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Abstract. With respect to the non-integro-fractional derivative, in previous

studies, the non-integro-fractional derivative of non-negative real numbers can
be calculated. However, by previous definitions, the non-integro-fractional de-

rivative of negative values can not be calculated due to t−α, α ∈ (0, 1). For

example, (−2)−
1
2 /∈ R for t = −2 and α = 1

2
. So what should we do for

the non-integro-fractional derivative of ”negative” real numbers? The pur-

pose of this paper is to introduce more general derivative definition and we

claim that we will obtain non-integro-fractional derivative of ”all” real num-
bers. Classic derivative, q-derivative, (p, q)-derivative, comformable fractional

derivative, Katugampola fractional derivative and backward-forward difference

operator in Time Scale are the special cases of these general derivative defini-
tions. These new definitions of ours must give us derivatives on both discrete

and continuous calculus.

1. Introduction

Fractional calculus is not a new topic; in reality it has almost the same history as
that of the classical calculus. Since the occurrence of fractional or fractional-order
derivative, the theories of fractional calculus fractional derivative plus fractional
integral has undergone a significant and even heated development, which has been
primarily contributed by pure but not applied mathematicians.

There exist many different definitions of fractional derivative, among which we
mention the Riemann–Liouville, Caputo, Hadamard, Edrlyi–Kober and Katugam-
pola types [9, 12]. Most of the fractional derivatives are defined via fractional
integrals [15]. Due to the same reason, those fractional derivatives inherit some
non-local behaviors, which lead them to many interesting applications including
memory effects and future dependence. All of these have important applications
in several different areas such as mathematics, physics, biology, medicine and en-
gineering. We must recall that to each definition of fractional derivative, there
corresponds a specific fractional integral [10, 12].

In 2014, Khalil [11] introduced a new fractional derivative and a correspond-
ing fractional integral with properties similar to the classical (integerorder) de-
rivative and integral. He called the derivative conformable fractional derivative
and the integral α-fractional integral. Abdeljawad [1] presented a generalization
of the conformable fractional derivative and the α-fractional integral. In the same
year, Katugampola [7] introduced the alternative fractional derivative and, from the
truncated exponential function, the truncated alternative fractional derivative; to
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both derivatives there corresponds a unique α-fractional integral. Recently, Sousa
and Oliveira [18, 19] introduced the M-fractional derivative and the truncated M-
fractional derivative, whose properties generalize the properties of integer-order
calculus derivatives and integrals.

With respect to the non-integro-fractional derivative, in previous studies, the
non-integro-fractional derivative of non-negative real numbers can be calculated.
However, by previous definitions, the non-integro-fractional derivative of negative

values can not be calculated due to t−α, α ∈ (0, 1). For example, (−2)
− 1

2 /∈ R for
t = −2 and α = 1

2 . So what should we do for the non-integro-fractional derivative
of ”negative” real numbers? The purpose of this paper is to introduce more general
derivative definition and we claim that we will obtain non-integro-fractional deriv-
ative of ”all” real numbers. For this we will use the absolute value and the modi-
fied signal functions. Classic derivative, q-derivative, (p, q)-derivative, comformable
fractional derivative, Katugampola fractional derivative and backward-forward dif-
ference operator in Time Scale are the special cases of these general derivative
definitions. These new definitions of ours must give us derivatives on both discrete
and continuous calculus.

We will benefit from the Mittag-Leffler function in this definitions. Too much
work has been done on the Mittag-Leffler function. Many updates of Mittag-Leffler
function are also available. In this study we will use a Mittag-Leffler function with
less parameters.

In third section, we will introduce two generalized derivatives for discrete and
continuous analysis and we’ll get some special cases of these definitions. In fourth
section, we will present the properties and theorems of generalized derivatives. In
last section, we will give some examples and simulate these examples with graphics.
In these examples, we will see that the fractional derivatives of the negative numbers
gives the classical derivative for α = 1.

2. Preleminaries

In 1905, Wiman [17] proposed and studied a generalization of the Mittag–Leffler
function, the so-called two-parameter Mittag–Leffler function.

Definition 1. The two-parameter Mittag-Leffler function is given by the series

Ea,b (z) =

∞∑
i=0

(z)
i

Γ (ai+ b)

with a, b ∈ C, Re (a) > 0 and Re (b) > 0.

Throughout the study we will accept α ∈ (0, 1] and we need the following
definition bounded Mittag–Leffler function:

Definition 2. Bounded two-parameter Mittag–Leffler function is given by:

(2.1) Ema,b (z) =

m∑
i=0

(z)
i

Γ (ai+ b)

where m ∈ N.

