
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

ARTICLE TYPE

Boundary-Domain Integral Equation Systems to the Mixed BVP
for Compressible Stokes Equations with Variable Viscosity in 2D †

Tsegaye G. Ayele1 | Mulugeta A. Dagnaw*2 | Sergey E. Mikhailov3

1Department of Mathematics, Addis Ababa
University, Addis Ababa, Ethiopia

2Department of Mathematics, Addis Ababa
University, Addis Ababa, Ethiopia

3Department of Mathematics, Brunel
University London, Uxbridge, UK

Correspondence
*Mulugeta A. Dagnaw, Email:
malemayehu3@gmail.com

Present Address
tsegaye.ayele@aau.edu.et,
sergey.mikhailov@brunel.ac.uk

Summary

In this paper, the Boundary-Domain Integral Equations (BDIEs) for the mixed
boundary value problem(BVP) for a compressible Stokes system of partial differ-
ential equation(PDE) with variable coefficient in 2D is considered . An appropriate
parametrix is used to reduce this BVP to the BDIEs. Although the theory of BDIEs
in 3D is well developed, the BDIEs in 2D need a special consideration due to their
different equivalence properties. As a result, we need to set conditions on the domain
or on the spaces to ensure the invertibility of corresponding parametrix-based inte-
gral layer potentials and hence the unique solvability of BDIEs. The properties of
corresponding potential operators are investigated. Equivalence of the BDIE systems
to the mixed BVP and invertibility of the matrix operators associated with the BDIE
systems in appropriate Sobolev spaces are proved.
MSC: 76D07; 35J57; 31A10; 45A05.
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1 INTRODUCTION

The Stokes system of PDE is derived from the linearised steady-state Navier-Stokes system. Studying this system gives us an
opportunity to introduce several tools necessary for a treatment of the full Navier-Stokes equations, see for example (1, , Chapter I).
In addition to its importance in applications, this system of PDEs has attracted the attention of numerical analysts.
Boundary integral equations and the hydrodynamic potential theory for the Stokes system with constant viscosity have been

extensively studied by numerous authors, (see e.g.2,3,4,5,6,7). BDIE systems for the incompressible and compressible Stokes
system with variable viscosity in three dimensional space have been investigated in8 and9 respectively, but BDIE systems in
2D, following a similar approach as in10 have not yet been studied. In the case of constant viscosity, fundamental solutions for
both velocity and pressure are available in analytical form. However, such fundamental solutions are not available for PDEs
with variable viscocity. Therefore, the parametrix (Levi function), see, e.g.,8,9 is used in order to derive and investigate the
BDIE systems for the corresponding variable-coefficient BVPs. In11,10, authors derived and investigated BDIE systems for
BVP with variable-coefficient scalar elliptic PDE defined on a bounded domain. In8,9, authors transformed mixed BVP with
variable coefficient for Stokes problem defined on a bounded domain to BDIE systems for their further analysis. In this paper, we
shall derive and investigate BDIE systems for variable coefficient Mixed BVP for compressible Stokes equations in appropriate
Sobolev-Slobodetski (Bessel potential) spaces.

†BDIE Systems for Mixed Stokes equations in 2D
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2 PRELIMINARIES

Let Ω = Ω+ be a bounded and simply-connected open two-dimensional region of ℝ2 and the boundary )Ω be closed and
infinitely smooth curve. Moreover, )Ω = )ΩD ∪ )ΩN where )ΩD and )ΩN are non empty and non-intersecting part of )Ω with
infinitely smooth boundary curve )ΩD ∩ )ΩN ∈ ∞.
Let v be the velocity vector field, p the pressure scalar field and � ∈ ∞(Ω) be the variable kinematic viscosity of the fluid

such that �(x) > c > 0. For compressible fluid the stress tensor operator, �ij , for an arbitrary couple (p, v) is defined as

�ij(p, v)(x) ∶= −�
j
i p + �(x)

(

)vi
)xj

+
)vj
)xi

− ��ji div v(x)
)

,

and the Stokes operator is defined as

j(p, v)(x) ∶=
)
)xi

�ij(p, v)(x)

= )
)xi

(

�(x)
(

)vi
)xj

+
)vj
)xi

− ��ji div v(x)
))

−
)p
)xj

, j, i ∈ {1, 2},
(1)

where � = 1 or � = 2
3
and �ji is Kronecker symbol. Here and henceforth we assume the Einstein summation in repeated indices

from 1 to 2. We denote the Stokes operator as A = {Aj}2j=1 and Å ∶= A|�=1 . We will also use the following notation for
derivative operators: )j = )xj ∶=

)
)xj

with j = 1, 2; ∇ ∶=
(

)1, )2
)

.
In what followsHs(Ω) = Hs

2(Ω),H
s()Ω) are the Bessel potential spaces, where s is a real number (see, e.g.12,13). We recall

thatHs coincide with the Sobolev-Slobodetski spacesW s
2 for any non-negative s. We denote by H̃s(Ω) the subspace ofHs(ℝ2),

H̃s(Ω) = {g ∶ g ∈ Hs(ℝ2), supp(g) ⊂ Ω}; similarly, H̃s(S1) = {g ∶ g ∈ Hs()Ω), supp(g) ⊂ S1}, L2∗(Ω) = L2(Ω)∕ℝ =
{q ∈ L2(Ω) ∶ ∫Ω q dx = 0}. We will also use the notations Hs(Ω) = [Hs(Ω)]2, L2(Ω) =

[

L2(Ω)
]2, D(Ω) = [D(Ω)]2 for

2-dimensional vector space. We will also make use of the following space (see, e.g.14,11,9).

Hs,0(Ω;A) ∶= {(p, v) ∈ Hs−1(Ω) ×Hs(Ω) ∶ A(p, v) ∈ L2(Ω)}

endowed with the norm
‖(p, v)‖2

Hs,0(Ω;A)
∶= ‖p‖2Hs−1(Ω)+ ∥ v ∥2Hs(Ω) + ∥ A(p, v) ∥2

L2(Ω)
.

Let us define a space

H1,0
∗ (Ω;A) ∶= {(p, v) ∈ L2∗(Ω) ×H1(Ω) ∶ A(p, v) ∈ L2(Ω)}

endowed with the norm
‖(p, v)‖2

H1,0
∗ (Ω;A)

∶= ‖p‖2L2∗(Ω)+ ∥ v ∥2
H1(Ω)

+ ∥ A(p, v) ∥2
L2(Ω)

.

The operator A acting on (p, v) is well defined in the weak sense provided �(x) ∈ L∞(Ω) as

⟨A(p, v),u⟩Ω ∶= −((p, v),u), ∀u ∈ H̃
1
(Ω),

where the form  ∶
[

L2(Ω) ×H1(Ω)
]

× H̃
1
(Ω) ←→ ℝ is defined as

 ((p, v),u) ∶= ∫
Ω

E ((p, v),u) (x) dx, (2)

and the function E ((p, v),u) given by

E((p, v),u)(x) ∶=�(x)
2

(

)ui(x)
)xj

+
)uj(x)
)xi

)(

)vi(x)
)xj

+
)vj(x)
)xi

)

− ��(x) div v(x) div u(x) − p(x) div u(x).

For sufficiently smooth functions (p, v) ∈ Hs−1(Ω±) × Hs(Ω±) with s > 3∕2, we can define the classical traction operators,
Tc± = {T c±j }2j=1 on the boundary )Ω as

T c±j (p, v)(x) ∶=
[

±�ij(p, v)(x)
]

ni(x), (3)

where ni(x) denote components of the unit outward normal vector n(x) to the boundary )Ω of the domain and ± is the trace
operator from inside and outside Ω8,9.
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Traction operator (3) can be continuously extended to the canonical traction operator T± ∶ H1,0(Ω±;A)→ H− 1
2 ()Ω) defined

in the weak form similar to8,9 as

⟨T±(p, v),w⟩)Ω ∶= ±∫
Ω±

[

A(p, v)(−1w) + E((p, v), −1w)
]

dx,

(p, v) ∈ H1,0(Ω±;A),∀w ∈ H
1
2 ()Ω).

Here the operator −1 ∶ H
1
2 ()Ω) → H1(ℝ2) denotes a continuous right inverse of the trace operator + ∶ H1(ℝ2) → H

1
2 ()Ω).

In addition, for (p, v) ∈ H1,0
∗ (Ω;A) the traction operator T± are also defined.

Furthermore, if (p, v) ∈ H1,0(Ω;A) and u ∈ H1(Ω), the following first Green identity holds, (see, e.g.,14,11,15,8 and9),

⟨T+(p, v), +u⟩)Ω ∶= ∫
Ω

[A(p, v)u + E((p, v),u)(x)] dx. (4)

Equation (4) is also defined for (p, v) ∈ H1,0
∗ (Ω;A) and u ∈ H1(Ω). Applying the identity (4) to the pairs (p, v) ∈ H1,0(Ω;A)

and (q,u) ∈ H1,0(Ω;A) with exchanged roles and subtracting the one from the other, we arrive at the second Green identity,
(see, e.g.13,15,8,9 ),

∫
Ω

[

j(p, v)uj −j(q,u)vj + q div v − p div u
]

dx = ∫
)Ω

[

Tj(p, v)uj − Tj(q,u)vj
]

dSx. (5)

Equation (5) is also defined for (p, v) ∈ H1,0
∗ (Ω;A) and (q,u) ∈ H1,0

∗ (Ω;A).

3 FORMULATION OF THE BOUNDARY VALUE PROBLEM

We shall derive and investigate BDIE systems for the following mixed BVP. For f ∈ L2(Ω), g ∈ L2(Ω), '''0 ∈ H
1
2 ()ΩD) and

   0 ∈ H− 1
2 ()ΩN ), find (p, v) ∈ H1,0(Ω;A) such that:

A(p, v)(x) = f(x), x ∈ Ω, (6a)
div v(x) = g(x), x ∈ Ω, , (6b)

r)ΩD
+v(x) = '''0(x), x ∈ )ΩD, (6c)

r)ΩNT+(p, v)(x) =    0(x), x ∈ )ΩN . (6d)

Theorem 1. The BVP (6a)-(6d) has at most one solution in the space H1,0(Ω;A).

Proof. let (p1, v1) and (p2, v2) are in H1,0(Ω;A) that satisfy the BVP (6a)-(6d).Then (p, v) ∶= (p2, v2) − (p1, v1) also belongs to
H1,0(Ω;A) satisfy the following homogeneous mixed BVP

A(p, v)(x) = 0, x ∈ Ω, (7a)
div v(x) = 0, x ∈ Ω, (7b)

r)ΩD
+v(x) = 0, x ∈ )ΩD, (7c)

r)ΩNT+(p, v)(x) = 0, x ∈ )ΩN . (7d)

The first Green identity (4) holds for any u ∈ H1(Ω)and for any pair (p, v) ∈ H1,0(Ω;A).
Then due to (7a)-(7d) we have, ∫Ω E(v,u)(x)dx = 0 which implies that ∫Ω

�(x)
2

(

)ui(x)
)xj

+ )uj (x)
)xi

)(

)vi(x)
)xj

+ )vj (x)
)xi

)

dx = 0. from
(2), (v,u) = ∫Ω E(v,u)(x)dx. In particular, choose u = v. Then

(v, v) = ∫
Ω

E(v, v)(x)dx = 0.

