Juan Zhang

and 7 more

The relationships and seasonal-to-annual variations among evapotranspiration (ET), precipitation (P), and groundwater dynamics (total water storage anomaly, TWSA) are complex across the Amazon basin, especially the water and energy limitation mechanism for ET. To analyze how ET is controlled by P and TWSA, we used wavelet coherence analysis to investigate the effects of P and TWSA on ET at sub-basin, kilometer, regional, and whole basin scales in the Amazon basin. The Amazon-scale averaged ET has strong correlations with P and TWSA at the annual periodicity. The phase lag between ET and P (ϕ_(ET-P)) is ~1 to ~4 months, and between ET and TWSA (ϕ_(ET-TWSA)) is ~3 to ~7 months. The phase pattern has a south-north divide due to the significant variation in climatic conditions. The correlation between ϕ_(ET-P) and ϕ_(ET-TWSA) is affected by the aridity index, of each sub-basin, as determined using the Budyko framework at the sub-basin level. In the southeast Amazon during a drought year (e.g., 2010), both phases decreased, while in the subsequent years, ϕ_(ET-TWSA) increased. The area of places where ET is limited by water continues to decrease over time in the southern Amazon basin. These results suggest immediate strong groundwater subsidy to ET in the following dry years in the water-limited area of Amazon. The water storage has more control on ET in the southeast but little influence in the north and southwest after a drought. The areas of ET limited by energy or water are switched due to the variability in weather conditions.

Jiali Ju

and 8 more

The comparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty involved in climate change predictions. In this study, an advanced hierarchical uncertainty analysis framework incorporated with a variance-based global sensitivity analysis, was developed to quantify different sources of uncertainty in hydrological projections under climate change. The uncertainties considered in this research are from greenhouse gas emission scenarios (GGES), global climate models (GCMs), hydrological models (Xinanjiang and variable infiltration capacity (VIC) models) and hydrological parameters, and this new methodology was implemented in a humid subtropical basin in southern China. The results indicated that the GCMs and hydrological parameters (GGESs) are the main (least) contributor of uncertainty in the discharge projections at the interannual scale. At the intra-annual scale, GCMs contribute the largest uncertainty of the discharge predictions during summer season, whereas the uncertainty due to GGESs, hydrological model and parameters is generally larger in winter. It was also found that although there is a strong temporal and spatial variability of general sources of uncertainty, this heterogeneity does not affect the importance of uncertainty sources. This study provides a better understanding of the uncertainty sources in hydrological predictions in the context of climate change. And the uncertainty analysis framework used is mathematically rigorous and can be applied to a wide range of climate and hydrological models with different uncertainty sources.