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Abstract

In order to measure the estimated error, the definition of E-MSE(expected mean
squared error) is introduced based on the definition of E-Bayesian estimation. More-
over, under different loss functions(include: squared error loss, K-loss function, pre-
cautionary loss and entropy loss), the formulas of E-Bayesian estimation and E-MSE
for reliability parameters of exponential distribution are given respectively. Monte
Carlo simulations are performed to compare the performances of the proposed meth-
ods of estimation and a real data set have been analysed for illustrative purposes(also
using OpenBUGS), results are compared on the basis of E-MSE. When considering
evaluating the E-Bayesian estimations under different loss functions, this paper pro-
posed the E-MSE as evaluation standard.
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1 Introduction

With the development of science and technology, the reliability of industrial products is
efficiently improved.The estimation of product reliability has attracted worldwide attention
during the past several decades. The estimation procedure usually begins with parameter
estimation based on test data.

Lindley and Smith(1972) proposed the thought of hierarchical prior distribution. The
hierarchical Bayesian method needs two stages to finish the setting of the prior distribu-
tion, hence, it is more robust than Bayesian method. Han (1997) proposed the method
to construct hierarchical prior distribution. Yet the hierarchical Bayesian estimation of-
ten involves in the computation of complicated integrals and integrals computing is hard
work by using hierarchical Bayesian methods in practice, some computing methods such
as Markov chain Monte Carlo(MCMC) methods are availablee(see Brooks(1998), Andrieu
and Thoms(2008)). In recent years, hierarchical Bayesian methods have been applied
to data analysis, for more details, see Ando and Zellner(2010), Osei and Duker(2011),

*E-mail address: hanming618@21cn.com, mhan824@163.com



Han(2009, 2011, 2017), Yousefzadeh(2017), Kizilaslan(2017), Abdul-Sathar and Krish-
nan(2019), Shahrastani(2019).

Bayesian methods in statistical inference depend on the choice of the prior distribution
and loss function. But prior distribution parameters may depend on the hyper param-
eters. In this situation, we often use the hierarchical Bayesian method. On the other
hand, the loss function is important in Bayesian methods. In the Bayesian inference is the
squared error loss the most commonly used. This loss function is symmetrical and gives
equal weight to overestimation as well as underestimation. It is well known that the use of
symmetric loss functions may be inappropriate in many circumstances, particularly when
positive and negative errors have different consequences. A useful asymmetric loss, known
as the LINEX(linear exponential) loss function, was introduced by Varian(1975) and was
widely used by several authors(see, for example, Zellner(1986), Schabe(1991), and Pandei
and Rai(1992)). This function rises approximately exponentially on one side of zero and
approxinlately linearly on the other side. And further properties of LINEX loss function
have been investigated by Zellner(1986). A suitable alternative to the modified LINEX loss
function is the general entropy loss proposed by Calabria and Pulcini(1994). This loss func-
tion is a generalization of the entropy loss used. The entropy loss function is another useful
asymmetric loss function. Parameter estimation under entropy loss function, see Paorsian
and Nematollahi(1996), Yousefzadeh(2017). The balanced loss function was introduced
first by Zellner(1994). Ali, Aslam and Kazmi(2013), mathematical properties of Lind-
ley distribution via Bayesian approach are derived under different loss functions(include:
squared error loss, weighted squared error loss, precautionary loss, modified squared error
loss, logarithmic loss, entropy loss and K-loss). These properties include: Bayes estimators,
posterior risks and failure rate function for simulation scheme. Results are compared on
the basis of posterior risk. About relevant research of Bayesian estimation(or hierarchical
Bayesian estimation) under different loss functions, more details, see Calabria and Pul-
cini(1996), Kazmi, Aslam and Ali(2012), Ali(2015), Yousefzadeh(2017), Han(2017, 2018),
Kizilaslan(2019).

In recent years, the author proposed the E-Bayesian estimation method, which has been
cited and developed by some scholars. The hierarchical Bayesian method and E-Bayesian
method are two methods to deal with hyper parameters when the prior distribution contains
unknown parameters(hyper parameters).

It is well known that in the Bayes framework, the Bayes rule is obtained by considering
a specific prior distribution over the parameter of interest but in practice, the use of a
specified prior with specific hyper parameters is critical. Specially, when a problem in the
Bayes framework is behaved by two or more statisticians, they might agree on a specific
prior but might not on the hyper parameter choices. To deal with such an uncertainty
issue, E-Bayesian and robust Bayes approaches may be called are derived(Karimnezhad
and Moradi, 2016).