Some special cases of (2.1):
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i) For a = b = 1, t > 0 and m =∞, then

E∞1,1
(
Nεt−α

)
=

∞∑
i=0

(Nεt−α)
i

Γ (i+ 1)
=

∞∑
i=0

(Nεt−α)
i

i!
= eNεt

−α
.

ii) For a = b = m = 1 and t > 0, then

E1
1,1

(
εt−α

)
=

1∑
i=0

(εt−α)
i

Γ (i+ 1)
= 1 + εt−α.

iii) For a = b = m = 1 and t > 0, then

E1
1,1

(
−0εt−α

)
=

1∑
i=0

(−0εt−α)
i

Γ (i+ 1)
= 1.

Also for n ∈ R and M ≤ 0 ≤ N, the following notation will be used:

[n]E =

n−1∑
i=0

(
Ema,b

(
ŝgn (t)Nε |t|−α

))n−1−i (
Ema,b

(
ŝgn (t)Mε |t|−α

))i
where ŝgn (t) is a modified signal function is defined by

ŝgn (t) =

{
1, if t ≥ 0
−1, if t < 0.

3. New Generalized Derivatives

In this section, we introduce two generalized derivatives for discrete and continu-
ous analysis. We claim that we will find fractional derivatives of all real numbers by
new definition of fractional derivative. Now let establish new definition derivative
for discrete analogue as follow:

Definition 3. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and we denote a fuction f : I ⊂ R → R. The
generalized discreted derivative of the function f is defined as:

TαεNMf (t)(3.1)

= TαεNM (m; a, b) f (t)

=
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

.

If f is TαεNM -differentiable in some (−t0, 0)∪(0, t0), t0 > 0, and limt→0± TαεNMf (t)
exist. Then, we define TαεNMf (0) such as TαεNMf (0) = limt→0± TαεNMf (t) .

In (3.1) by using limit for ε → 0, we have defined generalized derivative for
continuous analogue as follow:

Definition 4. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and we denote a fuction f : I ⊂ R → R. The
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generalized derivative of the function f is defined as:

TαN,Mf (t)(3.2)

= TαN,M (m; a, b) f (t)

= lim
ε→0

[TαεNMf (t)]

= lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

.

If f is TαN,M -differentiable in some (−t0, 0)∪(0, t0), t0 > 0, and limt→0± TαN,Mf (t)

exist. Then, we define TαN,Mf (0) such as TαN,Mf (0) = limt→0± TαN,Mf (t) .

We will write TαεNMf (t) instead of TαεNM (m; a, b) f (t) and TαN,Mf (t) instead of

TαN,M (m; a, b) f (t) throughout the study.

The following results are obtained from (3.1) and (3.2) :
1) If we choose a = b = m = α = N = 1,M = 0 in the definition (3.2), we
recaptured classic derivative:

T 1
1,0f (t) = lim

ε→0
T 1ε

1,0 f (t) = lim
ε→0

f (t+ ε)− f (t)

ε
= f ′ (t) .

2) If we choose a = b = m = N = α = 1,M = 0, t > 0 in (3.1) we have

T 1ε
1,0f (t) =


f
(
t+ εt1−α

)
− f (t)

ε
, if t ≥ 0

f
(
t+ εt1−α

)
− f (t)

ε
, if t < 0

In above by choosing q = 1 + εt−1, we have quantum q-derivative in [6]:

T 1ε
1,0f (t) =


f
(
t+ εt1−α

)
− f (t)

ε
, if t ≥ 0

f
(
t+ εt1−α

)
− f (t)

ε
, if t < 0

=
f (qt)− f (t)

(q − 1) t
= Dqf (t) .

3) If we choose a = b = m = N = −M = α = 1 in (3.1), we have

T 1ε
1,−1f (t) =


f
(
t+ εt1−α

)
− f

(
t− εt1−α

)
2ε

, if t ≥ 0

f
(
t+ εt1−α

)
− f

(
t− εt1−α

)
2ε

, if t < 0

and by choosing q = 1+εt−α with p = 1−εt−α replace respectively ε = (q − 1) t−α,
ε = (1− p) t−α, we have quantum (p, q)-derivative in [14]:

T 1ε
1,−1f (t) =


f
(
t+ εt1−α

)
− f

(
t− εt1−α

)
2ε

, if t ≥ 0

f
(
t+ εt1−α

)
− f

(
t− εt1−α

)
2ε

, if t < 0

=
f (qt)− f (pt)

(q − p) t
= Dp,qf (t) .

