A PARTIAL INVERSE PROBLEM FOR QUANTUM
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ABSTRACT. We consider the Sturm-Liouville operator on quantum
graphs with a loop with the standard matching conditions in the
internal vertex and the jump conditions at the boundary vertex.
Given the potential on the loop, we try to recover the potential on
the boundary edge from the subspectrum. The uniqueness theorem
and a constructive algorithm for the solution of this partial inverse
problem are provided.

1. INTRODUCTION

Differential operators on quantum graphs model different structures
in organic chemistry, acoustics, carbon nanostructure, photonic crys-
tal, and other fileds of science and engineering [I]-[3]. In recent years,
spectral problems on graphs attract much attention and research in
mathematicians. The readers can find the elementary introduction to
the theory of quantum graphs in [4]. The classical inverse spectral
problems for differential operators, which consist in recovering coeffi-
cients of differential equations(especially potentials of Sturm-Liouville
operator) from various types of spectral data were studied (see, for
example, [5]-[9]).

In this paper, we consider the Sturm-Liouville operator on quantum
graphs with a loop. The potential is supposed to be known a priori on
a part of the ring, and we try to recover the potential on the remain-
ing part from a part of the spectrum. Such partial inverse problems
have been partly studied in [I0]-[I6] for star-shaped graphs. Here we
formulate the partial inverse problem for quantum rings and prove the
uniqueness theorem and provide a constructive algorithm for solution
of this problem.

Note that there are only a few results on the garph with loops. In [17]
authors proved the uniqueness and provided algorithm for the solution
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of this problem without discontinuity, based on the Riesz basis prop-
erty of some systems of vector functions. [18]-[21] studied the inverse
spectral problems of Sturm-Liouville operators with partial potential
known on the graph with loops.

Inverse problems with discontinuities inside the interval are related
to discontinuous material characters of a intermediary. On a single
interval this kind of problem has been studied (see, for instance, [9],
[22]-[26]). However, the discontinuous problem on graphs is not inves-
tigated.

The paper is organized as follows. Section 2, we state the boundary
value problem for discontinuous Sturm-Liouville operator on quantum
graphs and study the asymptotic properties of its eigenvalues. Sec-
tion 3 is devoted to formulate the partial inverse problem and prove
the uniqueness of the solution. Constructive algorithm for its solution
is given in Section 4. Main results in this work are the uniqueness
theorem: Theorem and a constructive algorithm: Algorithm I.

2. ASYMPTOTIC FORMULAS FOR EIGENVALUES

Consider the quantum graph G, represented in Figure 1. The edge
e1 is a boundary edge of length [; = 1, the edge e5 is a loop of length
lo = 2. Introduce a parameter z; for each edge e;,j = 1,2, z; € [0,;].
The value z; = 0 corresponds to the boundary vertex, and z; = 1
corresponds to the interval vertex. For the ring ey, both ends x5 = 0
and z9 = 2 correspond to the internal vertex.

€1

€2

FIGURE 1. Quantum graph

Let y = [yj(x;)]j=1,2 be a vector function on the quantum graph G.
We consider the following boundary value problem L generated by the
Sturm-Liouville equation on the edges of G:

ly = —yj +q;(x)y; = Ay, 2 €(0,]),5 =12, (2.1)

with the standard matching conditions in the internal vertex:

(1) =12(0) = 2(2), w4 (1) +35(2) = 15(0), (2.2)
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the Dirichlet boundary condition 7;(0) = 0 in the boundary vertex,
and the discontinuous conditions at the point d € (0,m)

y1(d+0) = By.(d —0),
i (d +0) = 71y (d — 0) + g (d — 0).

Here ¢;,j = 1,2 are real-valued function from Ly(0,1;), A is a spectral
parameter, d € Q, 5, « are real, and S > 0.

For each fixed j = 1,2, let C;(x;, A\) and Sj(x;, A) be the solutions
of the corresponding equation under the initial conditions

C(0,0) = SH(0,0) =1, CH0,0) = S;(0,\) =0. (2.4

Further, we use the following notations. Let By, be the class of
Paley-Wienner functions of exponential type not greater than a, belong
to Ly(R). The symbols K pqq(p) and kg even(p) denote various odd and
even functions from By, respectively. Note that

(2.3)

k k
Rkodd(p) = / K(t)sinptdt,  Kieven(p) = / N(t) cos ptdt,
0 0

where K, N € Ly(0,k). The following notation r, stands for various
sequences in [s.
Referring [27, 28], we obtain the following relations:

( Cy (d, p) = cos pd + Kd.even(p),
Ci(l1, p) =B cos ply + B~ cos p(2d — 11) + Ki, even(p),

sin pd kg,

Sl(d, p) _smp 4 d, dd(p)’