As �(x) > 0, the only possibility is that v(x) = a+ b(−x2, x1)T , i.e., v(x) is a rigid movement. Taking into account the Dirichlet
condition (7c), we deduce that v ≡ 0. Hence, v1 = v2.
Considering now v ≡ 0 and keeping in mind the Neumann-traction condition (7d), we conclude that p1 = p2.
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4 PARAMETRIX AND PARAMETRIX-BASED HYDRODYNAMIC POTENTIALS

4.1 Parametrix and Remainder
The operatorA becomes the constant-coefficient Stokes operator Å when � = 1. The fundamental solution defined by the pair
of distributions (q̊k, ůk) ,where ůkj represent components of the incompressible velocity fundamental solution and q̊k represent
the components of the pressure fundamental solution, (see, e.g.,3,2,4,5). So for r0 > 0, ůk and q̊k will have the form:

ůkj (x, y) =
1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

q̊k(x, y) =
−(xk − yk)
2�|x − y|2

with (q̊k, ůk) satisfying the relations

)
)xk

q̊k(x, y) =
2
∑

i=1

)2

)x2k

(

− 1
2�

log |x − y|
)

= −�(x − y) (8)

̊j(x; q̊k, ů
k)(x, y) =

2
∑

i=1

)2ůkj
)x2i

−
)q̊k

)xj
= �kj �(x − y), div xůk(x, y) = 0. (9)

Let us denote ̊�ij(p, v) ∶= �ij(p, v)|�=1. Then in particular case, for � = 1 and the fundamental solution (q̊k, ůk)k=1,2 of the
operator Å, the stress tensor ̊�ij(q̊k, ů

k)(x − y) reads

̊�ij(x; q̊k, ů
k)(x − y) = 1

�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
.

Indeed,

̊�ij(x; q̊k, ů
k)(x − y) = − q̊k�ij +

(

)ůki
)xj

+
)ůkj
)xi

)

=
xk − yk
2�|x − y|2

�ij +
[

)
)xi

(

1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

))

+ )
)xj

(

1
4�

(

�ki log
|x − y|
r0

−
(xi − yi)(xk − yk)

|x − y|2

))]

.

Since
̊�ij(x; q̊k, ů

k)(x − y) = 1
�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
.

the boundary traction becomes

T̊ cj (x; q̊
k, ůk)(x, y) ∶= ̊�ij(q̊k, ůk)(x − y)ni(x)

= 1
�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
ni(x).

Let us define a pair of functions (qk,uk)k=1,2 similar as in8,9,

ukj (x, y) =
1
�(y)

ůj
k(x, y) = 1

4��(y)

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

, (10)

qk(x, y) = �(x)
�(y)

q̊k(x, y) = �(x)
�(y)

yk − xk
2�|x − y|2

, j, k ∈ {1, 2}. (11)

Then

�ij(x; qk,uk)(x − y) = − �ji q
k + �(x)

(

)uki
)xj

+
)ukj
)xi

− ��ji div u
k(x)

)

= − �ji
�(x)
�(y)

q̊k + �(x)
⎛

⎜

⎜

⎝

)( 1
�(y) ů

k
i )

)xj
+
)( 1

�(y) ů
k
j )

)xi
− ��ji div (

1
�(y)

ůk(x))
⎞

⎟

⎟

⎠
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=
�(x)
�(y)

(

−�ji q̊
k +

(

)ůki
)xj

+
)ůkj
)xi

− ��ji div ůk(x)
))

=
�(x)
�(y)

̊�ij(q̊k, ů
k)(x − y).

Thus,

�ij(x; qk,uk)(x − y) = �(x)
�(y)

̊�ij(q̊k, ů
k)(x − y)

and
Tj(x; qk,uk)(x, y) ∶= �ij(x; qk,uk)(x − y)ni(x) =

�(x)
�(y)

T̊j(x; q̊k, ů
k)(x, y) (12)

substituting (10)-(11) into Stokes system (1) with variable coefficients, we get

j(x; qk;uk)(x, y) =
)
)xi

(

�ij(x; qk,uk)(x − y)
)

= )
)xi

(

�(x)
�(y)

̊�ij(q̊k, ů
k)(x − y)

)

=
�(x)
�(y)

)
)xi

(

̊�ij(q̊k, ů
k)(x − y)

)

+ )
)xi

(

�(x)
�(y)

)

̊�ij(q̊k, ů
k)(x − y)

=
�(x)
�(y)

̊j(q̊k, ů
k)(x) + 1

�(y)
)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

=
�(x)�(x − y)�kj

�(y)
+ 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y

=
�(y)�(x − y)�kj

�(y)
+ 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

= �kj �(x − y + 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

Thus,
j(x; qk;uk)(x, y) = �kj �(x − y) + Rkj(x, y), (13)

where

Rkj(x, y) =
1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y) = (|x − y|−1)

is a weakly singular remainder. This implies that (qk, uk) is a parametrix of the operator A.

4.2 Volume and Surface Potentials
Let � and��� be sufficiently smooth scalar and vector function onΩ. The parametrix-based Newton-type and the Remainder vector
potential operators are defined as

[U���]k (y) =kj�j(y) ∶= ∫
Ω

ukj (x, y)�j(x)dx, [R���]k (y) = kj�j(y) ∶= ∫
Ω

Rkj(x, y)�j(x)dx, y ∈ ℝ2

for the velocity v, and the scalar Newton-type and remainder potentials for the pressure,

[Q�]j(y) = j�(y) ∶= −∫
Ω

qj(x, y)�(x)dx, (14)

���(y) =Q ⋅ ���(y) = j�j(y) ∶= −∫
Ω

qj(x, y)�j(x)dx, (15)

R∙���(y) = −2⟨)iq̊j(., y), �i)j�⟩Ω − 2�i(y))i�(y) = −2v.p.∫
Ω

)q̊j(x, y)
)xi

)�(x)
)xi

�j(x)dx − �j(y)
)�(y)
)yj

, (16)

for y ∈ R2. The integral in (16) is understood as a 2D strongly singular integral in the Cauchy sense, (see, e.g.,8,9).
For the velocity, the parametrix-based single layer and double layer potentials are defined for y ∉ )Ω as :

[V���]k (y) = Vkj�j(y) ∶= −∫
)Ω

ukj (x, y)�j(x)dSx, [W���]k (y) = Wkj�j(y) ∶= −∫
)Ω

T +j (x; q
k,uk)(x, y)�j(x)dSx,



6 Mulugeta A. Dagnaw ET AL

and for pressure in the variable coefficient Stokes system, the single layer and double layer potentials are defined for y ∉ )Ω as:

Πs���(y) = Πsj�j(y) ∶= ∫
)Ω

q̊j(x, y)�j(x)dSx, Πd���(y) = Πdj �j(y) ∶= 2∫
)Ω

)q̊j(x, y)
)n(x)

�(x)�j(x)dSx.

The corresponding boundary integral (pseudo-differential) operators of direct surface values of the single layer potential and
the double layer potential, the traction of the single layer potential and the double layer potential are

[V���]k (y) = kj�j(y) ∶= −∫
)Ω

ukj (x, y)�j(x)dSx, [W���]k (y) =kj�j(y) ∶= −∫
)Ω

T +j (x; q
k,uk)(x, y)�j(x)dSx, y ∈ )Ω,

[

W ′���
]

k (y) =  ′

kj�j(y) ∶= −∫
)Ω

T +j (y; q
k,uk)(x, y)�j(x)dSx, L±���(y) ∶= T±(Πd���,W���)(y), y ∈ )Ω,

where T± are the traction operators (see, e.g.,8,9).
The parametrix-based integral operators depending on the variable coefficient, �(x), can be expressed in terms of the

corresponding integral operators for the constant coefficient case, � = 1, see (8,9) for 3D case.

U��� = 1
�
Ů���, (17)

[R���]k = −
1
�

[

)
)yj

̊ki(�j)i�)(y) +
)
)yi

̊kj(�j)i�) − ̊k(�j)j�)
]

, (18)

Q� = 1
�
Q̊(��), ∙��� = −2 )

)yi
̊j(�j)i�) − �j

)�
)yi

, (19)

V��� = 1
�

V̊���, W��� = 1
�

W̊(����), (20)

V��� = 1
�
̊���, W��� = 1

�
̊(����), (21)

Πs��� = Π̊s���, Πd��� = Π̊d(����), (22)
[

W ′���
]

k =
[

W̊ ′���
]

k −
(

)i�
�

[

V̊���
]

k +
)k�
�

[

V̊���
]

i − ��
k
i

)j�
�

[

V̊���
]

j

)

ni, (23)

L̂(���) ∶= L̊(����). (24)

Note that the constant-coefficient velocity potentials Ů���, V̊��� and W̊��� are divergence-free inΩ± , the corresponding potentials
U���, V��� and W��� are not divergence-free for the variable coefficient �(y),(see e.g.,9). Note also that by 11 and 14,

̊j� = )jPΔ� (25)

where
PΔ�(y) = −

1
2� ∫

Ω

log
|x − y|
r0

�(x)dx

is the harmonic Newton potential. Hence
div Q̊� = )j̊j� = ΔPΔ� = −�. (26)

Moreover, for the constant-coefficient potentials we have the following well-known relations,

Å(Π̊s���, V̊���) = 0, Å(Π̊d���,W̊���) = 0, Å(Q̊���, Ů���) = ���. (27)

In addition, by (25) and (26),

̊j((2 − �)�,−Q̊�) = −)i
(

)i̊j� + )j̊i� − ��
j
i div Q̊�

)

− (2 − �))j�
= −

(

Δ̊j� + )j div Q̊� − �)j div Q̊�
)

− (2 − �))j� = 0 (28)
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Theorem 2. Let s ∈ ℝ, the following operators are continuous:

Πs ∶ H− 1
2 ()Ω)→ L2(Ω), Πd ∶ H

1
2 ()Ω)→ L2(Ω) (29)

Πs ∶ H− 1
2 ()Ω)→ L2∗(Ω), Πd ∶ H

1
2 ()Ω)→ L2∗(Ω) (30)

V ∶ Hs()Ω)→ Hs+ 3
2 (Ω), W ∶ Hs()Ω)→ Hs+ 1

2 (Ω), (31)
V ∶ Hs()Ω)→ Hs+1()Ω), W ∶ Hs()Ω)→ Hs+1()Ω), (32)
L± ∶ Hs()Ω)→ Hs−1()Ω), W ′ ∶ Hs()Ω)→ Hs+1()Ω), (33)

(Πs,V) ∶ H− 1
2 ()Ω)→ H1,0(Ω;A), (Πd ,W) ∶ H

1
2 ()Ω)→ H1,0(Ω;A) (34)

(Πs,V) ∶ H− 1
2 ()Ω)→ H1,0

∗ (Ω;A), (Πd ,W) ∶ H
1
2 ()Ω)→ H1,0

∗ (Ω;A). (35)

Moreover, the following operators are compact,

V ∶ Hs()Ω)→ Hs()Ω), (36)
W ∶ Hs()Ω)→ Hs()Ω), (37)
W ′ ∶ Hs()Ω)→ Hs()Ω). (38)

Proof. The continuity of the operators for the constant coefficient case is proved in3, section 5.6.4. Consequently, from the relations
(17)-(23) follows the continuity of variable coefficient operators (29) - (33) as well and the continuity of the operators (34) and
(35) can be proved similar to9, Theorem 4.3. The compactness of the operators (36) - (38) is implied by the Rellich compactness
embedding theorem (see,13, Theorem 3.27) for scalar case.