When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can
be used to handle the uncertainty in specifying the prior distribution by considering a
class of priors instead of a single prior. The goal of the E-Bayesian method is estimating
an unknown parameter or predicting a future value of a sequence of random variables by
specifying a prior distribution prior hyper parameter(s)(Kiapour, 2018).

About relevant research of the E-Bayesian estimation method, for more details, see
Han(2007, 2009, 2011), Jaheen and Okasha(2011), Okasha (2014), Okasha and Wang(2016),
Karimnezhad and Moradi(2016), Yin, Huang and Peng et al.(2016), Kizilaslan (2017),



Gonzalez-Lopez, Gholizadeh and Galarza (2017), Yousefzadeh (2017), Zhang, Zhao and
Zhang et al.(2017), Kiapour(2018), Kizilaslan (2019), Londono and Barahona(2019), Ra-
bie and Li(2019). In existing research, we can see, compared with the hierarchical Bayesian
method, the E-Bayesian estimation method is so simple that it is easier to perform.

Han(2019)in the case of the two hyper parameters, proposed the definition of E-MSE,
and combined exponential distribution under the scaled squared error loss function, the
formula of E-Bayesian estimation and the formula of E-MSE are given respectively.

This article is organized as follows: in Section 2, the definition of E-MSE(expected
mean square error) is introduced based on the definition of E-Bayesian estimation. In
Section 3, introduced the Bayesian estimation under different loss functions. In Section 4,
the formulas of E-Bayesian estimation under different loss functions are given, respectively.
In Section 5, the formulas of E-MSE under different loss functions are given, respectively.
In Section 6, Monte Carlo simulation and comparisons are given. In Section 7, application
example is given and Section 8 is the conclusion.

2 Definitions of E-Bayesian estimation and its E-MSE

In this section, the definition of E-Bayesian estimation and the definition of E-MSE will
be introduced respectively.

2.1 Definition of E-Bayesian estimation of )\

For exponential distribution with probability density function(pdf)
F() = Aexp{—tA}, ¢>0, (1)

where A > 0 is the failure rate of the exponential distribution.
And the reliability function is given by

R(t) = exp{—At},t > 0. (2)

If we take conjugate prior of A\, namely gamma(a,b), then probability density func-
tion(pdf)
beA 1 exp(—bA)
['(a)

where I'(a) = [;° 2! exp(—z)dx is the gamma function, and hyper parameters a > 0 and
b> 0.

According to Han (1997) , a and b should be selected to guarantee that 7(A|a,b) is a
decreasing function of A\. The derivative of 7(\|a, b) with respect to A is

m(AMa,b) = ;A >0, (3)

d[m(Aa,b)] _ b\ 2 exp(—DA)
d\ [(a)

[(a—1) — b\

Notethata>0,b>0,and)\>0,itfollows()<a<1,b>0duetow<O,

and therefore m(A|a,b) is a decreasing function of A. Given 0 < a < 1, the larger b is,
the thinner the tail of the Gamma density function will be. Considering the robustness
of Bayesian estimate (Berger,1985), the thinner tailed prior distribution often reduces the
robustness of Bayesian estimate. Accordingly, b should not be larger then a given upper

3



bound ¢, where ¢ > 0 is a constant to be determined. Thereby, the hyper parameters a and
b should be selected with the restriction of 0 < a < 1 and 0 < b < ¢. How to determine
the constant ¢ would be described later in example.

In the case of the one hyper parameter, the definition of E-Bayesian estimation of failure
rate was originally addressed by Han(2009). In the case of the two hyper parameters, the
E-Bayesian estimation of failure rate is defined as follows.

Definition 1. With Ag(a, b) being continuous

Nop = / / g(a, b)m(a, b)dadb
D

is called the E-Bayesian estimation of A (briefly named E-Bayesian estimation, fully name
should be expected Bayesian estimation),which is assumed to be finite, where D is the
domain of a and b, XB(a, b) is Bayesian estimation of A with hyper parameters a and b,
and 7(a, b) is the density function of a and b over D.

Definition 1 indicates that the E-Bayesian estimation of A

Y / ! As(a, b)m(a, b)dadb = E [Ap(a,b)

is the expectation of Bayesian estimation of A for all the hyper parameters.
From definition 1 we see, about the definition of E-Bayesian estimation, from the one
hyper parameter (Han,2009) generalized to the two hyper parameters.

2.2 Definition of E-MSE of S\EB

Han(2019b) in the case of the one hyper parameter, proposed the definition of E-MSE(expected
mean square error). In the case of the two hyper parameters, Han(2019a)proposed the def-
inition of E-MSE, as shown in definition 2 below.