P p

sin ply _sinp(2d —1;) Ky oda(p)
S l , :/BJ’_— + /8 + : )

111, p) ) P P (2.5)

S1<l17 p) :5+ COS Pll - 5_ COSp(Qd - ll) + Hh,even(ﬂ),
02<l27 ) = COS Pl2 + ’ilz,even(p)’

[ 0
SQ(ZQ, ) Slnp 2 + Ry, dd(p)7
p p

S§<l27 )0) = COs pZQ + ng,euen(ﬁ),

\

where g+ = 20— B = 7’871

The boundary value problem L is self-adjoint, and has a purely dis-
crete spectrum, consisting of real eigenvalues. The eigenvalues of L
coincide with the zeros of the characteristic function:

A = S(1,0)S2(2,A) + Si(LA)[SH2,A) + Ca(2,0) — 2. (2.6)
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The function A(A) has an at most countable set of zeros with respect
to their multiplicities. The asymptotic behavior of the eigenvalues is
described by the following lemma.

Lemma 2.1. The problem L has a countable set of eigenvalues, which
can be numbered { Ak }ez k=125 UL A0 fnen (counting with the multi-
plicities), satisfying

{pnk: V )\nk:|2pﬂ-n+@k’+"€na n e’z k=1,2p,

Pro =\ Ao =0T + Ky, nEN.

where oy, are the simple zeros of equation inside an interval (0, mp],
11— 2d| = z%’ (p,q) = 1,p,q € N. In particular, when d = % one may
take g = 0.

Proof. In the case ¢; = 0,7 = 1,2, the characteristic function ([2.6])
takes the form

Ag(A) =[B" cosp — B~ cos p(1 — 2d)]

(2.7)

sin 2p

+ %[ﬁJr sinp — 7 sin p(1 — 2d)](2 cos 2p — 2),

where p = VA, and |1 — 2d| = %,(p, q) = 1,p,q € N. Note that the
function D(p) := pAg(p?) is odd and 2mp-periodic, so it is sufficient
to investigate its zeros on (0,7p]. On the one hand, for p # 0, the
equation D(p) = 0 is equivalent to the following one

_ BTsinp — 7 sinp(l — 2d)

—cotp = 2.8
g CVP Bt cosp— B cosp(l —2d) (2:8)
We can check this equation has exactly 2p simple roots «y in a half
periodic. For example, % = % and % = % there are both 6 points of

. . . . 1
intersection on (0, 3] (see Fig.2, and Fig.3), when I = 7 there are 8

intersections on (0, 47] (see Fig.4). On the other hand, it’s easy check
D(m) = 0. Thus the function Ay(A) has the zeros

Moo= (2pmn+ap)’, ne€Zk=1,2p,

Ny = (nm)?, neN.
Using , we obtain the relation

A(N) = Ag(N) + —“3’“:(” )
Applying the standard argument, based on Rouche’s theorem (see, for
example, [9], Theorem 1.1.3), we arrive at the asympotic formulas ({2.7))
for the eigenvalues of the problem L. 0
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FIGURE 2. Plots for equation 1) % =3
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3. PARTIAL INVERSE PROBLEM: UNIQUENESS

In this section, we give the statement of the studied partial inverse
problem, that is, the uniqueness theorem.

Consider the spectrum A := {Au},ez 125 Here and below we
assume that the eigenvalues are numbered with respect to their asym-
potics according to Lemma [2.I] Note that this numberation is not
unique, so a finite number of first eigenvalues in A can be chosen arbi-
trarily.

The following assumptions are imposed:

(A;) All the values in A are distinct.

(As) All the values in A are positive.

(A3) The function S3(2,A) and S5(2,\) + Co(2,\) — 2 don’t have
common zeros in A.

Assumption (A7) is used for simplicity, the case of multiple eigenval-
ues requires some technical modification (see discussion in [I5]). As-
sumption (Ay) can be achieved by a shift of the spectrum. From the
asymptotics of the A, in (2.7), one may see the assumption (As) holds
for sufficiently n.

Under assumptions (A;)-(As), we study the following partial inverse
problem.

Inverse Problem I: Given the potiential ¢, , 5, and the spectrum
A, find the fuction g¢;.

