References
Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession
analysis in watersheds with intermittent streamflow. Hydrological
Sciences Journal-Journal Des Sciences Hydrologiques, 56 (2), 226-237.
doi:10.1080/02626667.2011.553614
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., &
Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow
recession analysis. Computers & Geosciences, 98 , 87-92.
doi:10.1016/j.cageo.2016.10.005
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M.,
Bruijnzeel, L. A., McVicar, T. R., & Schellekens, J. (2013). Global
patterns in base flow index and recession based on streamflow
observations from 3394 catchments. Water Resources Research,
49 (12), 7843-7863. doi:10.1002/2013wr013918
Best, A., Zhang, L., McMahon, T., Western, A., & Vertessy, R. (2003).A critical review of paired catchment studies with reference to
seasonal flows and climatic variability (Vol. 25). Canberra:
Murray-Darling Basin Commission.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R.
A. (2005). A review of paired catchment studies for determining changes
in water yield resulting from alterations in vegetation. Journal
of Hydrology, 310 (1), 28-61. doi:10.1016/j.jhydrol.2004.12.010
Brutsaert, W. (2008). Long-term groundwater storage trends estimated
from streamflow records: Climatic perspective. Water Resources
Research, 44 (2), W02409. doi:10.1029/2007wr006518
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow
hydrographs from a mature glaciated plateau. Water Resources
Research, 13 (3), 637-643. doi:10.1029/WR013i003p00637
Chen, S., Li, L., Li, J., & Liu, J. (2016). Impacts of Climate Change
and Human Activities on Water Suitability in the Upper and Middle
Reaches of the Tao’er River Area. Journal of Resources and
Ecology, 7 (5), 378-385, 378.
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., &
Reidy Liermann, C. (2015). An index-based framework for assessing
patterns and trends in river fragmentation and flow regulation by global
dams at multiple scales. Environmental Research Letters, 10 (1),
015001. doi:10.1088/1748-9326/10/1/015001
Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., & Piman, T.
(2019). Hydropower dams of the Mekong River basin: A review of their
hydrological impacts. Journal of Hydrology, 568 , 285-300.
doi:10.1016/j.jhydrol.2018.10.045
Huyck, A. A. O., Pauwels, V. R. N., & Verhoest, N. E. C. (2005). A base
flow separation algorithm based on the linearized Boussinesq equation
for complex hillslopes. Water Resources Research, 41 (8), W08415.
doi:10.1029/2004wr003789
Kirchner, J. W. (2009). Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and doing
hydrology backward. Water Resources Research, 45 (2), W02429.
doi:10.1029/2008wr006912
Kou, L. (2016). The situation analysis of water resources in
Tao’er river basin based on SWAT model. (Master Master), Dalian
university of technology, Dalian. Available from Cnki
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B.,
Crouzet, P., Wisser, D. (2011). High‐resolution mapping of the world’s
reservoirs and dams for sustainable river‐flow management.Frontiers in Ecology and the Environment, 9 (9), 494-502.
doi:10.1890/100125
Li, S. (2018). Analysis of reservoir flood scheduling scheme of
Chahar Tao’er river basin. (Master), Jilin university, Changchun.
Available from Cnki
Liu, Y., Ren, L., Zhu, Y., Yang, X., Yuan, F., Jiang, S., & Ma, M.
(2016). Evolution of Hydrological Drought in Human Disturbed Areas: A
Case Study in the Laohahe Catchment, Northern China. Advances in
Meteorology, 2016 , 1-12. doi:10.1155/2016/5102568
Maavara, T., Dürr, H. H., & Van Cappellen, P. (2014). Worldwide
retention of nutrient silicon by river damming: From sparse data set to
global estimate. Global Biogeochemical Cycles, 28 (8), 842-855.
doi:10.1002/2014gb004875
Maavara, T., Lauerwald, R., Regnier, P., & Van Cappellen, P. (2017).
Global perturbation of organic carbon cycling by river damming.Nat Commun, 8 , 15347. doi:10.1038/ncomms15347
Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Durr, H. H.,
Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention
by river damming. Proc Natl Acad Sci U S A, 112 (51), 15603-15608.
doi:10.1073/pnas.1511797112
Maillet, E. (1905). Essai d’Hydraulique Souterraine et Fluviale .
Paris: Librairie Scientifique.
Mendoza, G. F., Steenhuis, T. S., Walter, M. T., & Parlange, J. Y.
(2003). Estimating basin-wide hydraulic parameters of a semi-arid
mountainous watershed by recession-flow analysis. Journal of
Hydrology, 279 (1-4), 57-69. doi:10.1016/s0022-1694(03)00174-4
Oyarzún, R., Godoy, R., Núñez, J., Fairley, J. P., Oyarzún, J.,
Maturana, H., & Freixas, G. (2014). Recession flow analysis as a
suitable tool for hydrogeological parameter determination in steep, arid
basins. Journal of Arid Environments, 105 , 1-11.
doi:10.1016/j.jaridenv.2014.02.012
Peñas, F. J., Barquín, J., & Álvarez, C. (2016). Assessing hydrologic
alteration: Evaluation of different alternatives according to data
availability. Ecological Indicators, 60 , 470-482.
