e
In (4.7), if € > 0, then
7 (e, (s () Ne 7)) = £ (eE2, (590 () M2l ™) ) > 0
is true and so
f (tEg}b (S/gv\z (t) Ne |t|*“)) > f (tEg}b (s/g?t (t) Me It\*“)) .
On the other hand, for M <0< N,t>0and e >0
tEyY (Ns |t|*°‘) >t>tEyy (Ms |t\*“) .
Alsofor M <0< N,t<0Oande>0
By (~Net™) < B (~Me |t 7).
is true and so
tEyYy (—Ns|t\*“) > tEyY, (—Ms|t\7°‘).
Therefore f is increasing on I. Similarly if € < 0, then
7 (B, (59m () Ne ™)) = £ (¢E2, (5976 M=t 7) ) <0
is true and thus
f (tEgjb (s’gh (t) Ne |t|_”‘)) <f (tEZ[}b (s’gh (t) Me |tra)) .
On the other hand, for M <0< N, t>0and ¢ <0,
tE™, (s/g?b (t) Ne |t|*°“) <t<tET, (s/g% (t) Me |t|*“) .
Similarly for M <0< N, t<0and e <0
By (~Net|™) < By (~Me ™)

i.e.
tET, (—Ns It\*“) > tET, (—Ma |tr“) .

Therefore f is increasing on I.
Same way ii) can be proved. Finally for Vt € I if

£ (tEz, (sgm (0 Neltl =) = £ (tE2, (590 () M=) )

Tifinf (1) = e o

we say that
7 (tE, (s () Ne 7)) = £ (eE2, (550 () M2 ™) ) =0
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nd
' 7 (B (592 () Neltl ™)) = £ (¢B7, (597 (1) Me 11 ~°)).

this means f is constant on I and the proof is completed. O

Theorem 6. Let a € (0,1], M <0< N (N,M €R) with N # M, Re(a) > 0,
Re(b) >0 (a,beC), meNand f: I CR — R is T,,-generalized differentiable
on I, then, we have

i) If TRy f () > 0 then f is increasing on I.

it) If T f () <0 then f is decreasing on I.

iii) If T f () =0 then f is constant on I.

This theorem is proved in the same the above theorem.

Theorem 7. (Rolle’s Theorem for T3, and Tg ;- Generalized Differentiable Func-
tions) Let o € (0,1), M <0< N (N,M € R) with N # M, Re(a) >0, Re(b) >0
(a,beC), m € N and f : [c,d] C R = R is a function such that satisfies the
following conditions:

1) f is continuous on [c,d],

2) 1) =1(d).

Then,

a)if [ is TSq,-generalized differentiable on (c,d), there exists xp € (c,d), such
that TG, f (o) = 0.

b) if f is Ty -generalized differentiable on (c,d), there exists zg € (c,d), such
that TS, f (20) = 0.

Proof. a) Since f is continuous on [c,d] and f(c) = f(d), there is z¢ € (c,d), at
which the function has a local extrema. Then,

(4.8)

- 1 (20, (597 (w0) Ne fwol ) ) = f (wo B2ty (597 (o) Mz |20 ™))
NS (zo) = (N —M)e

and

(4.9)

- 7 (woBg, (597 (o) Nefao| ™) ) = f (wo B, (597 (w0) Me o))
NS (zo) = (N—M)e

In (4.8) and (4.9) the two value have opposite signs. Therefore T35, f (zo) = 0.

Moreover Ty, f (z0) = lim. 0 TS, f (o) = 0 so this completes the proof. O

Theorem 8. (Mean Value Theorem for Tg,, and TG, -Generalized Differentiable
Functions) Let « € (0,1], M < 0 < N (N,M € R) with N # M, Re(a) > 0,
Re(b) > 0 (a,beC), m € N and f : [c,d] C R — R is a continuous function.
Then,

1)if f is TS -generalized differentiable on (c,d), there exists xo € (c,d), such
that

Fd=fe) (1 -

4.10 TN = H .
(4.10) NS (o) d—o) NCED) + H () ) |wol
2)if fis Ty r-generalized differentiable on (c,d), there exists xg € (¢, d), such that

f(d) = f () Jao|"
(d—c¢) T(a+b)

(4.11) Tfiarf (x0) =

,e<0

,e>0
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Proof. 1) Consider the function

Then the function g satisfies the conditions of Rolle’s theorem. Hence there exists
xo € (c,d), such that T]5,9 (xo) = 0. Using TR5,-derivative

Tywg () = T lf () = f ()]
WT@ (t—c)
and for t = xg
Tt o) = LG50, 00
@ -f© (1
- {41 @wa+w+EHQ)WM .

