Reference
1.
Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter
decomposition in terrestrial ecosystems. Oikos , 79, 439-449.
2.
Andersen, R., Grasset, L., Thormann, M.N., Rochefort, L. & Francez,
A.-J. (2010). Changes in microbial community structure and function
following Sphagnum peatland restoration. Soil Biology and
Biochemistry , 42, 291-301.
3.
Andersson, S., Nilsson, S.I. & Saetre, P. (2000). Leaching of dissolved
organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus
as affected by temperature and pH. Soil Biology and Biochemistry ,
32, 1-10.
4.
Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G.,
Burgos, J.L. et al. (2001). I. Spatio-temporal patterns of soil
microbial and enzymatic activities in an agricultural soil.Applied Soil Ecology , 18, 239-254.
5.
Bååth, E. (1998). Growth rates of bacterial communities in soils at
varying pH: a comparison of the thymidine and leucine incorporation
techniques. Microbial Ecology , 36, 316-327.
6.
Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L.,
Soudzilovskaia, N.A., Bodegom, P.M. et al. (2018). Structure and
function of the global topsoil microbiome. Nature , 560, 233.
7.
Bar-On, Y.M., Phillips, R. & Milo, R. (2018). The biomass distribution
on Earth. Proceedings of the National Academy of Sciences , 115,
6506-6511.
8.
Bardgett, R.D. & Wardle, D.A. (2010). Aboveground-belowground
linkages: biotic interactions, ecosystem processes, and global change .
Oxford University Press.
9.
Bardgett, R.D., Wardle, D.A. & Yeates, G.W. (1998). Linking
above-ground and below-ground interactions: how plant responses to
foliar herbivory influence soil organisms. Soil Biology and
Biochemistry , 30, 1867-1878.
10.
Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990). A
substrate-induced respiration (SIR) method for measurement of fungal and
bacterial biomass on plant residues. Soil Biology and
Biochemistry , 22, 585-594.
11.
Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S.,
Dubois, D. et al. (2008). Long-term organic farming fosters below
and aboveground biota: Implications for soil quality, biological control
and productivity. Soil Biology and Biochemistry , 40, 2297-2308.
12.
Brockett, B.F.T., Prescott, C.E. & Grayston, S.J. (2012). Soil moisture
is the major factor influencing microbial community structure and enzyme
activities across seven biogeoclimatic zones in western Canada.Soil Biology and Biochemistry , 44, 9-20.
13.
Caldwell, B.A. (2005). Enzyme activities as a component of soil
biodiversity: a review. Pedobiologia , 49, 637-644.
14.
Chapin, F.S., Matson, P.A. & Vitousek, P. (2011). Principles of
terrestrial ecosystem ecology . Springer Science & Business Media.
15.
Chen, D., Mi, J., Chu, P., Cheng, J., Zhang, L., Pan, Q. et al.(2015). Patterns and drivers of soil microbial communities along a
precipitation gradient on the Mongolian Plateau. Landscape
Ecology , 30, 1669-1682.
16.
Chen, Y.-L., Ding, J.-Z., Peng, Y.-F., Li, F., Yang, G.-B., Liu, L.et al. (2016). Patterns and drivers of soil microbial communities
in Tibetan alpine and global terrestrial ecosystems. Journal of
Biogeography , 43, 2027-2039.
17.
Classen, A.T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore,
J.A., Cregger, M.A. et al. (2015). Direct and indirect effects of
climate change on soil microbial and soil microbial‐plant interactions:
What lies ahead? Ecosphere , 6, 1-21.
18.
Crowther, T.W., Hoogen, J.v.d., Wan, J., Mayes, M.A., Keiser, A.D., Mo,
L. et al. (2019). The global soil community and its influence on
biogeochemistry. Science , 365, eaav0550.
19.
de Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim,
E.S., Harrison, K.A. et al. (2012). Abiotic drivers and plant
traits explain landscape-scale patterns in soil microbial communities.Ecology letters , 15, 1230-1239.
20.
DeLong, E.F., Harwood, C.S., Chisholm, P.W., Karl, D.M., Moran, M.A.,
Schmidt, T.M. et al. (2011). Incorporating microbial processes
into climate models. The American Academy of Microbiology Washington DC.
21.