4) If we choose a = b = m = N = 1, M = 0 and t > 0 with α ∈ (0, 1) in (3.2), we
have comformable fractional derivative is obtained as below:

Tα1,0f (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
= Tα (f) (t)

which is defined by Khalil in [11].
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5) If we choose a = b = N = 1,M = 0,m =∞ and t > 0 with α ∈ (0, 1) in (3.1),
we recaptured

Tα1,0f (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
= Dα (f) (t)

which is defined by Katugampola in [7].
6) If we choose a = β b = r = 1, s = 0,m =∞ and t > 0 with α ∈ (0, 1) in (3.2),

we recaptured

Tα1,0f (t) = lim
ε→0

f (tEβ (εt−α))− f (t)

ε
= Dα,β

M (f) (t)

which is defined by Vanterler in [20].
7) If we choose a = b = α = N = 1,M = 0,m = 1 and ε = 1 in (3.1) we

recaptured

Ema,b

(
ŝgn (t)Nε |t|−α

)
= 1 + t−1

and

T 1,1
1,0 f (t) = f (t+ 1)− f (t) = f4 (t)

is the forward difference operator in Time Scale. Also for a = b = α = −M =
1, N = 0,m = 1 and ε = 1 we recaptured

Ema,b

(
ŝgn (t)Mε |t|−α

)
= 1− t−1.

So

T 1,1
0,−1f (t) = f (t)− f (t− 1) = fO (t)

is the backward difference operator by Hilger in [3].
8) If we choose a = b = m = N = 1, M = 0, α = p and t > 0 with

Em1,1

(
ŝgn (t) ε |t|−α

)
= ψ (t, p) in (3.2), we have general conformable fractional

derivative is obtained as below:

Tα1,0f (t) = lim
ε→0

f (t+ εψ (t, p))− f (t)

ε
= Dp

ψf (t)

which is defined by Zhao in [21].

4. Properties and Theorems of Generalized Derivatives

In this section, we will start the following theorem the properties of TαεNM–
derivative:

Theorem 1. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f, g be TαεNM -differentiable functions. Then,

(1) TαεNM (cf + dg) = cTαεNM (f) + dTαεNM (g), for all c, d ∈ R.

(2) TαεNM (C) = 0, for all constant functions, f (t) = C.

(3)

TαεNM (fg) (t)

= g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
TαεNMf (t) + f

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMg (t)
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(4)

TαεNM

(
f

g

)
(t)

=
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMf (t)− f

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMg (t)

g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
where

g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
6= 0.

(5) TαεNM (f ◦ g) (t) = f ′ (g (t))TαεNMg (t) , for f differentiable at g(t).

Proof. Proof of parts (1) and (2) are clear from definition in (3.1).
Proof part (3):

TαεNM (fg) (t)

=
(fg)

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− (fg)

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

=
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
(N −M) ε

−
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

+
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

−
f
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

= g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
TαεNMf (t) + f

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMg (t) .

This completes the proof of (3). Similarly if α ∈ (0, 1] , we have

TαεNM

(
f

g

)
(t)

=

(
f

g

)(
tEma,b

(
ŝgn (t)Nε |t|−α

))
−
(
f

g

)(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε
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=
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) εg

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))

−
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
(N −M) εg

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))

+
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
(N −M) εg

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
f
(
tEma,b

(
ŝgn (t)Mε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
(N −M) εg

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

))

=
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMf (t)− f

(
tEma,b

(
ŝgn (t)Nε |t|−α

))
TαεNMg (t)

g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

)) .

The proof of (4) is completed. Finally let prove the part of (5)

TαεNM (f ◦ g) (t)

=
f
(
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

)))
− f

(
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

)))
(N −M) ε

=
f
(
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

)))
− f

(
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

)))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− g

(
tEma,b

(
ŝgn (t)Mε |t|−α

))

×
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− g

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

=
f
(
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

)))
− f

(
g
(
tEma,b

(
ŝgn (t)Mε |t|−α

)))
g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− g

(
tEma,b

(
ŝgn (t)Mε |t|−α

)) TαεNMg (t) .

Here for g
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
= g (t)+ε0 and g

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
=

g (t) + ε1 there exist ε0, ε1 ∈ R

TαεNM (f ◦ g) (t) =
f (g (t) + ε0)− f (g (t) + ε1)

ε0 − ε1
TαεNMg (t) .
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For ε0 → ε1 we have that

TαεNM (f ◦ g) (t)

= lim
ε0→ε1

TαεNM (f ◦ g) (t)

= lim
ε0→ε1

f (g (t) + ε0)− f (g (t) + ε1)

ε0 − ε1
TαεNMg (t) .

= f ′ (g (t))TαεNMg (t)

which is completed the proof of the part of (5). �

The following theorem has been proved as Theorem 1 for the TαNM -derivative:

Theorem 2. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f, g be TαNM -differentiable functions. Then,

(1) TαNM (cf + dg) = cTαNM (f) + dTαNM (g), for all c, d ∈ R.

(2) TαNM (C) = 0, for all constant functions, f (t) = C.
(3)

TαNM (fg) (t) = g (t)TαNMf (t) + f (t)TαNMg (t) .

(4)

TαNM

(
f

g

)
(t) =

g (t)TαNMf (t)− f (t)TαNMg (t)

g2 (t)
, for g (t) 6= 0.

(5) TαNM (f ◦ g) (t) = f ′ (g (t))TαNMg (t), for f differentiable at g(t).