Theorem 3. Let Ω be a bounded open region ℝ2 with closed, infinitely smooth boundary )Ω. The following operators are
continuous:

U ∶ H̃
s
(Ω)→ Hs+2(Ω), s ∈ ℝ, (39)

U ∶ Hs(Ω)→ Hs+2(Ω), s > −1
2
, (40)

R ∶ H̃
s
(Ω)→ Hs+1(Ω), s ∈ ℝ, (41)

R ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (42)

Q ∶ H̃s(Ω)→ Hs+1(Ω), s ∈ ℝ, (43)

Q ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (44)

 ∶ H̃
s
(Ω)→ Hs+1(Ω), s ∈ ℝ, (45)

 ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (46)

∙ ∶ H̃
s
(Ω)→ Hs(Ω), s > −1

2
, (47)

∙ ∶ Hs(Ω)→ Hs(Ω), s > −1
2
. (48)

(̊,U ) ∶ Hs(Ω)→ Hs+2,0(Ω;A), s ≥ 0, (49)
((2 − �)�I,−Q) ∶ Hs−1(Ω)→ Hs,0(Ω;A), s ≥ 1, (50)

(∙,R) ∶ Hs(Ω)→ Hs+1,0(Ω;A), s ≥ 1 (51)

Proof. We use similar procedure as in9, Theorem 4.1. Since the surface )Ω is infinitely differentiable, the operators U and Q are
respectively pseudodifferential operators of order -2 and -1[3, , section 9.1.3]. Then, the continuity of (39) and (43) immediately
follows by virtue of the mapping properties of the pseudodifferential operators. Alternatively, these mapping properties are well
studied for the constant coefficient case, i.e. operators Ů and Q̊, see, e.g.,3.Then continuity of operator (45) immediately follows
from representation (15) and continuity of operator (43). Consequently, the respective mapping properties for the remainder
operators (41) and (47) immediately follow by considering the relation (18).
For the remaining part of the proof, we shall first assume that s ∈ (− 1

2
, 1
2
). In this case, Hs(Ω) is identified with H̃s(Ω).

Hence, the continuity of the operator (40) immediately follows from the continuity of (39).
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To prove the case s ∈ ( 1
2
, 3
2
), we consider g = (g1, g2), g ∈ Hs(Ω) and by using divergence theorem and the relation

)
)xi

ůkj (x, y) = −
)
)yi

ůkj (x, y) we obtain,

̊kj()igj)(y) = ∫
Ω

ůkj (x, y)(
)
)xi

gj)(x)dx

= ∫
)Ω

ůkj (x, y)
+gj(x)nidx − ∫

Ω

gj(x)
)
)xi

ůkj (x, y)dx = ∫
)Ω

ůkj (x, y)
+gj(x)nidx + )

)yi
(∫
Ω

ůkj (x, y)gj(x)dx)

= −V̊kj(+gjni)(y) +
)
)yi

(̊kjgj(y))

that is,
)i̊kjgj = ̊kj()igj) + V̊kj(+gjni), i, j, k ∈ {1, 2} (52)

where ni denotes the components of the normal vector to the surface )Ω directed outwards the domain. It is well known that
)igj ∈ Hs−1(Ω) and +g ∈ Hs− 1

2 ()Ω) due to the continuity of the operator )i and the trace theorem.
Due to the mapping properties of V̊ ∶ Hs− 1

2 ()Ω) → Hs+1(Ω) in Theorems 2 and Ů ∶ Hs−1(Ω) → Hs+1(Ω) in the previous
paragraph, we deduce that )iŮg ∈ Hs+1(Ω) is continuous for i ∈ {1, 2}. Consequently, from relations (17) and (20), for
s ∈ ( 1

2
, 3
2
), immediately follows the continuity of the operator (40). Furthermore, by induction on k ∈ ℕ, using the representation

in identity (52) and one can prove by induction that the operator (40) is also continuous for s ∈ (k − 1
2
, k + 1

2
), where k is

an arbitrary nonnegative integer. The continuity of the operator (40) for the cases s = k + 1
2
is proved by applying the theory

of interpolation of Bessel potential spaces, (see, e.g.16, , Chapter 4). Continuity of the operator (44) and hence (46) can be proved
following a similar argument. Continuity of the remainder operators (42) and (48)) immediately follows from the continuity of
operators (40) and (44) by relations (18) and (19). Also the Continuity of the operator (49), (50) and (51) can be proved similar
as in9, Theorem 4.1.

Theorem 4. Let ��� ∈ H
1
2 ()Ω) and ��� ∈ H− 1

2 ()Ω). Then, the following jump relations hold

±V��� = V���, ±W��� = ∓1
2
��� +W��� (53)

T±(Πs���,V���) = ±1
2
��� +W ′���, (54)

Proof. For constant coefficient case, � = 1, the jump relations for the corresponding operators are proved in3, Lemma 5.6.5. Due
to relations (20) and (23), the theorem holds for (53) and (54) as well.

Theorem 5. Let ��� ∈ H
1
2 ()Ω) . Then the following jump relation holds

(L±
k − L̂k)��� = −±

[

()i�)Wk(���) + ()k�)Wi(���) − ��ki ()j�)Wj(���)
]

ni (55)

Theorem 6. The proof is similar to the corresponding proof in9 3D case.

Proposition 1. Let s > 1
2
. The following operators are compact,

R ∶ Hs(Ω)→ Hs(Ω), R∙ ∶ Hs(Ω)→ Hs−1(Ω), s ∈ ℝ
+R ∶ Hs(Ω)→ Hs− 1

2 ()Ω), T±(∙,R) ∶ H1,0(Ω;A)→ H− 1
2 ()Ω),

T±(∙,R) ∶ H1,0
∗ (Ω;A)→ H− 1

2 ()Ω).

Proof. The proof is similar to the corresponding proof in9, Theorem 4.2 3D case.

5 INVERTIBILITY OF THE HYDRODYNAMIC SINGLE LAYER POTENTIAL OPERATOR
IN 2D

Suppose that ��� = T+(p, v) where (p, v) ∈ H1,0
∗ (Ω). The single layer potential operator is a Fredholm of index zero. In 3D case,

for ��� ∈ H− 1
2 ()Ω), if V���(y) = 0, y ∈ Ω , then ��� = 0. But this is not generally true for 2D case.
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It is well known7, p.696 that in ℝ2 the single layer operator fail to be invertible. So that for some 2D domains the kernel of
the operator V̊ ∶ H− 1

2 ()Ω) → H
1
2 ()Ω) is non-zero, which is by the first relation in (21) implies that also kerV ≠ {0} for some

domains. The following example is from17, Lemma 1 and illustrates this fact.

Example 1. Take the density function �mj = �jm and Ω = B(0, R) to be a disc of radius R centered at the origin and )Ω =
)B(0, R) be the circular boundary of the disc. We want to show that

�(y)kj�mj (y) = ̊kj�mj (y) = −
R
2
�km(2 log

R
r0
− 1), |y| ≤ R, k, j, m ∈ {1, 2}.

Remark 1. If we set r0 = Re
− 1
2 in Example 1, with �(y) ≠ 0, we get, [V���]k (y) = 0 in Ω.

In order to have invertibility for the single layer potential operator in 2D, we define the subspace Hs
∗∗()Ω) of the space Hs()Ω),

see for example7, (Appendix A, in particular s = −
1
2
and 1

2
),

Hs
∗∗()Ω) ∶= {��� ∈ Hs()Ω) ∶ ⟨�i, 1⟩)Ω = 0 for i = 1, 2}, (56)

where the norm in Hs
∗∗()Ω) is induced norm of Hs()Ω).

The boundary integral operator, V̊ is a Fredholm operator of index zero onH− 1
2 ()Ω) as in7, Lemma A.2 and alsoV ∶ H

− 1
2

∗∗ ()Ω)→
H

1
2
∗∗()Ω) by the relation (21).

Theorem 7. IfΨΨΨ ∈ H
− 1
2

∗∗ ()Ω) satisfies VΨΨΨ = 0 on )Ω, thenΨΨΨ = 0.

Proof. Let us proof by using similar procedure as in13, Corollary 8.11. The single layer potential (p̊, v̊) = (Π̊sΨΨΨ, V̊ΨΨΨ) satisfies

Δv̊ − ∇p̊ = 0 in Ω±, (57)
div (v̊) = 0 in Ω±, (58)
±v̊ = 0 on )Ω. (59)

For the exterior problem , we use the following growth conditions at infinity,

v̊(x) = A log |x|
r0
+ (1), p̊ = (|x|−1) as |x| →∞,

where A = ∫)ΩΨΨΨdSx, see e.g.3, section 2.3.1. SinceΨΨΨ ∈ H
− 1
2

∗∗ ()Ω), i.e., ∫)ΩΨΨΨdSx = 0, it follows that v̊ = 0 and p̊ = 0 in Ω−.
For the interior problem, using first Green identity and Dirichlet condition, we get, v̊ = 0 and using interior part of (57), we
have that ∇p̊ = 0 in Ω. Since p ∈ L2∗(Ω), then p = 0. Consequently,ΨΨΨ = T̊+(Π̊sΨΨΨ, V̊ΨΨΨ)− T̊−(Π̊sΨΨΨ, V̊ΨΨΨ) = 0. Thus,ΨΨΨ = 0. That
is, from V̊ΨΨΨ = 0 follows thatΨΨΨ = 0 and relation (21) implies for the operator V as well.

Theorem 8. Let Ω ⊂ ℝ2 be a bounded domain. Then the single layer potential V ∶ H
− 1
2

∗∗ ()Ω)→ H
1
2
∗∗()Ω) is invertible.

Proof. Due to7, Lemma A.2 the operator V̊ is Fredholm of index zero and the first relation in (21) implies that so is operator V .
Theorem 7 implies the injectivity of operetor V and hence the invertibility of operator V .

To prove the H− 1
2 ()Ω)- ellipticity of the single-layer potential operator for the Stokes system by setting the condition on the

domain, for r0 > 0, consider the fundamental solution

ůkj (x, y) =
1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

.
̊k
j wj(x, y) = −∫

)Ω

1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

wj(x)dSx.

Due to18, Appendix, the single layer potential operator V̊ is positive , that is,

⟨V̊w̃, w̃⟩S > 0 (60)

for a non-zero w̃ that satisfy ∫S w̃dS = 0 where S is the boundary of the domain and follows the theorem.
Consider the following basis of the space of rigid body translations in plane: e1 = [1, 0]T , e2 = [0, 1]T .
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Theorem 9. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary )Ω. Let )Ω is contained in the interior of a circular disk
with a radius R. If r0 ≥ Re−

1
2 , then V is H− 1

2 ()Ω)- elliptic.

Proof. First we show the positivity of V̊ by a similar procedure as in19, Proposition 2. Let )B denote the boundary of the disk with
radius R containing )Ω. The operator V̊ is positive by (60). So that

⟨[V̊w̃]j , w̃j⟩()Ω∪)B) > 0 (61)

for non-zero w̃ ∈ H− 1
2 ()Ω ∪ )B) satisfying

∫
)Ω∪)B

w̃j(x)dSx = 0. (62)

Let us take w̃ in the form w̃ =

{

w on )Ω,
∑2
k=1 !kek on )B

, with !k chosen so that (62) is satisfied. Let cj = ∫)Ωwj(x)dSx.