Definition 2. With MSE[Ag(a, b)] being continuous,
E— MSE(gg) = / / MSE[\s(a, b)]x(a, b)dadb
D
is called the E-MSE of E-Bayesian estimation A gp(briefly named E-MSE, the full name
should be expected mean square error),which is assumed to be finite, where D is the domain
of a and b, MSE[Ag(a, b)] is the MSE of Bayesian estimation of A with hyper parameters
a and b, and 7(a, b) is the density function of @ and b over D.

Definition 2 indicates that the E-MSE of E-Bayesian estimation XEB

E— MSE(\gg) = / / MSE[As(a,b)l(a, b)dadb = E {MSE[Ap(a, b))}

is the expectation of MSE of Bayesian estimation for all the hyper parameters.



3 Bayesian estimation under different loss functions

According to Ali, Aslam and Kazmi(2013), we have the following Lemma 1.

Lemma 1. Letx = (21,29, -, x,) are the sample observations, for any prior distribution
of parameter A\, have the following conclusions:

(i) If the squared error loss function(SELF) L1 (), §) = (A—0)? is used, then the Bayesian
estimation of A is Agi(x) = E(\|x).

(i) If the K-loss function (KLF)Lo(A,J) (\f \f) is used, then the Bayesian

E(\|z)
EO1z)

estimation of \ is Agy(x) =

(iii) If the precautionary loss function (PLF)Ls(), 8) = & 56) is used, then the Bayesian
estimation of \ is Ags(z) = \/E(A2|z).
(iv) If the entropy loss function(ELF)Ly(X,8) = & —In ¢ — 1 is used, then the Bayesian

estimation of A is Aps(z) = [E(NYz)] "
Where 6 is an estimate of parameter \.

4 E-Bayesian estimation of A

In the following, the complete sample and type I censored sample situations will be intro-
duced respectively.

4.1 In the case of complete sample

Theorem 1. If z = (xl,x2, -, x,) are the sample observations from the exponential
distribution(1), 7" = Z x;, the prior density function 7(A|a,b) of A is given by (3), the

prior density function 7r(a b) of a and b is given by (4),
1
m(a,b)=—, 0<a<1,0<b<ec, (4)
c

then we have the following conclusions:
(i) If using the squared error loss function(SELF), then the Bayesian estimation of A is

n—+a

XBl(avb) = m>

and the corresponding E-Bayesian estimation of \ is

~ 1 1 c
AE31:C<H+2)1H<1+T>

(ii) If using the K-loss function (KLF), then the Bayesian estimation of \ is

\/(n+a—1)(n+a)
T+ ’

and the corresponding E-Bayesian estimation of A is

Npgo = ln( )/ \/n—i—a—l )(n + a)da.

d

:\Bg(a, b) =




(iii) If using the precautionary loss function (PLF), then the Bayesian estimation of A
is

J+a+1)(n+a)
T+b ’
and the corresponding E-Bayesian estimation of A is

3\1533((17 b) =

)\EBg—Cln<1+T>/O \/(n+a+1)(n+a)da.

(iv) If the entropy loss function(ELF), then the Bayesian estimation of \ is

n+a—1

XB4<a7 b) = T + b 9

and the corresponding E-Bayesian estimation of A is

~ 1 1 c
/\EB4:C<7”L—2)11’1(1—|—T>.

Proof. If x = (z1,x9, -+, x,) are the sample observations from the exponential distribu-
tion(1), then the likelihood function can be written as

L(z|\) o A" exp{—T\},

where T = f: T;.
i=1
If the prior density function m(A|a,b) of A is given by (3), then the Bayesian theorem

leads to the posterior density function of A is

w(Aa, b)L(z|\)
Joo m(Ala, b) L(z|\)dA

A exp{—(T + b)A}
JE AT oxp{—(T + D)AJA
(T 4+ b)"*e

— LT jnta-l (T + b)Y, A>0.
0+ a) exp{—(T +D)A}, A >

h()z)

Therefore the posterior distribution of A is the gamma distribution: gamma(n+a, T+b).

(i) If using the squared error loss function(SELF), according to (i) of Lemma 1, then
the Bayesian estimation of A is Agi(a,b) = E(\|z) = =

For the prior density function m(a,b) of a and b is given by (4), by Definition 1, the
E-Bayesian estimation of A will be

Nop = / / g1 (a, b)r(a, b)dadb
D

= 1/1( tayda [F
B con aaoT—l—b

1 1 c



(ii) According to the posterior density function of A, we have
EQz) = /OO A (A z)dA
0
(T+b)n+a /oo
S [ Al T + b)A}dA
L'(n+a) Jo rep{=(T+0)A}
I'n+a—1)(T+0b)
I'(n+a)
T+b
n+a—1
If using the K-loss function (KLF), according to (ii) of Lemma 1, then the Bayesian
estimation of A is

- E(\x) \/(n—l—a—l)(n—l—a)
Apz(a,0) = J EOz) T+5b

For the prior density function 7(a,b) of @ and b is given by (4), by Definition 1, the
E-Bayesian estimation of A will be

XEBQ = //XBQ(G, b)7r(a, b)dadb

= /\/n+a—1 n+ada/ 7db
_ iln(HT)/o \/(n+a—1)(n+a)da.