Theorem 3. For all n ∈ R, the TαεNM -derivative of tn is that

(4.1) TαεNM (tn) =

(
1

Γ (a+ b)
+H (ε)

)
[n]E t

n |t|−α ŝgn (t)

where

H (ε)

=
ŝgn (t) (N +M) ε |t|−α

Γ (2a+ b)
+

(ŝgn (t))
2 (
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·

+
(ŝgn (t))

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

and

[n]E =

n−1∑
i=0

(
Ema,b

(
ŝgn (t)Nε |t|−α

))n−1−i (
Ema,b

(
ŝgn (t)Mε |t|−α

))i
.

Proof. From definition of TαεNM -derivative, we get

TαεNM (tn)

=
tn
[(
Ema,b

(
ŝgn (t)Nε |t|−α

))n
−
(
Ema,b

(
ŝgn (t)Mε |t|−α

))n]
(N −M) ε

.
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If we take t > 0

TαεNM (tn)

=
tn
[(
Ema,b (Nεt−α)

)n
−
(
Ema,b (Mεt−α)

)n]
(N −M) ε

=
tn

(N −M) ε

[
Ema,b

(
Nεt−α

)
− Ema,b

(
Mεt−α

)]
×

[
n−1∑
i=0

(
Ema,b

(
Nε |t|−α

))n−1−i (
Ema,b

(
Mε |t|−α

))i]

=
tn

(N −M) ε

[
Ema,b

(
Nεt−α

)
− Ema,b

(
Mεt−α

)]
[n]E

=
tn

(N −M) ε

m∑
i=0

(
N i −M i

)
(εt−α)

i

Γ (ai+ b)
[n]E

=
tn

(N −M) ε
[n]E

{
(N −M) εt−α

Γ (a+ b)
+

(
N2 −M2

)
ε2t−2α

Γ (2a+ b)

+

(
N3 −M3

)
ε3t−3α

Γ (3a+ b)
+ · · ·+ (Nm −Mm) εmt−mα

Γ (ma+ b)

}

=
tn

(N −M) ε
[n]E (N −M) εt−α

{
1

Γ (a+ b)
+

(N +M) εt−α

Γ (2a+ b)

+

(
N2 +NM +M2

)
ε2t−2α

Γ (3a+ b)
+ · · ·+ 1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1t−(m−1)α

}

= tn−α [n]E

{
1

Γ (a+ b)
+

(N +M) εt−α

Γ (2a+ b)

+

(
N2 +NM +M2

)
ε2t−2α

Γ (3a+ b)
+ · · ·+ 1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1t−(m−1)α

}
.

If we choose

H (ε) =
(N +M) εt−α

Γ (2a+ b)
+

(
N2 +NM +M2

)
ε2t−2α

Γ (3a+ b)
+ · · ·+ 1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1t−(m−1)α

=
ŝgn (t) (N +M) ε |t|−α

Γ (2a+ b)
+

(ŝgn (t))
2 (
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·

+
(ŝgn (t))

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1t−(m−1)α

then it follows that

(4.2) TαεNM (tn) = tn−α [n]E

(
1

Γ (a+ b)
+H (ε)

)
.
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Also if we take t < 0, then we get

TαεNM (tn) =
tn
[(
Ema,b

(
−Nε |t|−α

))n
−
(
Ema,b

(
−Mε |t|−α

))n]
(N −M) ε

=
tn

(N −M) ε

[
Ema,b

(
−Nε |t|−α

)
− Ema,b

(
−Mε |t|−α

)]

×

[
n−1∑
i=0

(
Ema,b

(
−Nε |t|−α

))n−1−i (
Ema,b

(
−Mε |t|−α

))i]

=
tn

(N −M) ε

[
Ema,b

(
−Nε |t|−α

)
− Ema,b

(
−Mε |t|−α

)]
[n]E

=
tn

(N −M) ε

m∑
i=0

(
(−N)

i − (−M)
i
)(

ε |t|−α
)i

Γ (ai+ b)
[n]E

=
tn

(N −M) ε
[n]E

{
(−N +M) ε |t|−α

Γ (a+ b)
+

(
N2 −M2

)
ε2 |t|−2α

Γ (2a+ b)

+

(
−N3 +M3

)
ε3 |t|−3α

Γ (3a+ b)
+ · · ·+ ((−N)

m − (−M)
m

) εm |t|−mα

Γ (ma+ b)

}

=
tn

(N −M) ε

[
n−1∑
i=0

(
Ema,b

(
ŝgn (t)Nε |t|−α

))n−1−i (
Ema,b

(
ŝgn (t)Mε |t|−α

))i]

× (−N +M) ε |t|−α
{

1

Γ (a+ b)
− (N +M) ε |t|−α

Γ (2a+ b)

+

(
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·+ (−1)

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

}

= −tn |t|−α [n]E

{
1

Γ (a+ b)
− (N +M) ε |t|−α

Γ (2a+ b)

+

(
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·+ (−1)

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

}
.
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and

H (ε) = − (N +M) ε |t|−α

Γ (2a+ b)
+

(
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·

+
(−1)

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

=
ŝgn (t) (N +M) ε |t|−α

Γ (2a+ b)
+

(ŝgn (t))
2 (
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·

+
(ŝgn (t))

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

such that

(4.3) TαεNM (tn) = −tn |t|−α [n]E

(
1

Γ (a+ b)
+H (ε)

)
.