Condition (62) gives 0 = ∫)Ω∪)B w̃j(x)dSx = ∫)Ωwj(x)dSx + ∫)B
∑2
k=1 !ke

k
jdSx = cj + 2�R!j . But

⟨[V̊w]j , wj⟩()Ω∪)B) = ⟨− ∫
)Ω∪)B

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B)

= ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B) + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B)

= ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)Ω + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)Ω

+ ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)B

= ⟨[V̊w]j , wj⟩)Ω + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)Ω + ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B

+ ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩()B)

and

⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B =
2
∑

j,k=1
∫
)Ω

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wkdSy

⎤

⎥

⎥

⎦

dSx

=
2
∑

j,k=1
(−∫

)Ω

wj(x)∫
)B

1
4�
(�kj log

|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2
)wkdSydSx)

= −
2
∑

j,k=1
∫
)Ω

wj(x)[∫
)B

1
4�
(log

|x − y|
r0

)wjdSy]dSx −
2
∑

j,k=1
∫
)Ω

wj(x)[∫
)B

1
4�
(−
(xk − yk)2

|x − y|2
)wjdSy]dSx

=
2
∑

j=1
(−∫

)Ω

wj(x)[∫
)B

1
4�
(2 log

|x − y|
r0

− 1)wjdSy]dSx)

=
2
∑

j=1
(− 1
4�
(2 log R

r0
− 1)∫

)Ω

wj(x)dSx ∫
)B

wj(y)dSy)

= −
2
∑

j=1

1
4�
(2 log R

r0
− 1)(−c2j )

= − 1
4�
(−2 log R

r0
+ 1)(c21 + c

2
2).
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Similarly,

⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B = −
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2),

⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩()B) =
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2).

Therefore, the integral (61) yields

0 < ⟨[V̊w]j , wj⟩)Ω + ∫
)Ω

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wkdSy

⎤

⎥

⎥

⎦

dSx + ∫
)B

wj

⎡

⎢

⎢

⎣

−∫
)Ω

ůjk(x, y)wk(y)dSy

⎤

⎥

⎥

⎦

dSx

+ ∫
)B

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wk(y)dSy

⎤

⎥

⎥

⎦

dSx. (63)

Hence, equation (63) becomes

0 < [⟨V̊w]j , wj⟩)Ω −
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2). (64)

Also equation (64) can be written as
1
4c�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2) < ⟨[Vw]j , wj⟩)Ω. (65)

Then the relation ⟨[Vw]j , wj⟩)Ω > 0 is always true for r0 ≥ Re−
1
2 , therefore (65) must be positive for any non-zero w.

From3, Theorem 5.6.13, eq.5.6.50 and18, Eq.(A.15) satisfy Gårding inequality. Thus from positivity and Gårding inequality implies that V
is H− 1

2 ()Ω)- elliptic that is due to Lemma 5.2.5 in3.

Theorem 10. Let Ω ⊂ ℝ2. If r0 >
1
2
e−

1
2 diam(Ω), then the operator V has a bounded inverse on H− 1

2 ()Ω).

Proof. By Theorem 9 the operator V is H− 1
2 ()Ω)- elliptic and due to Theorem 2 it is also continuous, that is, bounded. Hence

the Lax-Milgram Lemma implies V has a bounded inverse.

Theorem 11. LetS1 andS2 be non empty, non-intersecting )Ω = S1∪S2 . Then for s ∈ ℝ, the following operators are compact,

rS2V ∶ H̃
s
(S1)→ Hs(S2), rS2W ∶ H̃

s
(S1)→ Hs(S2), rS2W

′ ∶ H̃
s
(S1)→ Hs(S2)

Proof. From Theorem 2, the following operators are continuous:

rS2V ∶ H̃
s
(S1)→ Hs+1(S2), rS2W ∶ H̃

s
(S1)→ Hs+1(S2), rS2W

′ ∶ H̃
s
(S1)→ Hs+1(S2).

Since Hs+1(S2) ⊂ Hs(S2) is compact, the theorem follows.

Theorem 12. Let S2 be a non-empty open smooth part of )Ω with smooth boundary. Then the operator

rS2L̂ ∶ H̃
1
2 (S2)→ H− 1

2 (S2)

is invertible and the operator
rS2(L

+ − L̂) ∶ H̃
1
2 (S2)→ H− 1

2 (S2)
is bounded and compact.

Proof. Similar to lamé system as in4, Lemma 1.18
⟨L̊���, ���⟩

)Ω
≥ c ∥ ��� ∥2

H
1
2 ()Ω)

for all ��� ∈ H
1
2
()Ω) = {v ∈ H

1
2 ()Ω) ∶

⟨v,w⟩)Ω = 0 for all w ∈ }. As in the norm equivalence sobolev5, Theorem 2.6, we define,

∥ ��� ∥
H
1
2
 ()Ω)

= {[⟨���,w⟩)Ω]2 + |���|2
H
1
2 ()Ω)

}

and then we get,
⟨L̊���, ���⟩

)Ω
≥ c̃|���|2

H
1
2 ()Ω)

for all ��� ∈ H
1
2 ()Ω).
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For a given �̃�� ∈ H̃
1
2 (S2). let ��� ∈ H

1
2 ()Ω) denote the extension defined by

��� =

⎧

⎪

⎨

⎪

⎩

�̃�� for x ∈ H̃
1
2 (S2)

0 otℎerwise.

As in the norm equivalence sobolev5, Theorem 2.6,

∥ ��� ∥
H
1
2 ()Ω),S2

∶= {∥ ��� ∥L2()Ω∕S2) + |���|2
H
1
2 ()Ω)

}

to be equivalent norm in H
1
2 ()Ω). So that,

⟨L̊�̃��, �̃��⟩
S2

≥⟨L̊���, ���⟩
)Ω

≥ C|���|2
H
1
2 ()Ω)

=C{∥ ��� ∥L2()Ω∕S2) +|���|
2

H
1
2 ()Ω)

} = C ∥ ��� ∥
H
1
2 ()Ω),S2

≥C̃ ∥ ��� ∥
H
1
2 ()Ω)

= C̃ ∥ �̃�� ∥
H̃
1
2 (S2)

.

The continuity of this operator and the Lax-Milgram lemma then imply its invertibility. The operatork,i,j are continuous
and sinceH

3
2 (S2) is continuously embedded inH

1
2 (S2), using the relation

+k��� − ̂k��� = −
)�
)ni

(

(−1
2
I +k) + �ki (−

1
2
I +i) + �kj (−

1
2
I +j)

)

���

,we obtain continuity of the operator L+ − L̂. The embedding H
1
2 (S2) ⊂ H− 1

2 (S2) is compact ,which implies that the operator
L+ − L̂ ∶ H

1
2 (S2)→ H− 1

2 (S2) is compact .

Theorem 13. Let S1 be a non-empty part of the boundary curve )Ω.

i) The operator
rS1V ∶ H̃

− 1
2 (S1)→ H

1
2 (S1) (66)

is bounded and fredholm of index zero.

ii) If  ̃  ∈ H̃
− 1
2

∗∗ (S1) satisfies rS1V ̃  = 0 on S1, then  ̃  = 0 .

Proof. i) Since the operator V ∶ H̃
− 1
2 ()Ω) → H

1
2 ()Ω) is bounded so that (66) also bounded. The operators rS1V̊ admits

the decomposition rS1V̊ = rS1VΔ + rS1K, see,7.

VΔ =
[

Δ 0
0 Δ

]

, Δ ̃  = −
1
4� ∫

S1

log
|x − y|
r0

 ̃  dSx.

The operator rS1VΔ is a Fredholm of index zero because each of the components are Fredholm of index zero as
in10, corollary 2.7(i) and rS1K is a compact operator as in7, lemma A.2. Thus by relation V = 1

�
V̊ , we obtain that operator (66)

is Fredholm of index zero as well.

ii) Suppose  ̃  ∈ H̃
− 1
2

∗∗ (S1), i.e. ⟨ ̃i, 1⟩S1 = ⟨ ̃i, 1⟩)Ω = 0, which implies  ̃  ∈ H
− 1
2

∗∗ ()Ω). For  ̃  ∈ H
− 1
2

∗∗ ()Ω), we have
⟨V̊ ̃  ,  ̃  ⟩)Ω ≥ 0, moreover, if ⟨V̊ ̃  ,  ̃  ⟩)Ω = 0 , then  ̃  = 0 on )Ω, see,18, Appendix. Hence, if rS1V ̃  = 0, then rS1V̊ ̃  = 0
and ⟨V̊ ̃  ,  ̃  ⟩)Ω = ⟨rS1V̊ ̃  ,  ̃  ⟩S1 = 0 implies  ̃  = 0.

Lemma 1.

(i) Let eitherΨΨΨ∗ ∈ H− 1
2 ()Ω) and r0 >

1
2
e−

1
2 diam(Ω) orΨΨΨ∗ ∈ H

− 1
2

∗∗ ()Ω). If

VΨΨΨ∗(y) = 0, y ∈ Ω, (67)

thenΨΨΨ∗ = 0
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(ii) LetΦΦΦ∗ ∈ H
1
2 ()Ω). If

WΦΦΦ∗(y) = 0, y ∈ Ω, (68)
thenΦΦΦ∗ = 0.

Proof. We will use similar procedures as in20.

(i) Taking the trace of (67) on )Ω and using jump relation (53). Then we have VΨΨΨ∗ = 0 on )Ω. If ΨΨΨ∗ ∈ H− 1
2 ()Ω) and

r0 >
1
2
e−

1
2 diam(Ω), then the result follows from the invertability of the single layer potential given by Theorem 10. On

the other hand, ifΨΨΨ∗ ∈ H
− 1
2

∗∗ ()Ω), then the result is implied by Theorem 8.

(ii) Taking the trace of (68) and then by (53) gives − 1
2
ΦΦΦ∗ +WΦΦΦ∗ = 0 on )Ω, due to (21), − 1

2
Φ̂ΦΦ
∗
+ W̊Φ̂ΦΦ

∗
= 0 on )Ω,

where Φ̂ΦΦ
∗
= �ΦΦΦ∗. Due to the contraction property of the operator − 1

2
I + W̊ , then Φ̂ΦΦ

∗
is uniquely solvable and �(y) ≠ 0,

Φ̂ΦΦ
∗
= 0 implies ΦΦΦ∗ = 0.

Lemma 2. Let )Ω = S1 ∪ S2, where S1 ad S2 are open non-empty non-intersecting. LetΨΨΨ∗ ∈ H̃
− 1
2

∗∗ (S1),ΦΦΦ
∗ ∈ H̃

1
2 (S2). If

VΨΨΨ∗ −WΦΦΦ∗ = 0, ΠsΨΨΨ∗ − ΠdΦΦΦ∗ = 0, in Ω, (69)

thenΨΨΨ∗ = 0 andΦΦΦ∗ = 0 on )Ω.

Proof. Multiply the first equation in (69) by � and applying the relation (21), we have

V̊ΨΨΨ∗ − W̊(�ΦΦΦ∗) = 0 in Ω.

Taking the trace of this equation on S1
r
S1
[+V̊ΨΨΨ∗ − +W̊(�ΦΦΦ∗)] = 0 on S1

r
S1
V̊ΨΨΨ∗ − r

S1
W̊(�ΦΦΦ∗) + 1

2
r
S1
(�ΦΦΦ∗) = 0 on S1

r
S1
V̊ΨΨΨ∗ − r

S1
W̊(�ΦΦΦ∗) = 0 on S1.