Ding, J., Zhang, Y., Wang, M., Sun, X., Cong, J., Deng, Y. et al.(2015). Soil organic matter quantity and quality shape microbial
community compositions of subtropical broadleaved forests. Mol
Ecol , 24, 5175-5185.
22.
Eskelinen, A., Stark, S. & Männistö, M. (2009). Links between plant
community composition, soil organic matter quality and microbial
communities in contrasting tundra habitats. Oecologia , 161,
113-123.
23.
Falkowski, P.G., Fenchel, T. & Delong, E.F. (2008). The microbial
engines that drive Earth’s biogeochemical cycles. Science , 320,
1034-1039.
24.
Fierer, N. & Jackson, R.B. (2006). The diversity and biogeography of
soil bacterial communities. Proceedings of the National Academy of
Sciences , 103, 626-631.
25.
Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A. & Cleveland,
C.C. (2009). Global patterns in belowground communities. Ecology
letters , 12, 1238-1249.
26.
Firestone, M.K., Killham, K. & McColl, J.G. (1983). Fungal toxicity of
mobilized soil aluminum and manganese. Appl. Environ. Microbiol. ,
46, 758-761.
27.
Frostegård, a., A. A. & Bååth, E. (1996). The use of phospholipid fatty
acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils , 22, 59-65.
28.
Haefner, J.W. (2005). Modeling biological systems-principles and
applications . Springer, New York.
29.
Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C. & Martiny, J.B.
(2012). Beyond biogeographic patterns: processes shaping the microbial
landscape. Nature Review Microbiology , 10, 496-506.
30.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A.,
Högberg, M.N. et al. (2001). Large-scale forest girdling shows
that current photosynthesis drives soil respiration. Nature , 411,
789.
31.
Insam, H. (1990). Are the soil microbial biomass and basal respiration
governed by the climatic regime? Soil Biology and Biochemistry ,
22, 525-532.
32.
Jost, D.I., Indorf, C., Joergensen, R.G. & Sundrum, A. (2011).
Determination of microbial biomass and fungal and bacterial distribution
in cattle faeces. Soil Biology and Biochemistry , 43, 1237-1244.
33.
Klamer, M. & Bååth, E. (2004). Estimation of conversion factors for
fungal biomass determination in compost using ergosterol and PLFA 18:
2ω6, 9. Soil Biology and Biochemistry , 36, 57-65.
34.
Lin, X., Green, S., Tfaily, M.M., Prakash, O., Konstantinidis, K.T.,
Corbett, J.E. et al. (2012). Microbial community structure and
activity linked to contrasting biogeochemical gradients in bog and fen
environments of the Glacial Lake Agassiz Peatland. Appl. Environ.
Microbiol. , 78, 7023-7031.
35.
Lipson, D.A., Schadt, C.W. & Schmidt, S.K. (2002). Changes in soil
microbial community structure and function in an alpine dry meadow
following spring snow melt. Microbial ecology , 43, 307-314.
36.
Martiny, J.B.H., Bohannan, B., J. M., Brown, J.H., Colwell, R.K.,
Fuhrman, J.A., Green, J.L. et al. (2006). Microbial biogeography:
putting microorganisms on the map. Nature Review Microbiology , 4,
102-112.
37.
Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison,
S.D., Amend, A.S. et al. (2014). Elemental stoichiometry of Fungi
and Bacteria strains from grassland leaf litter. Soil Biology and
Biochemistry , 76, 278-285.
38.
Pietikäinen, J., Pettersson, M. & Bååth, E. (2005). Comparison of
temperature effects on soil respiration and bacterial and fungal growth
rates. FEMS Microbiology Ecology , 52, 49-58.
39.
Pietri, J.C.A. & Brookes, P.C. (2008). Nitrogen mineralisation along a
pH gradient of a silty loam UK soil. Soil Biology and
Biochemistry , 40, 797-802.
40.
Powlson, D.S. & Jenkinson, D.S. (1981). A comparison of the organic
matter, biomass, adenosine triphosphate and mineralizable nitrogen
contents of ploughed and direct-drilled soils. The Journal of
Agricultural Science , 97, 713-721.
41.
Rillig, M.C. & Mummey, D.L. (2006). Mycorrhizas and soil structure.New Phytologist , 171, 41-53.
42.
Rousk, J. & Bååth, E. (2007a). Fungal and bacterial growth in soil with
plant materials of different C/N ratios. FEMS Microbiology
Ecology , 62, 258-267.