Therefore, from (4.2) and (4.3) we have reached the desired (4.1). �

Corollary 1. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and for all n ∈ R, the TαNM -derivative of tn is that

(4.4) TαNM (tn) =
n

Γ (a+ b)
tn |t|−α ŝgn (t)

Proof. Since TαNM -derivative has limit as ε → 0, if we take the limit of (4.1) and
α ∈ (0, 1] we have

lim
ε→0

TαεNM (tn) = TαNM (tn)

= lim
ε→0

(
1

Γ (a+ b)
+H (ε)

)
[n]E t

n |t|−α ŝgn (t)

= tn |t|−α ŝgn (t) lim
ε→0

(
1

Γ (a+ b)
+H (ε)

)
lim
ε→0

[n]E .

Moreover

lim
ε→0

[n]E = lim
ε→0

n−1∑
i=0

(
Ema,b

(
ŝgn (t)Nε |t|−α

))n−1−i (
Ema,b

(
ŝgn (t)Mε |t|−α

))i

=

n−1∑
i=0

(
Ema,b (0)

)n−1−i (
Ema,b (0)

)i
=

n−1∑
i=0

1 = n

such that

TαNM (tn) =
n

Γ (a+ b)
tn |t|−α ŝgn (t) .

this is completed the proof of (4.4). �

Remark 1. Under the assumptation of Corollary 1, we have

(4.5) TαεNM (tα) =

(
1

Γ (a+ b)
+H (ε)

)
[α]E
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where

H (ε)

=
ŝgn (t) (N +M) ε |t|−α

Γ (2a+ b)
+

(ŝgn (t))
2 (
N2 +NM +M2

)
ε2 |t|−2α

Γ (3a+ b)
+ · · ·

+
(ŝgn (t))

m−1

Γ (ma+ b)

m−1∑
i=0

Nm−1−iM iεm−1 |t|−(m−1)α

and

(4.6) TαNM (tα) =
α

Γ (a+ b)

Proof. In Theorem 3, if α ∈ (0, 1] , the domain of tα function must be nonnegative,
so

TαεNM (tα) =

(
1

Γ (a+ b)
+H (ε)

)
[n]E t

αt−α

=

(
1

Γ (a+ b)
+H (ε)

)
[α]E

and by limit ε→ 0, we have

TαNM (tα) =
α

Γ (a+ b)
.

�

In (4.4) if n = 1 is selected and by using equality t |t|−α ŝgn (t) = |t|1−α the
following result is obtained:

Corollary 2. For α ∈ (0, 1] , the TαNM -derivative of t is that

TαεNM (t) =

(
1

Γ (a+ b)
+H (ε)

)
|t|1−α .

and

TαNM (t) =
|t|1−α

Γ (a+ b)
.

Now in the following theorem we will prove the continuity of the TαNMf at point
c:

Theorem 4. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N. If f : I ⊂ R → R is TαNM - generalized differentiable
at c ∈ I, then, f is continuous at c.

Proof. Since

f
(
cEma,b

(
ŝgn (t)Nε |c|−α

))
− f

(
cEma,b

(
ŝgn (t)Mε |c|−α

))

=
f
(
cEma,b

(
ŝgn (t)Nε |c|−α

))
− f

(
cEma,b

(
ŝgn (t)Mε |c|−α

))
(N −M) ε

. (N −M) ε
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we get

lim
ε→0

[
f
(
cEma,b

(
ŝgn (t)Nε |c|−α

))
− f

(
cEma,b

(
ŝgn (t)Mε |c|−α

))]

= lim
ε→0

f
(
cEma,b

(
ŝgn (t)Nε |c|−α

))
− f

(
cEma,b

(
ŝgn (t)Mε |c|−α

))
(N −M) ε

lim
ε→0

(N −M) ε

= TαNMf (c) .0 = 0.

Let choose c = d

Ema,b(ŝgn(t)Mε|c|−α)
then we have

lim
ε→0

f
d Ema,b

(
ŝgn (t)Nε |c|−α

)
Ema,b

(
ŝgn (t)Mε |c|−α

)
− f

 d

Ema,b

(
ŝgn (t)Mε |c|−α

)Ema,b (ŝgn (t)Mε |c|−α
)

= 0.