2) By taking limit (4.10) the desired is obtained as follow:

: e _ : f (d) — f (C) 1 l—«o
o _ S@) = f(0) Jao"
T f (@) = d—c¢) T(atb)
which completes the proof. ([

Theorem 9. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,
Re(b) >0 (a,beC), m e Nand f : I C R — R is Ty,,-generalized differen-
tiable on I. TF,,-generalized derivative and classic derivative have the following
relationship:

‘t|1704

Tymf ()= F(T‘f‘b)f/ (t).
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Proof. From definition of T',,, it follows that
(412) Tt ()
7 (e, (sam () Ne 7)) = £ (tEm, (590 () Me )

= lim

e—0 (N—M)E
L (tEm, (590 () N= 7)) = £ (¢B7, (597 (6) Me 1))
C T, (o Ve ) - B (s ) Me )

Bz, (590 () Nelt] ) = B, (597 (1) Me [t
(N-M)e
7 (e, (s9m () Nelt)) = £ (¢E2, (597 (1) M=t 7))
= tlim : ’
=0 L (san ) Ne ™) - B, (590 (0) Me |t 7) }
B (s () Neldl ™) - By (59 () Me ")

) (N —M)e

is obtained. Calculating right limit as follow:

Bz, (597 (0) Ne |t =) = Bz, (597 () Me [t

X

(N—M)e
2 m
. L (Fm@Nel) (s Ne ™) (sam (1) =t ™)
T N \TH) T T@ro T Teary T T Tmatb)
2 m
1 (@ me) (g Mely ™) (s9m (1) M= ~)
Tt T Twery T Tty T T(mato)
B 1 sgn(t) (N — M)e|t|™® N (N? — M?) &2 |t > L
 (N-M)e I'(a+b) I'(2a +b)
Sgnm (t) (Nm _ Mm) Em |t‘—m0t
T (ma + b)
T sgn(t) | (N4 M) P mi N M e sgn (1)
 T(a+b) I'(2a+) “ ' (ma + b)
such that
) Bz, (g0 (1) Ne |t ™) — B2, (590 (1) Met )
lim(4-43) (N—M)e
—a 2 |42 m—1 Nm—1—i ) figm—1[t|-ma m (¢
_ g (TSGR @) (N + M)E? R £ sgn™ (1)
e=>0\ T'(a+b) I'(2a+10) — T (ma + b)
[t 5gm (t)

I'(a+D)
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Moreover,

S (e (s e 7)) - g (8 (s 0 Meld 7)) .
=0 {er (sgn @y Nel) ™) - Bz, (sgn () Me ) |

and from (4.12)-(4.13) we get

-«
T]%Mf(t) = F|€c|z+b)f/ (t)

and this gives the proof. O
Theorem 10. Let a € (0,1], M <0< N (N,M € R) with N # M, Re(a) > 0,

Re (b) >0 (a,b € C), m e N, Tg,,-derivatives of some functions are as follows:

(1)

TS, (sin (1) = r|(t£:>) cos (t).
(2) -
TS, (cos () = —F|Za+b) sin (t) .
(3)
'

TJ(\J;I\/[ (et) = m@ .
(4) Fort >0 and o € (0,1]

[e% tia
T log (1) = Tlath)

Using Theorem 9, the proof of Theorem 10 can easily be seen.

5. APPLICATIONS

In this section we claculate some T’ ,,-generalized derivative for some functions
by modified signal function

_ 1, 1¢>0
Sgnxt)::{ ~1, It <0

We will give the fractional derivative graphs for some values of a in the FIGURE
1-2. In this figures we chose as a = b = 1.

Example 1. 1) Let f : R — R and choose the function f (t) = t* we get

2 _
T (17) = =————t2|t| “5gn(t).
If we choose t = —2, we have

23704

Tymf(=2) = Ta+tb

and let assume a = b = a = 1 we have classical derivative T, f (=2) = —4 =

f(=2).
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) =¢

T () e a =01
0.5
TR s 0 =05

O () a=09

FIGURE 1

TERE) e a =01

05) 3
T (£) et @ = 0.5

Oy o __. a =09

FIGURE 2

2) Let f : R — R and choose the function f(t) = t3. The T ,,;-generalized
fractional derivative of 3 is that:

o 3 o —
TR (t7) = mt?’ t] " sgn (t).
For t = —2, we have
o 3 o

and if we choose a = b = o = 1, we have classical derivative Ty, f (—=2) = 12 =
f'(=2).
3) Let f: R — R and choose the function f (t) = e, we obtain that

a 1"
T (¢) = met-
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T 95 ©s w7 96 o5 G4 03 0z
(u.\) 4
0 R — a =01 o

T () v @ =05, 2

Dt —------ a =09 g

T\ .\, (sint) __________ a =01

Ti“‘})(oi”l) S XA

T (simt) == === a =09

F(t) = sint

FIGURE 4

For example,

" 31—a B
TNMf(_3) = F(a—i—b)e 3)

31—04
e,
I'(a+b)

1
LA

Thuf 0) = Bm e =0

Timf (3)

Ifwe choose a = b= o = 1, we have Tk, (e!) = |¢|' ™ et. For example, Tk ,,f (—3) =
1(=3), TNMf() e3 = f'(3) and for t = 0 we get Tr,, f(0)

limi (|t\1_a e ) = 1= f’(0) these examples turn into classical derivatives.
t—>0

) Let f:R — R and choose the function f (t) = sint and
|t|17a

cos ().
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For example,

,n_lfa
TNuf(=m) = Tl(axtd a+b)a
11—«
o s
TN f () T a+b)’
o . '~
Ty f0) = lim [ =———cos(t) | =0.

t—0% \ I' (a + b)

If we choose a = b = o = 1 we have T, (sin (t)) = |t|'~* cos(t). For example,
Ty (f(=m)) = =1= f'(=7), Ta; (f (7)) = =1 = f'(x) and for t = 0 we get
T (F(0) = 111(1)1i <|t|17a cos (t)) = cos(0) =1 = f'(0) these examples turn into

t—
classical derivatives.

This new generalized derivative will contribute to the solution of fractional dif-
ferential equations. We also believe that it will guide us to the next works.
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