(iii) According to the posterior density function of A, we have

EO|z) = / A2h(\|z)dA
0
(T + b)n+a /oo _
I S )\(n+a+2) 1 —(T + DI\
I'(n+a) Jo expi=(T +b)A}
['(n+a+2)
I'(n+a)(T +b)?
(n+a+1)(n+a)
(T + b)?
If using the precautionary loss function (PLF), according to (iii) of Lemma 1, then the
Bayesian estimation of \ is

n+a+1 n+a
)\Bg CL b \/ /\2|$ \/ T+b )

For the prior density function 7(a,b) of a and b is given by (4), by Definition 1, the
E-Bayesian estimation of A\ will be

XEBg = //XBg(a,b)ﬂ(a,b)dadb

= /\/n+a~|—1 n+ada/ 7db
= iln(l—l—T)/O \/(n—l—a—irl)(n—l—a)da.
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(iv) If using the entropy loss function(ELF), according to (iv) of Lemma 1, then the
Bayesian estimation of A is

n+a—1

XB4(a7b) = [E()‘_”x)}_l T T+ob

For the prior density function 7(a,b) of a and b is given by (4), by Definition 1, the
E-Bayesian estimation of A will be

Nepe = / / Nga(a, b)7(a, b)dadb

1

- f/(n—i—a—lda/ 7db
CcJo

S

- \"Tg)" T)

Thus, the proof is completed.

4.2 In the case of type I censored sample

Conduct type I censored life testing m time, denote the censored times ast; (1 = 1,2,---,m),
the corresponding sample numbers as n;, and the corresponding failure sample numbers
observed in the testing process as r;(r; = 0,1,2,---,n;), then {(n;,r;,t;),i = 1,2,---,m}

is called the testing data set.
Theorem 2 below can be directly deduced from Theorem 1 and Han(2009).

Theorem 2. For exponential distribution(1), the testing data set {(n;,r;,t;),i =
m

1,2,---,m} with type I censor, where r; = 0,1,2,--+ ,n;, let M = ¥ (n; — r;)t; and
i=1

r = Z r;. If the prior density function 7(A|a,b) of A is given by (3), the prior density

functlon m(a,b) of a and b is given by (4), then we have the following conclusions:
(1) If using the squared error loss function(SELF), then the Bayesian estimation of A is

r+a
M+

Api(a,b) =

and the corresponding E-Bayesian estimation of A is

A —1(+1>1 <1+C>
EBl—C r 9 n M)

(ii) If using the K-loss function (KLF), then the Bayesian estimation of A is

\/(r+a—1)(r+a)
M+b ’

Apa(a,b) =

and the corresponding E-Bayesian estimation of A is

App2 = ( )/\/T+a—1 (r + a)da.
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(iii) If using the precautionary loss function (PLF), then the Bayesian estimation of A
is

\/(r—l—a—{— 1)(r+a)
M+ ’
and the corresponding E-Bayesian estimation of A is

XB:%(C% b) =

AE33—61n<1+M)/0 \/(r+a+1)(7‘+a)da.

(iv) If the entropy loss function(ELF), then the Bayesian estimation of \ is

< r+a-—1
Aole )=y

and the corresponding E-Bayesian estimation of A is

~ 1 1 c

5 The E-MSE of E-Bayesian estimation

In the following, the complete sample and type I censored sample situations will be intro-
duced respectively.

5.1 In the case of complete sample

Theorem 3. If x = (21,29, --,x,) are the sample observations from exponential dis-
tribution (1), the prior density function 7(A|a,b) of A is given by (3), the prior density
function m(a,b) of a and b is given by (4), then we have the following conclusions:

(i) If using the squared error loss function(SELF), then the MSE of Bayesian estimation
A Bl (Cl, b) is

~ n+a
MSEI\ b)| = ——
the corresponding E-MSE of E-Bayesian estimation A EB1 18
~ 2n+1
E—MSE(\ =
(Agp) 27(T + c)

(ii) If using the K-loss function (KLF), then the MSE of Bayesian estimation Aps(a, b)
is

2(n+a)(n+a)—/(n+a)(n+a—1)
(T + b)? ’

the corresponding E-MSE of E-Bayesian estimation ) EB2 18

MSE[Xga(a,b)] =

E— MSEQ ) = T(sz/ol(“ O(n+a)— /(n+a)(n+a—1)da,



(iii) If using the precautionary loss function (PLF), then the MSE of Bayesian estima-
tion Aps(a,b) is

2n+a)(n+a+1)—/(n+a)(n+a+1)
(T +b)? ’

MSE[Xgs(a,b)] =

the corresponding E-MSE of E-Bayesian estimation NgBs is

T(T?m/ol(nm)[(mﬁ 1) = J(n+a)(n+a+ 1))da.