Let assume that

Ema,b

(
ŝgn (t)Nε |c|−α

)
Ema,b

(
ŝgn (t)Mε |c|−α

) =

1
Γ(b) +

(ŝgn(t)Nε|c|−α)
Γ(a+b) +

(ŝgn(t)Nε|c|−α)
2

Γ(2a+b) ...+
(ŝgn(t)Nε|c|−α)

m

Γ(ma+b)

1
Γ(b) +

(ŝgn(t)Mε|c|−α)
Γ(a+b) +

(ŝgn(t)Mε|c|−α)
2

Γ(2a+b) ...+
(ŝgn(t)Mε|c|−α)

m

Γ(ma+b)

= 1+h

and

lim
ε→0

f
d Ema,b

(
ŝgn (t)Nε |c|−α

)
Ema,b

(
ŝgn (t)Mε |c|−α

)
− f (d)


= lim

h→0
[f (d+ hd)− f (d)]

= lim
h→0

[f (d+ h)− f (d)] = 0

such that
lim
h→0

[f (d+ h)− f (d)] = 0

i.e
lim
h→0

f (d+ h) = f (d)

and replace as d = cEma,b

(
ŝgn (t)Mε |c|−α

)
, by limε→0

[
Ema,b

(
ŝgn (t)Nε |c|−α

)]
=

1 then we have

lim
ε→0

[
lim
h→0

f
(
cEma,b

(
ŝgn (t)Nε |c|−α

)
+ h
)]

= lim
ε→0

f
(
cEma,b

(
ŝgn (t)Nε |c|−α

))
i.e

lim
h→0

f (c+ h) = f (c)

which implies that f is continuous at c. �

Theorem 5. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f : I ⊂ R→ R is TαεNM -generalized differentiable
on I. Then, we have

i) If TαεNMf (x) > 0, then f is increasing on I.
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ii) If TαεNMf (x) < 0, then f is decreasing on I.
iii) If TαεNMf (x) = 0, then f is constant on I.

Proof. Firstly we prove part i). For ∀t ∈ I, let us assume that

lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

> 0

(4.7)

TαεNMf (t) =
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

> 0.

In (4.7), if ε > 0, then

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
> 0

is true and so

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
> f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
.

On the other hand, for M ≤ 0 ≤ N, t > 0 and ε > 0

tEma,b

(
Nε |t|−α

)
> t > tEma,b

(
Mε |t|−α

)
.

Also for M ≤ 0 ≤ N, t < 0 and ε > 0

Ema,b

(
−Nε |t|−α

)
< Ema,b

(
−Mε |t|−α

)
.

is true and so

tEma,b

(
−Nε |t|−α

)
> tEma,b

(
−Mε |t|−α

)
.

Therefore f is increasing on I. Similarly if ε < 0, then

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
< 0

is true and thus

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
< f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
.

On the other hand, for M ≤ 0 ≤ N, t > 0 and ε < 0,

tEma,b

(
ŝgn (t)Nε |t|−α

)
< t < tEma,b

(
ŝgn (t)Mε |t|−α

)
.

Similarly for M ≤ 0 ≤ N, t < 0 and ε < 0

Ema,b

(
−Nε |t|−α

)
< Ema,b

(
−Mε |t|−α

)
i.e.

tEma,b

(
−Nε |t|−α

)
> tEma,b

(
−Mε |t|−α

)
.

Therefore f is increasing on I.
Same way ii) can be proved. Finally for ∀t ∈ I if

TαεNMf (t) =
f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

= 0.

we say that

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
= 0
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and

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
= f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
,

this means f is constant on I and the proof is completed. �

Theorem 6. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f : I ⊂ R→ R is TαNM -generalized differentiable
on I, then, we have

i) If TαNMf (x) > 0 then f is increasing on I.
ii) If TαNMf (x) < 0 then f is decreasing on I.
iii) If TαNMf (x) = 0 then f is constant on I.

This theorem is proved in the same the above theorem.

Theorem 7. (Rolle’s Theorem for TαεNM and TαNM -Generalized Differentiable Func-
tions) Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0, Re (b) > 0
(a, b ∈ C) , m ∈ N and f : [c, d] ⊂ R → R is a function such that satisfies the
following conditions:

1) f is continuous on [c, d] ,
2) f (c) = f (d) .
Then,
a)if f is TαεNM -generalized differentiable on (c, d) , there exists x0 ∈ (c, d), such

that TαεNMf (x0) = 0.
b) if f is TαNM -generalized differentiable on (c, d) , there exists x0 ∈ (c, d), such

that TαNMf (x0) = 0.

