References

Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 56 (2), 226-237. doi:10.1080/02626667.2011.553614
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers & Geosciences, 98 , 87-92. doi:10.1016/j.cageo.2016.10.005
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Bruijnzeel, L. A., McVicar, T. R., & Schellekens, J. (2013). Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research, 49 (12), 7843-7863. doi:10.1002/2013wr013918
Best, A., Zhang, L., McMahon, T., Western, A., & Vertessy, R. (2003).A critical review of paired catchment studies with reference to seasonal flows and climatic variability (Vol. 25). Canberra: Murray-Darling Basin Commission.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310 (1), 28-61. doi:10.1016/j.jhydrol.2004.12.010
Brutsaert, W. (2008). Long-term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research, 44 (2), W02409. doi:10.1029/2007wr006518
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13 (3), 637-643. doi:10.1029/WR013i003p00637
Chen, S., Li, L., Li, J., & Liu, J. (2016). Impacts of Climate Change and Human Activities on Water Suitability in the Upper and Middle Reaches of the Tao’er River Area. Journal of Resources and Ecology, 7 (5), 378-385, 378.
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., & Reidy Liermann, C. (2015). An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 10 (1), 015001. doi:10.1088/1748-9326/10/1/015001
Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., & Piman, T. (2019). Hydropower dams of the Mekong River basin: A review of their hydrological impacts. Journal of Hydrology, 568 , 285-300. doi:10.1016/j.jhydrol.2018.10.045
Huyck, A. A. O., Pauwels, V. R. N., & Verhoest, N. E. C. (2005). A base flow separation algorithm based on the linearized Boussinesq equation for complex hillslopes. Water Resources Research, 41 (8), W08415. doi:10.1029/2004wr003789
Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45 (2), W02429. doi:10.1029/2008wr006912
Kou, L. (2016). The situation analysis of water resources in Tao’er river basin based on SWAT model. (Master Master), Dalian university of technology, Dalian. Available from Cnki
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Wisser, D. (2011). High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management.Frontiers in Ecology and the Environment, 9 (9), 494-502. doi:10.1890/100125
Li, S. (2018). Analysis of reservoir flood scheduling scheme of Chahar Tao’er river basin. (Master), Jilin university, Changchun. Available from Cnki
Liu, Y., Ren, L., Zhu, Y., Yang, X., Yuan, F., Jiang, S., & Ma, M. (2016). Evolution of Hydrological Drought in Human Disturbed Areas: A Case Study in the Laohahe Catchment, Northern China. Advances in Meteorology, 2016 , 1-12. doi:10.1155/2016/5102568
Maavara, T., Dürr, H. H., & Van Cappellen, P. (2014). Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate. Global Biogeochemical Cycles, 28 (8), 842-855. doi:10.1002/2014gb004875
Maavara, T., Lauerwald, R., Regnier, P., & Van Cappellen, P. (2017). Global perturbation of organic carbon cycling by river damming.Nat Commun, 8 , 15347. doi:10.1038/ncomms15347
Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Durr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proc Natl Acad Sci U S A, 112 (51), 15603-15608. doi:10.1073/pnas.1511797112
Maillet, E. (1905). Essai d’Hydraulique Souterraine et Fluviale . Paris: Librairie Scientifique.