E — MSE(\gps) =

(iv) If the entropy loss function(ELF), then the MSE of Bayesian estimation Apg4(a, b)
1s

~ n+a+1
MSE[A b)) = ———
[Apa(a,b)] (T +1b)2°
the corresponding E-MSE of E-Bayesian estimation Agpa iS
~ 2n 4+ 3
E—-MSE(A = —"\
(i) 2T(T + ¢)
Proof. (i) If © = (z1,29,--+,2,) are the sample observations from the exponential

distribution (1), the prior density function 7(A|a,b) of A is given by (3). According to (i)
of Theorem 1, then the Bayesian estimation of X is Ap(a, b) = F(\z) = &%, According to

R
proof procedure of Theorem 1, then the posterior distribution of X is gamma(n + a, T + b),
so Var(Mz) = (ﬁi&.

_ If using the squared error loss function (SELF), then the MSE of Bayesian estimation
Agi(a,b) is

MSEApi(a,b)] = E { A= Asi(a )]’ |x} = E{\— E\o) |z} = Var(Alz) = M

If the prior density function 7(a, b) of @ and b is given by (4), by Definition 2, then the

~

E-MSE of E-Bayesian estimation Agg; will be

E— MSEQpm) = / / MSEg1(a, b)]r(a, b)dadb

1 /1 ¢ 1
== da [ b
c/o (nta)da | gy
2n+1
2T(T +¢)
(i))If using the K-loss function (KLF), according to (ii) of Theorem 1, the Bayesian

(n+a)(n+a—1)

T , then the MSE of Bayesian estimation Ags(a, b)

estimation of A is Aps(a, b) =
is

MSEPm(a,b)] = E { A= Aps(a, b)) |x}
= E\|z) — 2Aga(a, b) E(A|z) + [Apa(a, b)]?

2(n+a)[(n+a) — \/(n+a)(n+a —1)]
(T +b)? '
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If the prior density function 7(a, ) of a and b is given by (4), by Definition 2, then the
E-MSE of E-Bayesian estimation Aggo will be

E— MSEQ\gp) = / / MSE[Nga(a, b)|n(a, b)dadb

2

— C/Ol(n+a)[(n+a)—\/(n+a)(n+a—1)]da/oc(T+1b)2db
2

— W/()l(n+a)[(n—l—a) - \/(n+a)(n—|—a— 1)]da.

(iii) If using the precautionary loss function (PLF), according to (iii) of Theorem 1, the

Bayesian estimation of A is Ags(a, b) = W

XBg(CL, b) is

, then the MSE of Bayesian estimation

MSEDgs(a,b)] = E { [\ = Aga(a,0)]” |x}
= E(N\*|z) — 2)ps(a, b)E(A|z) 4+ [Aps(a, b)]?
2(n+a)[(n+a+1)— \/(n+a)(n+a+ 1)]
(T + b)? '

If the prior density function 7(a, b) of a and b is given by (4), by Definition 2, then the
E-MSE of E-Bayesian estimation Aggs will be

E— MSEQgg;) = / / MSE[\gs(a, b)]r(a, b)dadb

- i/ol(n+a)[(n+a+1>—¢<n+a)(n+a+1)]da/oc(ﬂlb)2db
9 1
— T(T+C)/0(n+a)[(n+a+1)—\/(n+a)(n+a+1)]da.

(iv) If the entropy loss function(ELF), according to (iv) of Theorem 1, the Bayesian

estimation of X is Ap4(a,b) = "£%5+, then the MSE of Bayesian estimation A4(a, b) is

MSEPss(a,b)] = E { [\ = Asia.b)]” \x}

= E\|z) — 25\34(0% b)E(A|z) + [S‘B4(av b)°
ntatl
(T +b)?°

If the prior density function 7(a, b) of @ and b is given by (4), by Definition 2, then the

~

E-MSE of E-Bayesian estimation Agps will be

E— MSEQgp) = / / MSE[pa(a, b)]r(a, b)dadb

1,1 c 1
- 1)d / @
c/()(n+a+ )ao (T +b)?