doi:10.1016/j.ecolind.2015.07.021
Piman, T., Cochrane, T. A., & Arias, M. E. (2016). Effect of Proposed
Large Dams on Water Flows and Hydropower Production in the Sekong, Sesan
and Srepok Rivers of the Mekong Basin. River Research and
Applications, 32 (10), 2095-2108. doi:10.1002/rra.3045
Piman, T., Lennaerts, T., & Southalack, P. (2013). Assessment of
hydrological changes in the lower Mekong Basin from Basin-Wide
development scenarios. Hydrological Processes, 27 (15), 2115-2125.
doi:10.1002/hyp.9764
Pringle, C. (2003). What is hydrologic connectivity and why is it
ecologically important? Hydrological Processes, 17 (13),
2685-2689. doi:10.1002/hyp.5145
Rangecroft, S., Van Loon, A. F., Maureira, H., Verbist, K., & Hannah,
D. M. (2019). An observation-based method to quantify the human
influence on hydrological drought: upstream–downstream comparison.Hydrological Sciences Journal, 64 (3), 276-287.
doi:10.1080/02626667.2019.1581365
Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water
Resources. Water International, 25 (1), 11-32.
doi:10.1080/02508060008686794
Smakhtin, V. U. (2001). Low flow hydrology: a review. Journal of
Hydrology, 240 (3), 147-186. doi:10.1016/S0022-1694(00)00340-1
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession
characteristics really characteristic? Hydrology and Earth System
Sciences, 17 (2), 817-828. doi:10.5194/hess-17-817-2013
Sujono, J., Shikasho, S., & Hiramatsu, K. (2004). A comparison of
techniques for hydrograph recession analysis. Hydrological
Processes, 18 (3), 403-413. doi:10.1002/hyp.1247
Tallaksen, L. M. (1995). A review of baseflow recession analysis.Journal of Hydrology, 165 (1), 349-370.
doi:10.1016/0022-1694(94)02540-R
Thomas, B. F., Vogel, R. M., & Famiglietti, J. S. (2015). Objective
hydrograph baseflow recession analysis. Journal of Hydrology,
525 , 102-112. doi:10.1016/j.jhydrol.2015.03.028
Tijdeman, E., Hannaford, J., & Stahl, K. (2018). Human influences on
streamflow drought characteristics in England and Wales. Hydrology
and Earth System Sciences, 22 (2), 1051-1064.
doi:10.5194/hess-22-1051-2018
Van Cappellen, P., & Maavara, T. (2016). Rivers in the Anthropocene:
Global scale modifications of riverine nutrient fluxes by damming.Ecohydrology & Hydrobiology, 16 (2), 106-111.
doi:10.1016/j.ecohyd.2016.04.001
Van Loon, A. F., Rangecroft, S., Coxon, G., Breña Naranjo, J. A., Van
Ogtrop, F., & Van Lanen, H. A. J. (2019). Using paired catchments to
quantify the human influence on hydrological droughts. Hydrology
and Earth System Sciences, 23 (3), 1725-1739.
doi:10.5194/hess-23-1725-2019
Van Loon, A. F., & Van Lanen, H. A. J. (2013). Making the distinction
between water scarcity and drought using an observation-modeling
framework. Water Resources Research, 49 (3), 1483-1502.
doi:10.1002/wrcr.20147
Veldkamp, T. I. E., Wada, Y., de Moel, H., Kummu, M., Eisner, S., Aerts,
J. C. J. H., & Ward, P. J. (2015). Changing mechanism of global water
scarcity events: Impacts of socioeconomic changes and inter-annual
hydro-climatic variability. Global Environmental Change, 32 ,
18-29. doi:10.1016/j.gloenvcha.2015.02.011
Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic-geomorphic
relationships for the estimation of low-flow statistics. Water
Resources Research, 28 (9), 2451-2458. doi:10.1029/92wr01007
Vorosmarty, C., Kp. Fekete Bm, S., Copeland, A., Holden, J., Marble, J.,
& Ja, L. (1997). The storage and aging of continental runoff in large
reservoir systems of the world. Ambio, 26 .
Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti,
J. S., Hanasaki, N., . . . Wheater, H. (2017). Human–water interface in
hydrological modelling: current status and future directions.Hydrology and Earth System Sciences, 21 (8), 4169-4193.
doi:10.5194/hess-21-4169-2017
Wanders, N., & Wada, Y. (2015). Human and climate impacts on the 21st
century hydrological drought. Journal of Hydrology, 526 , 208-220.
doi:10.1016/j.jhydrol.2014.10.047
Wang, D., & Cai, X. (2009). Detecting human interferences to low flows
through base flow recession analysis. Water Resources Research,
45 (7), W07426. doi:10.1029/2009wr007819
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear
storage processes. Hydrological Processes, 13 (5), 715-726.
Wittenberg, H., & Sivapalan, M. (1999). Watershed groundwater balance
estimation using streamflow recession analysis and baseflow separation.Journal of Hydrology, 219 (1), 20-33.
doi:10.1016/S0022-1694(99)00040-2
Zhang, L., Chen, Y. D., Hickel, K., & Shao, Q. (2008). Analysis of
low-flow characteristics for catchments in Dongjiang Basin, China.Hydrogeology Journal, 17 (3), 631-640.
doi:10.1007/s10040-008-0386-y