Taking the traction on S2
r
S2
[T+(Π̊sΨΨΨ∗, V̊ΨΨΨ∗) − T+(Π̊d(�ΦΦΦ∗), W̊(�ΦΦΦ∗))] = 0 on S2

which implies r
S2
W̊ ′ΨΨΨ∗ − rS2L̊(�ΦΦΦ

∗) = 0 on S2. Thus we obtain

⎧

⎪

⎨

⎪

⎩

r
S1
V̊ΨΨΨ∗ − r

S1
W̊Φ̂ΦΦ

∗
= 0 on S1,

r
S2
W̊ ′ΨΨΨ∗ − rS2L̊Φ̂ΦΦ

∗
= 0 on S2

where Φ̂ΦΦ
∗
= �ΦΦΦ∗. The above system of equation can be written in matrix form as

̊̊ = 0, (70)

where

̊ ∶=

[

r
S1
V̊ −r

S1
W̊

r
S2
W̊ ′ −rS2L̊

]

, ̊ =

[

ΨΨΨ∗

Φ̂ΦΦ
∗

]

.

From3, Theorem 5.6.13, eq.5.6.50, we have ⟨r
S1
V̊ΨΨΨ∗,Ψ∗⟩S1 + ⟨ΨΨΨ∗,n⟩)Ω ≥ c‖ΨΨΨ∗‖2

H− 12 ()Ω)
. We know that ΨΨΨ∗ = T +(p, v) with (p, v) ∈

H1,0
∗ (Ω,A) andΨΨΨ

∗ ∈ H
− 1
2

∗∗ ()Ω). So that ⟨ΨΨΨ∗,n⟩)Ω = 0.

Then ⟨r
S1
V̊ΨΨΨ∗,Ψ∗⟩S1 ≥ c‖ΨΨΨ∗‖2

H− 12 ()Ω)
for ΨΨΨ∗ ∈ H

− 1
2

∗∗ (S1). In the proof of Theorem 12 , ⟨−r
S2
̊Φ̂ΦΦ

∗
, Φ̂ΦΦ

∗
⟩S2 ≥ c‖Φ̂ΦΦ

∗
‖

2

H
1
2 ()Ω)

. In
addition, the operators

r
S1
W̊ ∶ H̃

1
2 (S2) ←→ H

1
2 (S1) and rS2W̊

′ ∶ H̃
− 1
2 (S1) ←→ H− 1

2 (S2)
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are mutually adjoint, i.e.,⟨rS1W̊Φ̂ΦΦ
∗
,ΨΨΨ∗⟩S1 = ⟨Φ̂ΦΦ

∗
, rS2W̊

′ΨΨΨ∗⟩S2 for arbitrary ΨΨΨ∗ ∈ H̃
− 1
2

∗∗ (S1) and arbitrary Φ̂ΦΦ
∗
∈ H̃

1
2 (S2).

Consequently, we derive the inequality

⟨̊̊ , ̊⟩ ≥ c(‖ΨΨΨ∗‖2
H− 12 ()Ω)

+ ‖Φ̂ΦΦ
∗
‖

2

H
1
2 ()Ω)

) = c‖‖

2

H− 12 ()Ω)×H
1
2 ()Ω)

.

Due to (70), this impliesΨΨΨ∗ = 0 and Φ̂ΦΦ
∗
= 0. Keeping in mind that �(y) ≠ 0, we haveΦΦΦ∗ = 0 on )Ω.

6 THE THIRD GREEN IDENTITIES

Theorem 14. For any (p, v) ∈ H1,0(Ω;A) the following third Green identities hold

v +v − VT+(p, v) +W+v = UA(p, v) −Q div v in Ω, (71)

p +∙v − ΠsT+(p, v) + Πd+v = ̊A(p, v) + (2 − �)� div v in Ω. (72)

Proof. The proof is similar to the corresponding proof in9 3D case .

If the couple (p, v) ∈ H1,0(Ω;A) is a solution of the Stokes PDE (6a) with variable coefficient, then (71) and (72) give

v +Rv − VT+(p, v) +W+v = U f −Qg, in Ω (73)
p +∙v − ΠsT+(p, v) + Πd+v = ̊f + (2 − �)�g, in Ω (74)

We will also need the trace and traction of the third Green identities (73) and (74) on )Ω.
1
2
+v +R+v − VT+(p, v) +W+v = +U f − +Qg (75)

1
2

T+(p, v) + T+(∙,R)v −W ′T+(p, v) +L++v = T+(̊f + (2 − �)�g, U f −Qg) (76)
One can prove the following two assertions that are instrumental for proof of equivalence of the BDIEs and the original PDE.

Lemma 3. Let v ∈ H1(Ω), p ∈ L2(Ω), g ∈ L2(Ω), f ∈ L2(Ω),ΨΨΨ ∈ H− 1
2 ()Ω),ΦΦΦ ∈ H

1
2 ()Ω) satisfy equations.

v +Rv − VΨΨΨ +WΦΦΦ = U f −Qg, in Ω, (77)
p +∙v − ΠsΨΨΨ + ΠdΦΦΦ = ̊f + (2 − �)�g, in Ω. (78)

Then (p, v) ∈ H1,0(Ω;A) and solve the equations

A(y; p, v) = f, div v = g. (79)

Moreover, the following relations hold true:

V(ΨΨΨ − T+(p, v))(y) −W(ΦΦΦ − +v)(y) = 0, y ∈ Ω, (80)

Πs(ΨΨΨ − T+(p, v))(y) − Πd(ΦΦΦ − +v)(y) = 0, y ∈ Ω. (81)

Proof. The proof is similar to the corresponding proof in9 3D case .

7 BDIES FOR MIXED BVP

We aim to obtain a segregated boundary-domain integral equation system for mixed BVP (6a)-(6d). We will use similar
procedures as in11,8,9.
To this end, letΦΦΦ0 ∈ H

1
2 ()Ω) be a fixed extension of the given data'''0 from )ΩD to )Ω. An arbitrary extensionΦΦΦ ∈ H

1
2 ()Ω)

preserving the function space can then be represented asΦΦΦ = ΦΦΦ0+''' with''' ∈ H̃
1
2 ()ΩN ). Analogously, letΨΨΨ0 ∈ H− 1

2 ()Ω) be a
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fixed extension of the given data    0 from )ΩN to )Ω. An arbitrary extensionΨΨΨ ∈ H− 1
2 ()Ω) preserving the function space can

then be represented asΨΨΨ = ΨΨΨ0 +   with    ∈ H̃
− 1
2 ()ΩD). Let us now represent

+v = ΦΦΦ0 +''', T+(p, v) = ΨΨΨ0 +   on )Ω (82)

where ''' ∈ H̃
1
2 ()ΩN ) and    ∈ H̃

− 1
2 ()ΩD) are unknown boundary functions.

BDIE system(M11). Let us now take equations (73) and (74) inΩ and restrictions of equations (75) and (76) to the boundary
parts )ΩD and )ΩN , respectively. Substituting there representations (82) and considering further the unknown boundary func-
tions ''' and    as formally independent of (segregated from) the unknown domain functions p and v , we obtain the following
BDIE system (M11) consisting of four BDIEs for four unknowns, (p, v,   ,''') ∈ H1,0(Ω;A) × H̃

− 1
2 ()ΩD) × H̃

1
2 ()ΩN ) :

p +∙v − Πs   + Πd''' = F0 in Ω, (83a)
v +Rv − V   +W''' = F in Ω, (83b)

r
)ΩD
+v − r

)ΩD
V   + r

)ΩD
W''' = r

)ΩD
+F −'''0 on )ΩD, (83c)

r
)ΩN

T+(∙,R)v − r
)ΩN

W ′   + r
)ΩN

L+''' = r
)ΩN

T+(F0,F) −   0 on )ΩN . (83d)

where
F0 ∶= ̊f − (2 − �)�g + ΠsΨΨΨ0 − ΠdΦΦΦ0, F ∶= U f −Qg + VΨΨΨ0 −WΦΦΦ0 (84)

Applying Theorems 2 and 3 to (84) implies (F0,F) ∈ H1,0(Ω;A).
We denote the right hand side of BDIE system (83a)- (83d) as

11 ∶= [F0,F, r)ΩD 
+F −'''0, r)ΩN T

+(F0,F) −   0]T , (85)

which implies 11 ∈ H1,0(Ω;A) ×H
1
2 ()ΩD) ×H− 1

2 ()ΩN )
Note that BDIE system (83a)- (83d) can be split into three vector equations (83b), (83c), (83d) for three vector unknowns, v,

   and ''', and the scalar equation (83a) that can be used, after solving the system, to obtain the pressure, p. The system (M11)
given by equations (83a)- (83d) can be written using matrix notation as

11 = 11 (86)

where  represents the vector containing the unknowns of the system

 = (p, v,   ,''')T ∈ L2(Ω) ×H1(Ω) × H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN ).

The matrix operator11 is defined by

11 =

⎡

⎢

⎢

⎢

⎢

⎣

I ∙ −Πs Πd

0 I +R −V W
0 r)ΩD

+R −r)ΩDV r)ΩDW
0 r)ΩNT

+(∙,R) −r)ΩNW
′ r)ΩNL

+

⎤

⎥

⎥

⎥

⎥

⎦

.

Remark 2. The term 11 = 0 if and only if (f, g,ΦΦΦ0,ΨΨΨ0) = 0.
Suppose 11 = 0, then [F0, F, r

)ΩD
+F −'''0, r)ΩN T

+(F0,F) −   0]T = 0. Taking into account how the terms F and F0 are
defined, see (84), considering that F0 = 0 for p and F = 0 for v, we can deduce by applying Lemma 3 to equations (84) we
obtain that f = 0 , g = 0 and we have,

ΠsΨΨΨ0 − ΠdΦΦΦ0 = 0, VΨΨΨ0 −WΦΦΦ0 = 0

In addition, as F0 = 0 and F = 0 , we get

r
)ΩD
+F − r

)ΩD
ΦΦΦ0 = 0 implies r

)ΩD
ΦΦΦ0 = 0, r

)ΩN
T+(F0,F) − r)ΩNΨΨΨ0 = 0 implies r

)ΩN
ΨΨΨ0 = 0.

Consequently, ΨΨΨ0 ∈ H̃
− 1
2

∗∗ ()ΩD) and ΦΦΦ0 ∈ H̃
1
2 ()ΩN ). Therefore, the hypotheses of Lemma 2 are satisfied, we thus obtain that

ΨΨΨ0 = 0 andΦΦΦ0 = 0 on )Ω. On the other hand assume that (f, g,ΦΦΦ0,ΨΨΨ0) = 0. Then it is evidently 11 = 0.
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BDIE system(M12). Let us now take equations (73) and (74) inΩ and equation (75) on the whole boundary )Ω. Substituting
there representations (82), we arrive at the following system of BDIEs,

p +∙v − Πs   + Πd''' = F0 in Ω, (87a)
v +Rv − V   +W''' = F in Ω, (87b)

1
2
''' + +v − V   +W''' = +F −ΦΦΦ0 on )Ω. (87c)

where F0 and F are given by (84).Denote the system in matrix form as12 = 12 where,

12 =
⎡

⎢

⎢

⎣

I ∙ −Πs Πd

0 I +R −V W
0 +R −V ( 1

2
I +W)

⎤

⎥

⎥

⎦

, 12 =
⎡

⎢

⎢

⎣

F0
F

+F −ΦΦΦ0

⎤

⎥

⎥

⎦

.