2n + 3

2T(T +¢)’
That, the proof is complete.
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5.2 In the case of type I censored sample

Following Theorem 4 can be directly deduced from Theorem 3 and Theorem 2.

Theorem 4. For exponential distribution(1), the testing data set {(n;,r;,t;),i =
m

1,2,---,m} with type I censor, where r;, = 0,1,2,--+ n;, let M = ¥ (n;, — r;)t; and
i=1
r = g: r;. If the prior density function m(\|a,b) of A is given by (3), the prior density
i=1

function 7(a,b) of a and b is given by (4), then we have the following conclusions:
(i) If using the squared error loss function(SELF), then the MSE of Bayesian estimation
)\Bl ((Z, b) is

r+a

MSE[XBl(aa b)] = W’

the corresponding E-MSE of E-Bayesian estimation A EB1 18

~ 2r+1
E— MSE(\pp1) = MM 1 0)

(ii) If using the K-loss function (KLF), then the MSE of Bayesian estimation Aps(a, b)
is

2(r +a)|(r+a) — \/(r +a)(r +a—1)]
(M + b)? ’

MSE[Mps(a,b)] =

the corresponding E-MSE of E-Bayesian estimation ) EB2 18

B — MSEQpp) M(]\jm/;(r +a)(r+a)— /i +a)(r +a—1)da.

(iii) If using the precautionary loss function (PLF), then the MSE of Bayesian estima-
tion Aps(a,b) is

2(r+a)[(7"~|—a+1)—\/(r+a)(r+a—|—1)]
(M + b)? ’

MSE[Ags(a,b)] =

the corresponding E-MSE of E-Bayesian estimation AEBs 1S

E — MSE(\pps) = —— )/01(7’+a)[(7°+a+1)—\/(r+a)(r+a+1)]da.

M(M +c
(iv) If the entropy loss function(ELF), then the MSE of Bayesian estimation Apg4(a, b)
" r+a+1

MSE[S\B4(G7 b)] = m’

the corresponding E-MSE of E-Bayesian estimation App4 is

~ 2r+3
E— MSE(Agps) = m
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6 Monte Carlo simulation and comparisons

In this section, based on the complete sample, a Monte Carlo simulation is used for a

comparison Agp;(i = 1,2,3,4) and E-MSE(Agg;)(i = 1,2,3,4).

For known value A = 0.005, a sample size n is then generated from the exponential
distribution (1). The codes of MATLAB are used to generate from the exponential distri-

bution.

_ The performance of all estimates has been compared numerically in two terms of their
Aegi(i = 1,2,3,4) and E-MSE(Agg;)(i = 1,2,3,4). The summary for the repeated 10000

times simulation runs is shown in Tables 1-2.

Table 1 Results of XEBi(i =1,2,3,4)

n c AEB1 AEB2 AEB3 AEB4

10 10 0.0058 0.0055 0.0061 0.0052

50 0.0057 0.0054 0.0060 0.0052

100 0.0056 0.0054 0.0059 0.0051

30 10 0.0053 0.0052 0.0053 0.0051

50 0.0052 0.0051 0.0053 0.0051

100 0.0052 0.0051 0.0053 0.0051

50 10 0.0051 0.0051 0.0052 0.0050

50 0.0051 0.0051 0.0052 0.0050

100 0.0051 0.0051 0.0052 0.0050

70 10 0.0051 0.0051 0.0051 0.0050

50 0.0051 0.0051 0.0051 0.0050

100 0.0051 0.0051 0.0051 0.0050

100 10 0.0051 0.0050 0.0051 0.0050

50 0.0051 0.0050 0.0051 0.0050

100 0.0051 0.0050 0.0051 0.0050

Table 2 Results of E-MSE(Agp:)(i = 1,2,3,4)
n C E-MSE(AEBl) E—MSE(/\EBQ> E—MSE((/\EBg) E-MSE(()\EB4)
10 10 3.5803e-006 3.6701e-006 3.6619e-006 3.9213e-006
50 3.4844e-006 3.5712e-006 3.5632e-006 3.8162e-006
100 3.3868e-006 3.4718e-006 3.4641e-006 3.7093e-006
30 10 9.3827e-007 9.4610e-007 9.4585e-007 9.6904e-007
o0 9.3160e-007 9.3933e-007 9.3908e-007 9.6214e-007
100 9.2560e-007 9.3330e-007 9.3305e-007 9.5595e-007
50 10 5.3608e-007 5.3877e-007 5.3871e-007 5.4670e-007
50 5.3548e-007 5.3816e-007 5.3811e-007 5.4609e-007
100 5.3084e-007 5.3350e-007 5.3345e-007 5.4136e-007
70 10 3.7576e-007 3.7711e-007 3.7709e-007 3.8109e-007
50 3.7278e-007 3.7411e-007 3.7409e-007 3.7806e-007
100 3.7100e-007 3.7232e-007 3.7230e-007 3.7626e-007
100 10 2.5829e-007 2.5894e-007 2.5893e-007 2.6086e-007
50 2.5868e-007 2.5933e-007 2.5932e-007 2.6126e-007
100 2.5736e-007 2.5800e-007 2.5799e-007 2.5992e-007