Using relations (22.5)), we get

i inp(2d — 1 1 /[t
Si(1,p) =B+S12p + B’M + ;/ K(t) sin ptdt,
P 0

(3.1)

1

Si(1,p) =BT cosp— B~ cosp(2d — 1) + / N (t) cos ptdt,
0

in which K and N are some real-valued functions from Ly(0,1). Sub-

stituting (3.1)) into (2.6)), we derive the relation
1 1
/ K (t)an; sin py, tdt + / N(t)by; cos pptdt = fnj,  (n,j) €I,
0 0
(3.2)
here T = {(n, j) : pn; € A},

Qpj :Sé(27 /\n]) + 02(27 )‘n]) - 27 bnj = 52(2’ /\”j)p”j’
fri = — an;[BF sinpy; + 67 sin pyi(2d — 1))
— b [BT cos pnj — B cos pp;(2d — 1)]. (3.3)



A PARTIAL INVERSE PROBLEM FOR QUANTUM GRAPHS 7

Introduce the real Hilbert space H := Ly(0,1) & Ly(0,1) with the
scalar product

(9,h) = / (91 () (£) + ga(t)ha(0))

g1 hy
h ,h e H, = , h= .
where g g 92} |:h,2:|

Obviously, the vector function

£(t) = [ o 1 () = [ (ng SID Pt } (i) eI, (34)

by,j cos py;t
belong to H, and relaton (3.2]) can be written in the form
(f)vnj)H :fnju (nvj) EI‘ (35)

Lemma 3.1. The system of vector functions V = {vy;}n ez s com-
plete in H.

Proof. Suppose wy,wy € Ly(0,1) are such functions, that

1 1
/ (O] (t)anj sin pnjtdt + / W2 (t)bnj COS pnjtdt = 0, (n, ]) el.
0 0
(3.6)

When 55(2, \,;) # 0 for some (n,j) € Z, in view of (2.6), we have
S1(1, Anj) # 0. So we get

o= 51 Ang)bay
T paiSi(1, M)

Substituting this relation into (3.6)), we obtain

/ (i1 )

In the other case, S3(2, \,,;) = 0. We see that (3.6) is equivalent to

sin pp;t

— wy(1)S1(1, Aj) cos ,Onjt> dt=0. (3.7)

nj

1
/ w1 (t)an; sin pytdt =0,  (n,j) € T.
0

By the assumption (As), we get a,; # 0 and Si(1, A,;) = 0, therefore

S1(1,A,;) # 0, we also get the formula (3.7). So (3.7) holds for all
(n,j) € Z. Thus the entire function

sin pt
p

W(N) ;:/01<w1(t)s;(1,» dt—wg(t)Sl(l,)\)cospt>dt (3.8)
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has zeros A. Then together with (3.1)), we obtain
e2limpl|

W) = o( ) o] = oo. (3.9)

ol
Taking the assumption (As) into account, one constructs the infinite

product
b =[] (1-%).

AnjEA

In view of the assumption (A;), the function % is entire. According

to the asymptotic formula (2.7)), the function D()\) can be wrriten in
the following form (see [16])

2p
1 1
D) =C H (COS —p — COs —ozk> + K2,even (), (3.10)

k=1 p p

where C is a nonzero constant. Moreover, one has the following esti-
mate
ID(p)| = CP e <argp<m—e, |p| =",

for some positive € and p*. Together with (3.9) it yields

WA

% =o(l), AN=p* ce<argp<m—ce, |p|>p" (3.11)
By Phragmen-Lindel6f’s and Liouville’s theorems, (3.11]) implies that
W(\) =0.

Let {ptn}nen be the zeros of Si(1,\). Note that {u,}nen are the
eigenvalues of the boundary values problem
Lhyr =My, 11(0) = 0=y (1).

Note that {ft,}nen is real and simple, Si(1, u,) # 0, one substitutes
A = p, into (3.8), we get

1 : /_nt

/ wl(t)udt =0, nel
0 vV Hn

It follows from [29] that the system {Siriﬁvui”t}neN is complete in Ly (0, 1).

Hence w; = 0. Then we conclude from (3.9) and W(A) = 0, that
wy = 0. Thus, the system V is complete in H. O

Relying on Lemma(3.1] we shall prove the uniqueness theorem for the
solution of inverse problem. Along with the boundary value problem L,
consider the problem L of the same form, but with different potential
q; € L(0,1;),7 = 1,2. We agree that if a certain symbol v denotes an
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object related to L, the corresponding symbol 7 denotes an analogous
object related to L.

Theorem 3.2. Assume that the boundary value problems L and L
together with their subspectrum A and A of the form described above
satisfy assumptions (A1)-(A4s), and g2(x) = Ga(z) a.e. on (0,2), A = A,
then q1(xz) = q1(x) a.e. on (0,1). Thus the Inverse Problem I has a
unique solution.