Proof. a) Since f is continuous on [c, d] and f(c) = f(d), there is x0 ∈ (c, d), at
which the function has a local extrema. Then,
(4.8)

TαεNMf (x0) =
f
(
x0E

m
a,b

(
ŝgn (x0)Nε |x0|−α

))
− f

(
x0E

m
a,b

(
ŝgn (x0)Mε |x0|−α

))
(N −M) ε

, ε < 0

and
(4.9)

TαεNMf (x0) =
f
(
x0E

m
a,b

(
ŝgn (x0)Nε |x0|−α

))
− f

(
x0E

m
a,b

(
ŝgn (x0)Mε |x0|−α

))
(N −M) ε

, ε > 0

In (4.8) and (4.9) the two value have opposite signs. Therefore TαεNMf (x0) = 0.
Moreover TαNMf (x0) = limε→0 T

αε
NMf (x0) = 0 so this completes the proof. �

Theorem 8. (Mean Value Theorem for TαNM and TαεNM -Generalized Differentiable
Functions) Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f : [c, d] ⊂ R → R is a continuous function.
Then,

1)if f is TαεNM -generalized differentiable on (c, d) , there exists x0 ∈ (c, d), such
that

(4.10) TαεNMf (x0) =
f (d)− f (c)

(d− c)

(
1

Γ (a+ b)
+H (ε)

)
|x0|1−α .

2) if f is TαNM -generalized differentiable on (c, d) , there exists x0 ∈ (c, d), such that

(4.11) TαNMf (x0) =
f (d)− f (c)

(d− c)
|x0|1−α

Γ (a+ b)
.
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Proof. 1) Consider the function

g (t) = f (t)− f (c)− f (d)− f (c)

(d− c)
((t− c)) .

Then the function g satisfies the conditions of Rolle’s theorem. Hence there exists
x0 ∈ (c, d), such that TαεNMg (x0) = 0. Using TαεNM -derivative

TαεNMg (t) = TαεNM [f (t)− f (c)]

−f (d)− f (c)

(d− c)
TαεNM (t− c)

and for t = x0

TαεNMf (x0) =
f (d)− f (c)

(d− c)
T εNM (t− c)

=
f (d)− f (c)

(d− c)

(
1

Γ (a+ b)
+H (ε)

)
x0 |x0|−α ŝgn(x0)

=
f (d)− f (c)

(d− c)

(
1

Γ (a+ b)
+H (ε)

)
|x0|1−α .

2) By taking limit (4.10) the desired is obtained as follow:

lim
ε→0

TαεNMf (x0) = lim
ε→0

f (d)− f (c)

(d− c)

(
1

Γ (a+ b)
+H (ε)

)
|x0|1−α

TαNMf (x0) =
f (d)− f (c)

(d− c)
|x0|1−α

Γ (a+ b)

which completes the proof. �

Theorem 9. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N and f : I ⊂ R → R is TαNM -generalized differen-
tiable on I. TαNM -generalized derivative and classic derivative have the following
relationship:

TαNMf (t) =
|t|1−α

Γ (a+ b)
f ′ (t) .
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Proof. From definition of TαNM , it follows that

TαNMf (t)(4.12)

= lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
(N −M) ε

= lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)
×
Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)
(N −M) ε

= t lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
t
{
Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)}
× lim
ε→0

Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)
(N −M) ε

is obtained. Calculating right limit as follow:

Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)
(N −M) ε

=
1

(N −M) ε

 1

Γ (b)
+

(
ŝgn (t)Nε |t|−α

)
Γ (a+ b)

+

(
ŝgn (t)Nε |t|−α

)2

Γ (2a+ b)
+ · · ·+

(
ŝgn (t)Nε |t|−α

)m
Γ (ma+ b)

−

 1

Γ (b)
+

(
ŝgn (t)Mε |t|−α

)
Γ (a+ b)

+

(
ŝgn (t)Mε |t|−α

)2

Γ (2a+ b)
+ · · ·+

(
ŝgn (t)Mε |t|−α

)m
Γ (ma+ b)




=
1

(N −M) ε

(
ŝgn (t) (N −M) ε |t|−α

Γ (a+ b)
+

(
N2 −M2

)
ε2 |t|−2α

Γ (2a+ b)
+ · · ·

+
sgnm (t) (Nm −Mm) εm |t|−mα

Γ (ma+ b)

)

=
|t|−α ŝgn (t)

Γ (a+ b)
+

(N +M) ε2 |t|−2α

Γ (2a+ b)
+ · · ·+

m−1∑
i=0

Nm−1−iM iεm−1|t|−mαsgnm (t)

Γ (ma+ b)

such that

lim
ε→0

Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)
(N −M) ε

(4.13)

= lim
ε→0

(
|t|−α ŝgn (t)

Γ (a+ b)
+

(N +M) ε2 |t|−2α

Γ (2a+ b)
+ · · ·+

m−1∑
i=0

Nm−1−iM iεm−1|t|−mαsgnm (t)

Γ (ma+ b)

)

=
|t|−α ŝgn (t)