Based on tabulated the values of Agpi(i = 1,2,3,4) and E-MSE(Agg;)(i = 1,2,3,4),

the following conclusions can be drawn from Tables 1-2.
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(1)For the same n(n = 10,30, 50, 70,100) and different ¢(c = 10,50, 100), we find that
the values of Agp;(i = 1,2,3,4) and E-MSE(Agp:)(i = 1,2,3,4) are all robust.

(2)For the same n(n = 10, 30, 50,70, 100) and fixed ¢(c = 10,50, 100), we find that the
values of B-MSE(Aggi)(i = 1,2,3,4) have the following sequential relationship:

E-MSE(Agg1) <E-MSE(Agps) <E-MSE(Apgs) <E-MSE(Agps).

(3)For fixed c(c = 10, 50, 100), it is observed that by increasing n, the performances of
all estimates Agp;(i = 1,2,3,4) and E-MSE(Agp:)(i = 1,2, 3,4) improve.

7 Application example

In Han(2009) the given testing data for a type of electronic products, which is listed in
Table 3(time unit: hour).

Table 3  Testing data of the electronic products
i 1 2 3 4 5 6 7
t; 480 680 880 1080 1280 1480 1680
n; 3 3 5 5 8 8 8
r, 0 0 0 1 0 2 1

According to Han(2009), lifetime of this electronic products obey the exponential dis-
tribution.

The following relevant calculation, using Theorems 2, 4 and the MCMC algorithm(by
Open BUGS software) respectively.

7.1 Using Theorems 2, 4

By Table 3 and Theorem 2, we can obtain A epi(t = 1,2,3,4). Some numerical results are
listed in Table 4.

Table 4  Results of XEBi(i =1,2,3,4)

c 100 500 1000 2000 Range
Agp1 1.0434e-004 1.0386e-004 1.0326e-004 1.0210e-004 1.5000e-006
XEBQ 9.2013e-005 9.1589e-005 9.1066e-005 9.0045e-005 1.9680e-006
XEBg 1.1535e-004 1.1482e-004 1.1416e-004 1.1288e-004 2.4700e-006
XEB4 8.1150e-005 8.0776e-005 8.0316e-005 7.9415e-005 1.7350e-006
X,EB 3.4200e-005 3.4044e-005 3.3844e-005 3.3465e-005

Note: In Table 4, S\_B = XEB;J, — /A\EB4.
From Table 4, we find that for the same ¢(100, 500, 1000, 2000), XEBi(i = 1,2,3) are
close to each other, and for different ¢(100, 500, 1000, 2000), XEBi(z' = 1,2,3) are all robust.
Based on Table 4, we can obtain the corresponding estimate of the reliability functions
Rppi(t) = exp{—Agpit}(i = 1,2,3,4). Some numerical results are listed in Table 5.
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Table 5 Results of Rpp;(1000)(i = 1,2,3)

c 100 500 1000 2000 Range
Rppi(1000)  0.9009 0.9014 0.9019 0.9029 0.0013
Rep2(1000) 09121 0.9125 0.9130 0.9139 0.0018
Rpps(1000)  0.8911 08915 0.8921 0.8933 0.0022
(1000)
5 (

REB4 1000) 0.9221 0.9224 0.9228 0.9237 0.0016
1000) 0.0310 0.0309 0.0307 0.0208

Note: In Table 5, R_5p(1000) = Rgps(1000) — Rgps(1000).

From Table 5, we find that for the same ¢(100, 500, 1000, 2000), Rgp:(1000)(i = 1,2, 3,4)
are close to each other, and for different ¢(100, 500, 1000, 2000), }A%EBi(lOOO)(i =1,2,3) are
all robust.

By Table 3 and Theorem 4, we can obtain E-MSE(Agg;)(i = 1,2,3,4). Some numerical
results are listed in Table 6 and Figure 1.