43.
Rousk, J. & Bååth, E. (2007b). Fungal biomass production and turnover
in soil estimated using the acetate-in-ergosterol technique. Soil
Biology and Biochemistry , 39, 2173-2177.
44.
Rousk, J., Brookes, P.C. & Baath, E. (2009). Contrasting soil pH
effects on fungal and bacterial growth suggest functional redundancy in
carbon mineralization. Applied and Environmental Microbiology ,
75, 1589-1596.
45.
Rousk, J., Brookes, P.C. & Bååth, E. (2010). Investigating the
mechanisms for the opposing pH relationships of fungal and bacterial
growth in soil. Soil Biology and Biochemistry , 42, 926-934.
46.
Royer-Tardif, S., Bradley, R. & Parsons, W. (2010). Evidence that plant
diversity and site productivity confer stability to forest floor
microbial biomass. Soil Biology and Biochemistry , 42, 813-821.
47.
Ruesch, A. & Gibbs, H.K. (2008). New IPCC Tier-1 global biomass carbon
map for the year 2000. Available online from the Carbon Dioxide
Information Analysis Center [http://cdiac. ornl. gov], Oak
Ridge National Laboratory, Oak Ridge, Tennessee .
48.
Schimel, J.P. & Schaeffer, S.M. (2012). Microbial control over carbon
cycling in soil. Frontiers in Microbiology , 3, 1-11.
49.
Six, J., Frey, S.D., Thiet, R.K. & Batten, K.M. (2006). Bacterial and
fungal contributions to carbon sequestration in agroecosystems.Soil Science Society of America Journal , 70, 555-569.
50.
Song, X., Hoffman, F.M., Iversen, C.M., Yin, Y., Kumar, J., Ma, C.et al. (2017). Significant inconsistency of vegetation carbon
density in CMIP5 Earth system models against observational data.Journal of Geophysical Research: Biogeosciences , 122, 2282-2297.
51.
Sparling, G.P. (1992). Ratio of microbial biomass carbon to soil organic
carbon as a sensitive indicator of changes in soil organic matter.Soil Research , 30, 195-207.
52.
Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner,
G.D., Reich, P.B. et al. (2019). Climatic controls of
decomposition drive the global biogeography of forest-tree symbioses.Nature , 569, 404-408.
53.
Turner, B.L., Lambers, H., Condron, L.M., Cramer, M.D., Leake, J.R.,
Richardson, A.E. et al. (2013). Soil microbial biomass and the
fate of phosphorus during long-term ecosystem development. Plant
and Soil , 367, 225-234.
54.
van der Heijden, M.G.A., Bardgett, R.D. & Van Straalen, N.M. (2008).
The unseen majority: soil microbes as drivers of plant diversity and
productivity in terrestrial ecosystems. Ecology letters , 11,
296-310.
55.
Waring, B.G., Averill, C. & Hawkes, C.V. (2013). Differences in fungal
and bacterial physiology alter soil carbon and nitrogen cycling:
insights from meta-analysis and theoretical models. Ecology
letters , 16, 887-894.
56.
Wieder, W.R., Bonan, G.B. & Allison, S.D. (2013). Global soil carbon
projections are improved by modelling microbial processes. Nature
Climate Change , 3, 909-912.
57.
Xu, X. (2010). Modeling methane and nitrous oxide exchanges between the
atmosphere and terrestrial ecosystems over North America in the context
of multifactor global change. In: School of Forestry and Wildlife
Sciences . Auburn University Auburn, p. 199.
58.
Xu, X., Schimel, J.P., Janssens, I.A., Song, X., Song, C., Yu, G.et al. (2017). Global pattern and controls of soil microbial
metabolic quotient. Ecological Monographs , 87, 429-441.
59.
Xu, X., Schimel, J.P., Thornton, P.E., Song, X., Yuan, F. & Goswami, S.
(2014). Substrate and environmental controls on microbial assimilation
of soil organic carbon: a framework for Earth system models.Ecology Letters , 17, 547-555.
60.
Xu, X., Thornton, P.E. & Post, W.M. (2013). A global analysis of soil
microbial biomass carbon, nitrogen and phosphorus in terrestrial
ecosystems. Global Ecology and Biogeography , 22, 737-749.