Mendoza, G. F., Steenhuis, T. S., Walter, M. T., & Parlange, J. Y. (2003). Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. Journal of Hydrology, 279 (1-4), 57-69. doi:10.1016/s0022-1694(03)00174-4
Oyarzún, R., Godoy, R., Núñez, J., Fairley, J. P., Oyarzún, J., Maturana, H., & Freixas, G. (2014). Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. Journal of Arid Environments, 105 , 1-11. doi:10.1016/j.jaridenv.2014.02.012
Peñas, F. J., Barquín, J., & Álvarez, C. (2016). Assessing hydrologic alteration: Evaluation of different alternatives according to data availability. Ecological Indicators, 60 , 470-482. doi:10.1016/j.ecolind.2015.07.021
Piman, T., Cochrane, T. A., & Arias, M. E. (2016). Effect of Proposed Large Dams on Water Flows and Hydropower Production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin. River Research and Applications, 32 (10), 2095-2108. doi:10.1002/rra.3045
Piman, T., Lennaerts, T., & Southalack, P. (2013). Assessment of hydrological changes in the lower Mekong Basin from Basin-Wide development scenarios. Hydrological Processes, 27 (15), 2115-2125. doi:10.1002/hyp.9764
Pringle, C. (2003). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17 (13), 2685-2689. doi:10.1002/hyp.5145
Rangecroft, S., Van Loon, A. F., Maureira, H., Verbist, K., & Hannah, D. M. (2019). An observation-based method to quantify the human influence on hydrological drought: upstream–downstream comparison.Hydrological Sciences Journal, 64 (3), 276-287. doi:10.1080/02626667.2019.1581365
Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water Resources. Water International, 25 (1), 11-32. doi:10.1080/02508060008686794
Smakhtin, V. U. (2001). Low flow hydrology: a review. Journal of Hydrology, 240 (3), 147-186. doi:10.1016/S0022-1694(00)00340-1
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences, 17 (2), 817-828. doi:10.5194/hess-17-817-2013
Sujono, J., Shikasho, S., & Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrological Processes, 18 (3), 403-413. doi:10.1002/hyp.1247
Tallaksen, L. M. (1995). A review of baseflow recession analysis.Journal of Hydrology, 165 (1), 349-370. doi:10.1016/0022-1694(94)02540-R
Thomas, B. F., Vogel, R. M., & Famiglietti, J. S. (2015). Objective hydrograph baseflow recession analysis. Journal of Hydrology, 525 , 102-112. doi:10.1016/j.jhydrol.2015.03.028
Tijdeman, E., Hannaford, J., & Stahl, K. (2018). Human influences on streamflow drought characteristics in England and Wales. Hydrology and Earth System Sciences, 22 (2), 1051-1064. doi:10.5194/hess-22-1051-2018
Van Cappellen, P., & Maavara, T. (2016). Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming.Ecohydrology & Hydrobiology, 16 (2), 106-111. doi:10.1016/j.ecohyd.2016.04.001
Van Loon, A. F., Rangecroft, S., Coxon, G., Breña Naranjo, J. A., Van Ogtrop, F., & Van Lanen, H. A. J. (2019). Using paired catchments to quantify the human influence on hydrological droughts. Hydrology and Earth System Sciences, 23 (3), 1725-1739. doi:10.5194/hess-23-1725-2019
Van Loon, A. F., & Van Lanen, H. A. J. (2013). Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resources Research, 49 (3), 1483-1502. doi:10.1002/wrcr.20147
Veldkamp, T. I. E., Wada, Y., de Moel, H., Kummu, M., Eisner, S., Aerts, J. C. J. H., & Ward, P. J. (2015). Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 32 , 18-29. doi:10.1016/j.gloenvcha.2015.02.011
Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resources Research, 28 (9), 2451-2458. doi:10.1029/92wr01007
Vorosmarty, C., Kp. Fekete Bm, S., Copeland, A., Holden, J., Marble, J., & Ja, L. (1997). The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26 .
Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., . . . Wheater, H. (2017). Human–water interface in hydrological modelling: current status and future directions.Hydrology and Earth System Sciences, 21 (8), 4169-4193. doi:10.5194/hess-21-4169-2017
Wanders, N., & Wada, Y. (2015). Human and climate impacts on the 21st century hydrological drought. Journal of Hydrology, 526 , 208-220. doi:10.1016/j.jhydrol.2014.10.047
Wang, D., & Cai, X. (2009). Detecting human interferences to low flows through base flow recession analysis. Water Resources Research, 45 (7), W07426. doi:10.1029/2009wr007819
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13 (5), 715-726.
Wittenberg, H., & Sivapalan, M. (1999). Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation.Journal of Hydrology, 219 (1), 20-33. doi:10.1016/S0022-1694(99)00040-2
Zhang, L., Chen, Y. D., Hickel, K., & Shao, Q. (2008). Analysis of low-flow characteristics for catchments in Dongjiang Basin, China.Hydrogeology Journal, 17 (3), 631-640. doi:10.1007/s10040-008-0386-y