Proof. The relation ¢u(z) = @2(x) a.e. on (0,2) implies Sy(1,\) =
S5(2,)0),55(2,0) = S4(2,0). In veiw of and A = A, we have
Upj = Up; in H and f,; = ﬁj for (n,j) € Z. Since by Lemma the
system V' is complete in #H, we conclude from , that K(t) = K(t)
and N(t) = N(t) on (0,1). Then relation (3.1 yield Sy(1,A) = Si(1,\)
and S7(1,\) = Si(1, A), therefore from [9] we get ¢1(z) = ¢1(x) a.e. on
(0,1). O

4. PARTIAL INVERSE PROBLEM: RECONSTRUCTIVE ALGORITHM

In this section we shall provide reconstructive algorithm of the in-
verse problem in Theorem [3.2]

Lemma 4.1. The system of vector functions V = {vy; }nj)ez forms a
Riesz basis in H.

Proof. Using (2.7) and (3.3)), we get

Upj =2€082p; — 2+ Ky,  byj =sin2p,; + k,,  (n,7) € L.
Consequently, we have {||vn; — v0;||%} (nj)ez € l2, Where

0 | (2cos2ay — 2)sin [2pmn + oyt
Un(t) = sin 2a cos |2pmn + aglt n € L.
Note that cos2ay # 1, sin 2ay # 0 from (2.8)).

Next we prove the ststem VO := {v);}(n ez is a Riesz basis in .

p
It follows from the results of [I6], that the systems [J {sin(2pmn +
k=1

2p
ap)ttnez and  |J {cos(2pmn + ay)t}nez are Riesz basis in L(0,1),
k=p+1
respectively. Consider the two linear operators A, B : H — H, defined
as follows:

Av:A[Ul}z[U o v EH,

U2 2 — mf(%)
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_ 2cos2ap—2

V2 (%)
where
p
flug)(t) = Z Z Cn, i (u1) cos |2pmn + aylt,
7j=1 nezZ
p
ur(t) =3 ) en(wr) sin|2pmn + aylt,
7j=1 neZ

2p
g(ug)(t) = Z ch’j(u2)51n|2p7m+aj|t,

j=p+1 nez

2p
us(t) = Z Zcm(ug) cos |2pmn + a;lt,

j=p+1 nez
ie. ¢, (u1) and ¢, (ug) are the coordinates of the functions uy,us €
P
Ly(0,m) with respect to the Riesz basis | {sin(2pmn + ax)t},ez and
k=1

2p

U {cos(2pmn—+ax)t}nez, respectively. It follows from the Riesz-basis
k=p+1

property, that there exist positive constants C; and C5 such that
Cilua||, < |[f(w)llL, < Collual|L,,

Cillua] |z, < [lg(u2)l|r, < Collurllr,.

Consequently, the operators A, B and their inverse:

Ay =47 { o } =

V2

U1

|: vy + sin 20 f(vl) :| , U € H,

2cos2ap—2
2cos 20 —2
_ _ U1 V1 + 5 —g(V2
Blv:Bl{v]:{ sz 9(02) | gy
2 V2

are bounded in H. Note that the operators A and B transforms the
sequence V' into Riesz basis in H:

Av?, (£) =(2 cos 2ay, — 2) { S |2p”6‘ ot 1 neZk=1p,

0

0 o
B (t) =sin 204 [ cos [2pmn + ayt

],nGZ,k:p+1,2p.
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p
We get the system kL:Jl{Avgk U Bv),x ) is a Riesz basis in H, hence

the system VY is also a Riesz basis in . Since the system V is complete
in ‘H by Lemma and lo-close to the Riesz basis V°, so we conclude
that V' is a Riesz basis in H. U

One can uniquely recover the vector function f by its coordinates
with respect to the Riesz basis, thus we can obtain the following algo-
rithm for the solution of the inverse problem.

Algorithm I. Let the function ¢s, «r, 5, the eigenvalue set A be given.

Step 1. Solving the initial value problems

l252(x27 )\n]) = )\an2($27 )\nj)a 52(07 )\nj) = 07 Sé((); )\nj)
l202(x27)\nj) = )\nj02<x27 )\nj)a 02(0> )\nj) =1, Cé(oa Anj) =

one constructs the functions Sy(1, An;), C2(1, A,;) and S5(1, A,;), C5(1,
Anj) for (n,j) € T.

Step 2. Find the vector function v,; and the numbers f,;, using
and (E4).

Step 3. Construct the vector functions f by its coordinates with
respect to the Riesz basis (see (3.5)), i.e. find the functions K(t) and
N(t).

Step 4. Find Si(1, p) and Si(1, p) by (B.1).

Step 5. Recovering the function ¢; from Weyl function theory in
[9].

Remark 4.1. In Eq. (2.8), when l; = m € N, and m > 3, then Theo-
rem [3.2) and Algorithm T are still valid with the same consideration.
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