Remark 3. LetΨΨΨ0 ∈ H̃
− 1
2

∗∗ ()ΩD), Then 
12 = 0 if and only if (f, g,ΦΦΦ0,ΨΨΨ0) = 0.

Indeed, from (84) we immediately obtain that (f, g,ΦΦΦ0,ΨΨΨ0) = 0 implies 12 = 0. Let us now prove that if 12 = 0 then
(f, g,ΦΦΦ0,ΨΨΨ0) = 0. Taking into account how the terms F and F0 are defined, considering that F0 = 0 for p and F = 0 for v, we
can deduce by applying Lemma 3 to equations (84) we obtain f = 0, g = 0 and

ΠsΨΨΨ0 − ΠdΦΦΦ0 = 0, VΨΨΨ0 −WΦΦΦ0 = 0.

The equality +F −ΦΦΦ0 = 0 impliesΦΦΦ0 = 0 on )Ω. Thus VΨΨΨ0 = 0, hence by Lemma 1 (i) it followsΨΨΨ0 = 0.

BDIE system(M21). Let us now take equations (73) and (74) inΩ and equation (76) on the whole boundary )Ω. Substituting
there representations (82), we arrive at the following system of BDIEs,

p +∙v − Πs   + Πd''' = F0 in Ω, (88a)
v +Rv − V   +W''' = F in Ω, (88b)

1
2
   + T+(∙,R)v −W ′   +L+''' = T+(F0,F) −ΨΨΨ0 on )Ω (88c)

where F0 and F are given by (84). Denote the system in matrix form as21 = 21 where,

21 =
⎡

⎢

⎢

⎣

I ∙ −Πs Πd

0 I +R −V W
0 T+(∙,R) ( 1

2
I −W ′) L+

⎤

⎥

⎥

⎦

, 21 =
⎡

⎢

⎢

⎣

F0
F

T+(F0,F) −ΨΨΨ0

⎤

⎥

⎥

⎦

.

Remark 4. 21 = 0 if and only if (f, g,ΦΦΦ0,ΨΨΨ0) = 0. We can show this similarly as in Remark 3.

BDIE system(M22). Let us now take equations (73) and (74) inΩ and restrictions of equations (76) and (75) to the boundary
parts )ΩD and )ΩN , respectively. Substituting there representations (82) and considering further the unknown boundary func-
tions ''' and    as formally independent of (segregated from) the unknown domain functions p and v , we obtain the following
BDIE system (M22) consisting of four BDIEs for four unknowns, (p, v) ∈ H1,0(Ω;A), ''' ∈ H̃

1
2 ()ΩN ) and    ∈ H̃

− 1
2 ()ΩD) :

p +∙v − Πs   + Πd''' = F0 in Ω, (89a)
v +Rv − V   +W''' = F in Ω, (89b)

1
2
   + r

)ΩD
[T+(∙,R)v −W ′   +L+'''] = r

)ΩD
[T+(F0,F) −ΨΨΨ0] on )ΩD, (89c)

1
2
''' + r

)ΩN
[+Rv − V   +W'''] = r

)ΩN
[+F −ΦΦΦ0] on )ΩN . (89d)

where the terms in the right hand side F0 and F are given by (84).
Note that the BDIE system (89a)-(89d) can be split into three vector equations, (89b)-(89d), for three vector unknowns, v,    

and ''', and the separate equation (89a) that can be used, after solving the system, to obtain the pressure, p. However, since the
couple (p, v) shares the space H1,0(Ω;A), equations (89b), (89c) and (89d) are not completely separate from equation (89a).
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The system (89a)-(89d) can be written using matrix notation as follows22 = 22, where,

22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I ∙ −Πs Πd

0 I +R −V W
0 r)ΩDT+(∙,R) r)ΩD

(1
2

I −W ′
)

r)ΩDL
+

0 r)ΩN 
+R −r)ΩNV r)ΩN

(1
2

I +W
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 22 =

⎡

⎢

⎢

⎢

⎢

⎣

F0
F

r)ΩDT
+(F0,F) − r)ΩDΨΨΨ0

r)ΩN 
+F − r)ΩNΦΦΦ0

⎤

⎥

⎥

⎥

⎥

⎦

.

Remark 5. The term 22 = 0 if and only if (f, g,ΦΦΦ0,ΨΨΨ0) = 0.
From (84) it follows that (f, g,ΦΦΦ0,ΨΨΨ0) = 0 which implies 22 = 0. Conversely, if 22 = 0, then (f, g,ΦΦΦ0,ΨΨΨ0) = 0. Taking into
account how the terms F and F0 are defined and considering that F0 = 0 for p and F = 0 for v by applying Lemma 3 to (84) we
obtain f = 0, g = 0 and

ΠsΨΨΨ0 − ΠdΦΦΦ0 = 0, VΨΨΨ0 −WΦΦΦ0 = 0.

In addition since F0 = 0 and F = 0 , one can easily see that

r)ΩDT
+(F0,F) − r)ΩDΨΨΨ0 = 0 implies r

)ΩD
ΨΨΨ0 = 0

r)ΩN 
+F − r)ΩNΦΦΦ0 = 0 implies r

)ΩN
ΦΦΦ0 = 0

Consequently we see that ΨΨΨ0 ∈ H̃
− 1
2

∗∗ ()ΩN ) andΦΦΦ0 ∈ H̃
1
2 ()ΩD) . Therefore, by Lemma 2 with S1 = )ΩN and S2 = )ΩD, we

thus obtainΨΨΨ0 = 0 andΦΦΦ0 = 0 on )Ω.

8 EQUIVALENCE AND INVERTIBILITY

Theorem 15. Let f ∈ L2(Ω), g ∈ L2(Ω), andΦΦΦ0 ∈ H
1
2 ()Ω), andΨΨΨ0 ∈ H− 1

2 ()Ω) be some fixed extensions of '''0 ∈ H
1
2 ()ΩD)

and    0 ∈ H− 1
2 ()ΩN ) respectively.

(i) If some (p, v) ∈ L2(Ω) × H1(Ω) solves mixed BVP (6a) - (6d), then the solution is unique and the set (p, v,   ,''') ∈
H1,0(Ω;A) × H̃

− 1
2 ()ΩD) × H̃

1
2 ()ΩN ), where

''' = +v −ΦΦΦ0,    = T+(p, v) −ΨΨΨ0 on )Ω (90)

solves BDIE systems (M11), (M12), (M21) and (M22).

(ii) If (p, v,   ,''') ∈ L2(Ω) × H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) solves one of the BDIE systems (M11) or (M12)or (M21) or

(M22), then the solution is unique and solves the BDIE systems, while (p, v) belongs to H1,0(Ω;A) and solve mixed BVP
(6a) - (6d) and the relations (90).

Proof. (i) Let (p, v) ∈ L2(Ω) ×H1(Ω) be a solution of the BVP (6a) - (6d). Since f ∈ L2(Ω) then (p, v) ∈ H1,0(Ω;A). Due
to Theorem 1 it is unique. Let us define the functions''' and   by (90). By the BVP boundary conditions, +v = '''0 = ΦΦΦ0
on )ΩD and T+(p, v) =    0 = ΨΨΨ0 on )ΩN . This implies that (   ,''') ∈ H̃

− 1
2 ()ΩD) × H̃

1
2 ()ΩN ) and recalling how BDIE

systems (M11), (M12), (M21) and (M22) were constructed, we obtain that (p, v,   ,''') solves systems (M11), (M12),
(M21) and (M22).

(ii) let (p, v,   ,''') ∈ L2(Ω) ×H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) solve BDIE system(M11) or (M12) or (M21) or (M22) . The

first two equations in BDIE system and Theorems 2 and 3 imply that (p, v,   ,''') ∈ H1,0(Ω;A) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ).

The hypotheses of Lemma 3 are satisfied for the first two equations in BDIE system, implying that (p, v) solves PDEs
(6a)-(6b) in Ω, while the following equations holds:

ΠsΨΨΨ∗ − ΠdΦΦΦ∗ = 0, VΨΨΨ∗ −WΦΦΦ∗ = 0 in Ω, (91)

whereΨΨΨ∗ ∶=    +ΨΨΨ0 − T+(p, v) andΦΦΦ∗ ∶= ''' +ΦΦΦ0 − +v on )Ω.
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Suppose first that the tuple (p, v,   ,''') ∈ H1,0(Ω;A) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) solves BDIE system (M11). Taking the

trace of equation (83b) on )ΩD using the jump relations (53) , and subtracting equation (83c) from it, we obtain

+v = '''0 on )ΩD, (92)

that is (p, v) satisfies the Dirichlet condition (6c). Taking the traction of equations (83a) and (83b) on )ΩN , using the jump
relation (54) and subtracting equation (83d) from it, we obtain

T+(p, v) =    0 on )ΩN , (93)

that is (p, v) satisfies the Neumann condition (6d). Hence (p, v) solves the mixed BVP (6a) - (6d).

Taking into account ''' = 0, ΦΦΦ0 = '''0 on )ΩD and    = 0, ΨΨΨ = 0, ΨΨΨ0 =    0 on )ΩN , equations (92) and (93) imply
that the second equation in (90) is satisfied on )ΩN and the first equation in (90) is satisfied on )ΩD. Thus we have
ΨΨΨ∗ ∈ H̃

− 1
2 ()ΩD) and ΦΦΦ∗ ∈ H̃

1
2 ()ΩN ) in (91). Let S1 = )ΩD and S2 = )ΩN . Then for ΨΨΨ∗ ∈ H̃

− 1
2

∗∗ ()ΩD) and Lemma 2
impliesΨΨΨ∗ = ΦΦΦ∗ = 0, which completes the proof of conditions in (90). Uniqueness of the solution to BDIE system (M11)
follows from (90) along with Remark 2 and Theorem 1.

Similar arguments work if we suppose that instead of the BDIE systems (M11), (p, v,   ,''') ∈ L2(Ω)×H1(Ω)×H̃
− 1
2

∗∗ ()ΩD)×

H̃
1
2 ()ΩN ) solves BDIE systems (M12) or (M21) or (M22).

Theorem 16. The following operators are invertible

11 ∶L2(Ω) ×H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) ←→ L2(Ω) ×H1(Ω) ×H

1
2
∗∗()ΩD) ×H− 1

2 ()ΩN ), (94)

11 ∶H1,0(Ω;A) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) ←→ H1,0(Ω;A) ×H

1
2
∗∗()ΩD) ×H− 1

2 ()ΩN ). (95)

Proof. Remark 2 implies that the operators (94) and (95) are injective. Let us denote

̃11 =

⎡

⎢

⎢

⎢

⎢

⎣

I ∙ −Πs Πd

0 I −V W
0 0 −r)ΩDV 0
0 0 0 r)ΩN L̂

⎤

⎥

⎥

⎥

⎥

⎦

where L̂ is given by (55). Then ̃11 ∶ L2(Ω) ×H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) ←→ L2(Ω) ×H1(Ω) ×H

1
2
∗∗()ΩD) ×H− 1

2 ()ΩN )
is bounded. It is invertible due to its triangular structure and invertibility of its diagonal operators I , I, V from Theorem 13 and
̂ from Theorem 12,

I ∶ L2(Ω)→ L2(Ω), I ∶ H1(Ω)→ H1(Ω), r)ΩDV ∶ H̃
− 1
2

∗∗ ()ΩD)→ H
1
2
∗∗()ΩD), r)ΩN L̂ ∶ H̃

1
2 ()ΩN )→ H− 1

2 ()ΩN ).