Γ (a+ b)
.
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Moreover,

lim
ε→0

f
(
tEma,b

(
ŝgn (t)Nε |t|−α

))
− f

(
tEma,b

(
ŝgn (t)Mε |t|−α

))
t
{
Ema,b

(
ŝgn (t)Nε |t|−α

)
− Ema,b

(
ŝgn (t)Mε |t|−α

)} = f ′ (t)

and from (4.12)-(4.13) we get

TαNMf (t) =
|t|1−α

Γ (a+ b)
f ′ (t)

and this gives the proof. �

Theorem 10. Let α ∈ (0, 1] , M ≤ 0 ≤ N (N,M ∈ R) with N 6= M , Re (a) > 0,
Re (b) > 0 (a, b ∈ C) , m ∈ N , TαNM -derivatives of some functions are as follows:

(1)

TαNM (sin (t)) =
|t|1−α

Γ (a+ b)
cos (t) .

(2)

TαNM (cos (t)) = − |t|1−α

Γ (a+ b)
sin (t) .

(3)

TαNM
(
et
)

=
|t|1−α

Γ (a+ b)
et.

(4) For t > 0 and α ∈ (0, 1]

TαNM log (t) =
t−α

Γ (a+ b)
.

Using Theorem 9, the proof of Theorem 10 can easily be seen.

5. Applications

In this section we claculate some TαNM -generalized derivative for some functions
by modified signal function

ŝgn (t) =

{
1, If t ≥ 0
−1, If t < 0.

We will give the fractional derivative graphs for some values of α in the FIGURE
1-2. In this figures we chose as a = b = 1.

Example 1. 1) Let f : R→ R and choose the function f (t) = t2 we get

TαNM
(
t2
)

=
2

Γ (a+ b)
t2 |t|−α ŝgn (t) .

If we choose t = −2, we have

TαNMf (−2) = − 23−α

Γ (a+ b)

and let assume a = b = α = 1 we have classical derivative T 1
NMf (−2) = −4 =

f ′ (−2) .



ON NEW GENERALIZED NON-INTEGRO-DERIVATIVES AND APPLICATIONS 19

-0.7-0.7 -0.6-0.6 -0.5-0.5 -0.4-0.4 -0.3-0.3 -0.2-0.2 -0.1-0.1 0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 11 1.11.1

-0.6-0.6

-0.5-0.5

-0.4-0.4

-0.3-0.3

-0.2-0.2

-0.1-0.1

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

00

ff

Figure 1

-0.8-0.8 -0.7-0.7 -0.6-0.6 -0.5-0.5 -0.4-0.4 -0.3-0.3 -0.2-0.2 -0.1-0.1 0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9

-0.3-0.3

-0.2-0.2

-0.1-0.1

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

00

ff

Figure 2

2) Let f : R → R and choose the function f (t) = t3. The TαNM -generalized
fractional derivative of t3 is that:

TαNM
(
t3
)

=
3

Γ (a+ b)
t3 |t|−α ŝgn (t) .

For t = −2, we have

TαNMf (−2) =
3

Γ (a+ b)
23−α

and if we choose a = b = α = 1, we have classical derivative T 1
NMf (−2) = 12 =

f ′ (−2) .
3) Let f : R→ R and choose the function f (t) = et, we obtain that

TαNM
(
et
)

=
|t|1−α

Γ (a+ b)
et.
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For example,

TαNMf (−3) =
31−α

Γ (a+ b)
e−3,

TαNMf (3) =
31−α

Γ (a+ b)
e3,

TαNMf (0) = lim
t→0±

|t|1−α

Γ (a+ b)
et = 0.

If we choose a = b = α = 1, we have T 1
NM (et) = |t|1−α et. For example, T 1

NMf (−3) =
e−3 = f ′ (−3) , T 1

NMf (3) = e3 = f ′ (3) and for t = 0 we get T 1
NMf (0) =

lim
t→0±

(
|t|1−α et

)
= e0 = 1 = f ′ (0) these examples turn into classical derivatives.

4) Let f : R→ R and choose the function f (t) = sin t and

TαNM (sin t) =
|t|1−α

Γ (a+ b)
cos (t) .
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For example,

TαNMf (−π) = − π1−α

Γ (a+ b)
,

TαNMf (π) = − π1−α

Γ (a+ b)
,

TαNMf (0) = lim
t→0±

(
|t|1−α

Γ (a+ b)
cos (t)

)
= 0.

If we choose a = b = α = 1 we have T 1
NM (sin (t)) = |t|1−α cos(t). For example,

T 1
NM (f (−π)) = −1 = f ′ (−π) , T 1

NM (f (π)) = −1 = f ′ (π) and for t = 0 we get

T 1
NM (f (0)) = lim

t→0±

(
|t|1−α cos (t)

)
= cos(0) = 1 = f ′ (0) these examples turn into

classical derivatives.
This new generalized derivative will contribute to the solution of fractional dif-

ferential equations. We also believe that it will guide us to the next works.
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