Table 6 Results of E-MSE(Agg;)(i = 1,2,3,4)
100 500 1000 2000 Range
2.4191e-009  2.3969e-009  2.3697¢-009 2.3171e-009  1.0200e-010

E-MSE

(/\Em)
E—MSE(XEBQ) 2.5710e-009  2.5474e-009 2.5185e-009 2.4627e-009 1.0830e-010
E—MSE(XEB;;) 2.5403e-009  2.5170e-009 2.4884e-009 2.4332e-009 1.0710e-010
E- MSE(:\EB4) 2.9567e-009  2.9295e-009 2.8963e-009 2.8321e-009 1.2460e-010
E- MSE(XEB,) 5.3760e-010  5.3260e-010 4.0790e-010  5.1500e-010

Note: In Table 6, E-MSE(Agp_) =E-MSE(Agp4)-E-MSE(Ag51).

x107°
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28t
27t

261

23
0 500 1000 1500 2000

Figure 1: Relationship between ¢ and E-MSE(Agp;)(i = 1,2, 3,4)

Note: In Figure 1, - is the results of E—MSE(XEBI), o is the results of E—MSE(XEBQ), *
is the results of E—MSE(XEB;»,), + is the results of E—MSE(XEM).

From Table 6 and Figure 1, we find that for different ¢(100, 500, 1000, 2000), E—MSE(XEBZ-)
(1 =1,2,3,4) are all robust; for fixed ¢(100, 500, 1000, 2000), we have the following sequen-
tial relationship: E-MSE(Agp1) <E-MSE(Agps) <E-MSE(Aggs) <E-MSE(Agps).

If E-MSE as evaluation standard, then we have the following conclusions:

)\EBl is superior to /\EB3, /\EBg is superior to )\EBQ and /\E32 is superior to )\EB4
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According to the above calculation and analysis, to different loss functions(include:
squared error loss, K-loss function, precautionary loss and entropy loss), in this paper, the
author suggest select squared error loss function.

From Tables 4, 5 and 6, we find that for different ¢(100,500,1000,2000), S\EBi(i =
1,2,3,4), FzEBi(moo)(z' =1,2,3,4) and E—MSE(XEBi) (1 =1,2,3,4) are all robust. There-
fore in application, the author suggest select a value of ¢ in the middle point of interval (0,
2000], that is, ¢ = 1000.

7.2 Using MCMC algorithm

In exponential distribution(1), we take the gamma distribution: gamma(0.005, 0.005) as
prior distribution of .

According to MCMC relevant algorithm, by the OpenBUGS the following results. We
obtain summary statistics for 10000 simulations as table 7.

Table 7 Results of A
node mean sd MC-error val2.5pc  median val97.5pc start sample

A 1.01e-4 4.63e-5 1.622e-6 3.295e-5 9.415e-5 2.118e-4 1001 9000

From Tables 4 and 7, we find that the values of NEBi (1 =1,2,3,4) are very close to
Ap1=1.01e-4(mean of \) or Apy=9.415e-5(median of A).

Remark 1: gamma distribution: gamma(0.005, 0.005) is close to the non-informative
prior distribution gamma(0, 0) of .

Remark 2: According to MCMC relevant algorithm, by the Open BUGS software are
performed to relevant calculate, need to be the lower bound of lifetime on the censoring
time.

When ¢ = 1000, according to Tables 4 and 7, we can obtain the }AQEBI(t) = exp(—:\EBlt)
and Ry, (t) = exp(—Ap1). When ¢ € [0,1600], some numerical results are listed in Figure
2.

5

200 400 600 800 1000 1200 1400 1600

0.84
0

~ ~
Figure 2: Rppi(t) and Rp;(t)

Note: In Figure 2, o is the results of }A%EBI(At), * is the results of E’Bl(t).
From Figure 2, we find that the values of Rgp;(t) and Rp;(t) is very close.
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8 Conclusions

In this paper, we study of the effect of the different loss functions on E-Bayesian estimation
and its E-MSE. The definition of E-MSE(expected mean squared error) is introduced based
on the definition of E-Bayesian estimation, see Definition 1 and Definition 2. Under the
different loss functions, the formulas of E-Bayesian estimation and formulas of E-MSE are
given, respectively, see Theorems 1—4.

Need to explain, some results of Theorem 2 and Theorem 4 does not apply to case of
r = O(that is case of zero failure data. In this case, will be discussed in a separate paper).

Reviewing the simulation example and application example, we find that for MSE(X EBi)
(i =1,2,3,4), we have the following sequential relationship:

E-MSE()\EBQ <E—MSE(/\E33) <E—MSE(>\EB2) <E-MSE()\EB4).

It also suggests that, if E-MSE as evaluation standard, then we have the following
conclusions:

XEBl is superior to XEBg, XE'Bg is superior to S\EBQ and XEBQ is superior to S\EB4.

When considering evaluating the E-Bayesian estimations under the different loss func-
tions, this paper proposed the E-MSE(expected mean square error) as evaluation standard.
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