By Proposition 1, Theorem 11 and 12 the operator

11 − ̃11 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

0 ∙ 0 0
0 R 0 0
0 r)ΩD

+R 0 r)ΩDW
0 r)ΩNT

+(∙,R) 0 r)ΩN (L
+ − L̂)

⎤

⎥

⎥

⎥

⎥

⎦

is compact. Note that, we can write the operator11 as a sum of compact and inveritible operator,11 = (11−̃11)+̃11,
like as for scalar case implying that it is a Fredholm operator with zero index, see e.g.,13, Theorem 2.26. Then the injectivity of
operator (94) implies its invertibility, see e.g.,13, Theorem 2.27.
To prove invertibility of operator (95), we remark that for any 11 ∈ L2(Ω) × H1(Ω) × H

1
2
∗∗()ΩD) × H− 1

2 ()ΩN ) a solution of
system

11 = 11, (96)

can be written as = [11]−111, where [11]−1 ∶ L2(Ω)×H1(Ω)×H
1
2
∗∗()ΩD)×H− 1

2 ()ΩN )→ L2(Ω)×H1(Ω)×H̃
− 1
2

∗∗ ()ΩD)×

H̃
1
2 ()ΩN ) is the continuous inverse operator to operator (94). Applying Lemma 3 the first two equations of system (96) implies
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that  = [11]−111 ∈ H1,0(Ω;A) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) and the operator [11]−1 is a continuous inverse to (95) as

well.

Theorem 17. The operator

12 ∶ L2(Ω) ×H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) ←→ L2(Ω) ×H1(Ω) ×H

1
2 ()Ω), (97)

is invertible.

Proof. The operator is injective, i.e., ker12 = {0}. To see this, let12 = 0, which implies 12 = 0 or (F0,F, +F−ΦΦΦ0)T =
0. By Remark 3, (f, g,ΦΦΦ0,ΨΨΨ0) = 0. This means f = 0, g = 0,ΦΦΦ0 = 0,ΨΨΨ0 = 0, hence A(p, v) = 0, div v = 0 in Ω, +v = 0 on
)ΩD, and T+(p, v) = 0 on )ΩN . Theorem 1 implies p = 0, v = 0 and then by Theorem 15,''' = 0,   = 0. Therefore,  = 0. Let
us denote

̃12 ∶=
⎡

⎢

⎢

⎣

I 0 −Πs Πd

0 I −V W
0 0 −V 1

2
I

⎤

⎥

⎥

⎦

.

It is not hard to see that ̃12 is bounded. Due to the mapping properties of the operators involved in the matrix12 −̃12, by
Theorem 2 and Proposition 1, the operator

12 − ̃12 ∶=
⎡

⎢

⎢

⎣

0 ∙ 0 0
0 R 0 0
0 +R 0 W

⎤

⎥

⎥

⎦

is compact. To show the invertibility of ̃12, consider the equation

̃12 = ̃ , (98)

with an unknown vector  = (p, v,   ,''')T ∈ L2(Ω) × H1(Ω) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) and a given vector ̃ = (F̃1, F̃2, F̃3) ∈

L2(Ω) ×H1(Ω) ×H
1
2 ()Ω). Rewrite (98) componentwise

p − Πs   + Πd''' = F̃1 in Ω, (99)
v − V   +W''' = F̃2 in Ω, (100)

1
2
''' − V   = F̃3 on )Ω, (101)

The restriction of equation (101) on )ΩD gives
−r)ΩDV   = r)ΩD F̃3. (102)

Due to Theorem 13, equation (102) is uniquely solvable. i.e., for arbitrary F̃3 ∈ H
1
2 ()Ω) there exist a unique    ∈ H̃

− 1
2

∗∗ ()ΩD)
satisfying (102). Note that in accordance with (102)

[V   + F̃3] ∈ H̃
1
2 ()ΩN ). (103)

Then (101) along with (103) yield that ''' is defined also uniquely as

''' = 2[V + F̃3] ∈ H̃
1
2 ()ΩN ).

Thus, equation (101) with arbitrary F̃3 ∈ H
1
2 ()Ω) defines ''' ∈ H̃

1
2 ()ΩN ) and    ∈ H̃

− 1
2

∗∗ ()ΩD) uniquely. Remark that we then
have Πs   ,Πd''' ∈ L2(Ω), V   , W''' ∈ H1(Ω) and from equation (99) and (100) we get

p = Πs   − Πd''' + F̃1 in Ω, v = V   −W''' + F̃2 in Ω.

That is, the functions (p, v) ∈ L2(Ω) × H1(Ω) is defined also uniquely. We conclude that ̃12 is invertible. Note that, we can
write the operator12 as a sum of compact and inveritible operator,12 = (12−̃12)+̃12 , implying that it is a Fredholm
operator with zero index. Then the injectivity of operator (97) implies its invertibility.

Theorem 18. The operator

21 ∶ L2(Ω) ×H1(Ω) × H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN ) ←→ L2(Ω) ×H1(Ω) ×H− 1

2 ()Ω), (104)

is invertible.
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Proof. It is straight forward to show that the operator 21 is injective. To see this, let 21 = 0. We show that  = 0. Since
21 = 0, we have:

(

F0, F, T+(F0,F) −ΨΨΨ0
)T = 0

which implies (f, g,ΦΦΦ0,ΨΨΨ0) = 0, see Remark 4. Hence A(p, v) = 0 and div v = 0 in Ω, +v = 0 on )ΩD, and T+(p, v) = 0 on
)ΩN . Furthermore, Theorem 1 implies that p = 0, v = 0. We thus have ''' = 0 and    = 0 by Theorem 15. Then we get  = 0
as desired.
Let us set

̃21 ∶=
⎡

⎢

⎢

⎣

I 0 −Πs Πd

0 I −V W
0 0 1

2
I L̂

⎤

⎥

⎥

⎦

.

It is not hard to see that ̃21 is bounded. By Theorem 2 and Proposition 1, the operator

21 − ̃21 =
⎡

⎢

⎢

⎣

0 ∙ 0 0
0 R 0 0
0 T+(∙,R) −W ′ L+ − L̂

⎤

⎥

⎥

⎦

is compact. Since the operators L̂, I , and I are invertible and by arguments similar to those in the proof of Theorem 17 and
then ̃21 is invertible . Note that, we can write the operator 21 as a sum of compact and inveritible operator, that is, 21 =
(21−̃21)+̃21 . This implies that21 is a Fredholm operator with zero index. Then the injectivity of this operator implies
its invertibilit and, hence, the theorem.

To prove the invertibility of the operator22 we need some auxiliary assertions.

Lemma 4. Let )Ω = S1 ∪ S2 , where S1 and S2 are two non-intersecting non-empty of )Ω with infinitely smooth boundaries.
For any vector

 = (F0,F,ΨΨΨ,ΦΦΦ)T ∈ H1,0(Ω;A) ×H− 1
2 (S1) ×H

1
2 (S2)

there exists another vector

(g∗, f∗,ΨΨΨ∗,ΦΦΦ∗)T = ̃S1,S2 ∈ L2(Ω) × L2(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω)

which is uniquely determined by  and such that

̊f∗ + (2 − �)�g∗ + ΠsΨΨΨ∗ − ΠdΦΦΦ∗ = F0, in Ω,
U f∗ −Qg∗ + VΨΨΨ∗ −WΦΦΦ∗ = F, in Ω,

r
)ΩS1
ΨΨΨ∗ = ΨΨΨ, on S1,

r
)ΩS2
ΦΦΦ∗ = ΦΦΦ, on S2

Furthermore, the operator

̃S1,S2 ∶ H1,0(Ω;A) ×H− 1
2 (S1) ×H

1
2 (S2)→ L2(Ω) × L2(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω)

is continuous.

Proof. The proof is the same with the corresponding Lemma for 3D case9, Lemma 7.5 by including further assumptions ΨΨΨ∗ ∈
H
− 1
2

∗∗ ()Ω).

Corollary 1. For any  = (F0,F,2,3)T ∈ H1,0(Ω;A) ×H− 1
2 (S1) ×H

1
2 (S2), there exists a unique vector

(g∗, f∗,ΨΨΨ∗,ΦΦΦ∗)T = S1,S2 ∈ L2(Ω) × L2(Ω) ×H− 1
2 ()Ω) ×H

1
2 ()Ω)

which is uniquely determined by  and such that

̊f∗ + (2 − �)�g∗ + ΠsΨΨΨ∗ − ΠdΦΦΦ∗ = F0, in Ω,
U f∗ −Qg∗ + VΨΨΨ∗ −WΦΦΦ∗ = F, in Ω,

r
S1
(T+(F0,F) −ΨΨΨ∗) = 2, on S1,
r
S2
(+F −ΦΦΦ∗) = 3, on S2.
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Furthermore, the operator

S1,S2 ∶ H1,0(Ω;A) ×H− 1
2 (S1) ×H

1
2 (S2)→ L2(Ω) × L2(Ω) ×H− 1

2 ()Ω) ×H
1
2 ()Ω)

is continuous.

Proof. This corollary follows from applying Lemma 4 withΨΨΨ = rS1T
+(F0,F) − 2 andΦΦΦ = rS2

+F − 3.

Theorem 19. The operator

22 ∶ H1,0(Ω;A) × H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) ←→ H1,0(Ω;A) ×H

− 1
2

∗∗ ()ΩD) ×H
1
2 ()ΩN ) (105)

is continuously invertible

Proof. Let us consider an arbitrary right hand side to the system 22 = 22, 22 ∈ H1,0(Ω) × H
− 1
2

∗∗ ()ΩD) × H
1
2 ()ΩN ). By

Corollary 1, the right hand side 22 can be written in the form

̊f∗ + (2 − �)�g∗ + ΠsΨΨΨ∗ − ΠdΦΦΦ∗ = F0, in Ω,
U f∗ −Qg∗ + VΨΨΨ∗ −WΦΦΦ∗ = F, in Ω,

r
)ΩD
(T+(F0,F) −ΨΨΨ∗) = 22

2 , on )ΩD,

r
)ΩN
(+F −ΦΦΦ∗) = 22

3 , on )ΩN

where, (g∗, f∗,ΨΨΨ∗,ΦΦΦ∗)T = )ΩD ,)ΩN
22 where the operator )ΩD ,)ΩN is bounded and has the following mapping property

)ΩD ,)ΩN ∶ H1,0(Ω;A) ×H
− 1
2

∗∗ ()ΩD) ×H
1
2 ()ΩN )→ L2(Ω) × L2(Ω) ×H

− 1
2

∗∗ ()Ω) ×H
1
2 ()Ω)

By Corollary 2 and the equivalence theorem of the system (M22), Theorem 15, there exists a solution of the equation22 =
22. This solution can be represented as

 = [p, v,   ,''']T = (22)−122,
where

(22)−1 ∶ H1,0(Ω;A) ×H
− 1
2

∗∗ ()ΩD) ×H
1
2 ()ΩN ) ←→ H1,0(Ω;A) × H̃

− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN )

is given by

(p, v) = −1
M [g∗, f∗, r)ΩDΨΨΨ∗, r)ΩNΦΦΦ∗]

T , (106)
   = T+(p, v) −ΨΨΨ∗ = T+(p, v) − ()ΩD ,)ΩN

22)2, (107)
''' = +v −ΦΦΦ∗ = +v − ()ΩD ,)ΩN

22)3. (108)

Consequently, the operator (22)−1 is continuous by continuity of the operators in (106)-(108) .

The original BVP (6a)-(6d) can be written in the form

AM = FM

where

AM =

⎡

⎢

⎢

⎢

⎢

⎣

A
div
rΩD

+

rΩNT+

⎤

⎥

⎥

⎥

⎥

⎦

, M =

⎡

⎢

⎢

⎢

⎢

⎣

f
g
'''0
   0

⎤

⎥

⎥

⎥

⎥

⎦

.

The operator AM ∶ H1,0(Ω;A) ←→ L2(Ω) × L2(Ω) ×H
1
2 ()ΩD) ×H− 1

2 ()ΩN ) is continuous and due to the uniqueness theorem
for the BVP is also injective. The invertibility of the operator 11 from Theorem 16 and equivalence Theorem 15 lead to the
following

Corollary 2. The operator

AM ∶ H1,0(Ω;A) ←→ L2(Ω) × L2(Ω) ×H
1
2 ()ΩD) ×H− 1

2 ()ΩN )

is continuously invertible.
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Particularly, when � = 1, the operatorA becomes Å andR = ∙ = 0. Consequently, the boundary domain integral equations
system (89a)- (89d) can be reduced to a BIE system consisting of two vector equations

r
)ΩD

(1
2
   − W̊ ′   + L̊'''

)

= r
)ΩD

T+(F0,F) − r)ΩDΨΨΨ0 on )ΩD, (109)

r
)ΩN

(1
2
''' − V̊ + W̊'''

)

= r
)ΩN
+F − r

)ΩN
ΦΦΦ0 on )ΩN (110)

and a BDIE system consisting of a scalar equation and a vector equation

p = F0 + Π̊s   − Π̊d''' in Ω (111)
v = F + V̊   − W̊''' in Ω (112)

where the terms F0 and F are given by (84). The theorem of equivalence between the BVP and BDIE system, Theorem 15 leads
to the following result of equivalence for the constant coefficient case.

Theorem 20. Let � = 1 in Ω, f ∈ L2(Ω) and g ∈ L2(Ω). Moreover, Let ΦΦΦ0 ∈ H
1
2 ()Ω) and ΨΨΨ0 ∈ H− 1

2 ()Ω) be some fixed
extensions of '''0 ∈ H

1
2 ()ΩD) and    0 ∈ H− 1

2 ()ΩN ) respectively.

(i) If some (p, v) ∈ L2(Ω)×H1(Ω) solve mixed BVP (6a) - (6d), then the solution is unique, the couple (   ,''') ∈ H̃
− 1
2 ()ΩD)×

H̃
1
2 ()ΩN ) given by

''' = +v −ΦΦΦ0,    = T+(p, v) −ΨΨΨ0 on )Ω (113)
solves the BIE system (109)-(110) and (p, v) satisfies (111)-(112).

(ii) If (   ,''') ∈ H̃
− 1
2

∗∗ ()ΩD) × H̃
1
2 ()ΩN ) solve the BIE system (109)-(110), then (p, v) given by (111)-(112) solves mixed BVP

(6a) - (6d) and equations (113) hold. Moreover, the BIE system (109)-(110) is uniquely solvable in H̃
− 1
2

∗∗ ()ΩD)×H̃
1
2 ()ΩN ).

The system (109)-(110) can be expressed using matrix notation as follows

̊22̊ = ̊22 (114)

where ̊ = (   ,''')T ∈ H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN ), the operator

̊22 ∶=
⎡

⎢

⎢

⎣

r)ΩD
(

1
2
I − W̊ ′

)

r
)ΩD

L̊+

−r
)ΩN

V̊ r
)ΩN

(

1
2
I + W̊

)

⎤

⎥

⎥

⎦

, ̊22 ∶=

[

r
)ΩD

T+F0 − r)ΩDΨΨΨ0
r
)ΩN
F +0 − r)ΩNΦΦΦ0

]

̊22 ∈ H− 1
2 ()ΩD) × H

1
2 ()ΩN ). Moreover, the operator ̊22 ∶ H̃− 1

2 ()ΩD) × H̃
1
2 ()ΩN ) → H− 1

2 ()ΩD) × H
1
2 ()ΩN ) is bounded

and injective.

Theorem 21. The operator ̊22 ∶ H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN )→ H− 1

2 ()ΩD) ×H
1
2 ()ΩN ) is invertible.

Proof. A solution of system (114) with an arbitrary (̊22)T = (̊222, ̊322) ∈ H− 1
2 ()ΩD) ×H

1
2 ()ΩN ) is delivered by the couple

(   ,''') satisfying the extended system
̂22 = ̂22,

where  = (p, v,   ,''')T , ̂22 = (0, 0, ̂222, ̂322)T , and

̂22 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I 0 −Π̊s Π̊d

0 I −V̊ W̊
0 0 r)ΩD

(1
2

I − W̊ ′
)

r)ΩDL̊
+

0 0 −r)ΩN V̊ r)ΩN
(1
2

I + W̊
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (115)

The operator ̂22 has a continuous inverse due to Theorem 19 for � = 1. Consequently, the operator ̂22 has a bounded right
inverse, which is also a two-side inverse due to injectivity of the operator ̂22, this implies that operator ̊22 is surjective.
Theorem 20 implies that operator ̊22 is also injective and thus an isomorphism.
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Theorem 22. The operator

22 ∶ L2(Ω) ×H1(Ω) × H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN ) ←→ L2(Ω) ×H1(Ω) ×H− 1

2 ()ΩD) ×H
1
2 ()ΩN ),

is invertible.

Proof. Let us consider the following operator,

̃22 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I 0 −Πs Πd

0 I −V W̊
0 0 r)ΩD

(1
2

I − W̊ ′
)

r)ΩDL
+

0 0 −r)ΩNV r)ΩN
(1
2

I +W
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (116)

By Theorem 2 ,3,11 and 12 , the operator ̃22 is a compact perturbation of the operator 22. Taking into account relations
(20) and (23), the above operator can be represented as

̃22 = diag(1, 1
�

I, I, 1
�

I)̂22diag(1, �I, I, �I),

where diag(1, 1
�

I, I, 1
�

I) and diag(1, �I, I, �I) are diagonal 7 × 7 matrices.
The operator ̂22 is given by (115), is a triangular block matrix operator with the following diagonal operators

I ∶ L2(Ω)→ L2(Ω), I ∶ H1(Ω)→ H1(Ω), ̊22 ∶ H̃
− 1
2 ()ΩD) × H̃

1
2 ()ΩN )→ H− 1

2 ()ΩD) ×H
1
2 ()ΩN ).

The operator ̊22 is invertible due to Theorem 21. Consequently (116) is an invertible operator as well. Taking into account
that � > constant > 0 and is bounded, this implies the diagonal matrices diag(1, 1

�
I, I, 1

�
I) and diag(1, �I, I, �I) are invertible

and the operator ̃22 is invertible. This implies the operator22 possesses the Fredholm property and its index is zero.
The invertibility of the operator simply follows from the injectivity of the operator22 derived from Theorem 15 (iii).

ACKNOWLEDGMENTS

The work on this paper of the first and the second authors are supported by the Alexander von Humboldt Foundation grant Ref
3.4-ETH/1144171. They would like also to thank the Department of Mathematics at TUKaiserslautern for hosting their research
stay.

References

1. Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Pub. Co. ; sole distributors for the
U.S.A. and Canada, Elsevier North-Holland Amsterdam ; New York; 1979.

2. Ladyzhenskaya OA. The mathematical theory of viscous incompressible flow. New York: Gordon and Breach Science
Publishers; 1969.

3. Hsiao GC, Wendland WL. Boundary Integral Equations. Springer Berlin Heidelberg; 2008.

4. Rjasanow S, Steinbach O. The Fast Solution of Boundary Integral Equations. Springer; 1 ed.2007. XI, 279 S.

5. Steinbach O. Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements.
Springer; 1 ed.2008. XII, 386 S.

6. Kohr M, Wendland WL. Variational boundary integral equations for the Stokes system. Applicable Analysis.
2006;85(11):1343-1372.

7. Dominguez V, Sayas FJ. A BEM-FEM overlapping algorithm for the Stokes equation. Applied Mathematics and Compu-
tation. 2006;182(1):691 - 710.



24 Mulugeta A. Dagnaw ET AL

8. Mikhailov SE, Portillo CF. BDIE System to the Mixed BVP for the Stokes Equations with Variable Viscosity:401–412.
Birkhäuser 2015.

9. Mikhailov SE, Portillo CF. Analysis of Boundary-Domain Integral Equations to the Mixed BVP for a Compressible Stokes
System with Variable Viscosity. Communications on Pure and Applied Analysis. 2019;18:3059–3088.

10. Ayele TG, Dufera TT, Mikhailov SE. Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Mixed
BVP in 2D:467–480. Springer Nature Switzerland 2019.

11. Chkadua O, Mikhailov SE, Natroshvili D. Analysis of direct boundary-domain integral equations for a mixed BVP with
variable coefficient, I: Equivalence and invertibility. Journal of Integral Equations and Applications. 2009;21.

12. Lions JL, Magenes E. Non-homogeneous boundary value problems and applications. Springer-Verlag Berlin, New York;
1972.

13. McLean W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press; 2000.

14. Costabel M. Boundary Integral Operators on Lipschitz Domains: Elementary Results. SIAM Journal on Mathematical
Analysis. 1988;19(3):613-626.

15. Mikhailov SE. Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. Journal of
Mathematical Analysis and Applications. 2011;378(1):324 - 342.

16. Triebel H. Interpolation theory, function spaces, differential operators North-Holland Mathematical Library, vol. 18: .
Amsterdam: North-Holland Publishing Co.; 1978.

17. Cialdea A, Leonessa V, Malaspina A. On the Dirichlet Problem for the Stokes System in Multiply Connected Domains.
Abstract and Applied Analysis. 2013;2013:1–12.

18. Kohr M, Cristoforis M, Wendland WL. Nonlinear Neumann–Transmission Problems for Stokes and Brinkman Equations
on Euclidean Lipschitz Domains. Potential Analysis. 2013;38(4):1123–1171.

19. Vodička R,Mantič V.On Invertibility of Elastic Single-Layer Potential Operator. Journal of Elasticity. 2004;74(2):147–173.

20. Dufera TT, Mikhailov SE. Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet BVP in 2D.
In: Constanda Christian, KirschAndreas, eds. IntegralMethods in Science and Engineering, :163–175Springer International
Publishing; 2015; Cham.

How to cite this article: Ayele, TG, Dagnaw, MA , and Mikhailov, SE (2019), Boundary-Domain Integral Equation Systems
to the Mixed BVP for Compressible Stokes Equations with Variable Viscosity in 2D, Mathematical Methods in the Applied
Sciences, 2019;00:1–24.


	Boundary-Domain Integral Equation Systems to the Mixed BVP for Compressible Stokes Equations with Variable Viscosity in 2D 
	Abstract
	Introduction
	Preliminaries
	Formulation of the Boundary Value Problem
	Parametrix and parametrix-based hydrodynamic potentials
	Parametrix and Remainder
	Volume and Surface Potentials

	Invertibility of the Hydrodynamic Single layer Potential Operator in 2D 
	The Third Green Identities 
	BDIEs for Mixed BVP
	Equivalence and Invertibility
	Acknowledgments
	References


