References
Albertin, A.R., Sickman, J.O., Pinowska, A., & Stevenson, R.J. (2012). Identification of nitrogen sources and transformations within karst springs using isotope tracers of nitrogen. Biogeochemistry , 108 (1–3), 219–232. doi: 10.1007/s10533-011-9592-0
Bakalowicz, M. (2005). Karst groundwater: a challenge for new resources.Hydrogeology Journal , 13 (1), 148–160. doi: 10.1007/s10040-004-0402-9
Benettin, P., Kirchner, J.W., Rinaldo, A., & Botter, G. (2015a). Modeling chloride transport using travel time distributions at Plynlimon, Wales. Water Resources Research , 51 (5), 3259–3276. doi: 10.1002/2014WR016600
Benettin, P., Rinaldo, A., & Botter, G. (2015b). Tracking residence times in hydrological systems: forward and backward formulations.Hydrological Processes , 29 (25), 5203–5213. doi: 10.1002/hyp.10513
Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S., & Spezia, L. (2012). High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrological Processes , 26 (2), 308–316. doi: 10.1002/hyp.8210
Birkel, C., & Soulsby, C. (2015). Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential. Hydrological Processes , 29 (25), 5227–5240. doi: 10.1002/hyp.10594
Burt, T.P., & McDonnell, J.J. (2015). Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses.Water Resources Research , 51 (8), 5919–5928. doi: 10.1002/2014WR016839
Chen, X., Zhang, Z., Soulsby, C., Cheng, Q., Binley, A., Jiang, R., & Tao, M. (2018). Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach.Hydrological Processes , 32 (19), 2932–2946. doi: 10.1002/hyp.13232
Coplen, T.B., Neiman, P.J., White, A.B., Landwehr, J.M., Ralph, F.M., & Dettinger, M.D. (2008). Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm.Geophysical Research Letters , 35 (21), L21808. doi: 10.1029/2008GL035481
Eller, K.T., & Katz, B.G. (2017). Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs. Journal of Environmental Management , 196, 702–709. doi: 10.1016/j.jenvman.2017.03.059
Ford, D., & Williams, P. (2013). Speleogenesis: The Development of Cave Systems. In Karst Hydrogeology and Geomorphology John Wiley & Sons Ltd,.: West Sussex, England; 209–270. doi: 10.1002/9781118684986.ch7
Han, D., Cao, G., McCallum, J., & Song, X. (2015). Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China. Science of The Total Environment , 538, 539–554. doi: 10.1016/j.scitotenv.2015.08.036
Harman, C.J. (2019). Age‐Ranked Storage‐Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems. Water Resources Research , 55 (8), 7143–7165. doi: 10.1029/2017WR022304
Harman, C.J. (2015). Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed. Water Resources Research , 51 (1), 1–30. doi: 10.1002/2014WR015707
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M. (2014a). Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics , 52 (3), 218–242. doi: 10.1002/2013RG000443
Hartmann, A., Kobler, J., Kralik, M., Dirnböck, T., Humer, F., & Weiler, M.(2014b). Deriving the time-variant transit time distributions of an Austrian karst system by a semi-distributed karst model. Conference: EGU General Assembly.
Heffernan, J.B., Albertin, A.R., Fork, M.L., Katz, B.G., & Cohen, M.J. (2012). Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer. Biogeosciences , 9 (5), 1671–1690. doi: 10.5194/bg-9-1671-2012
Heidbüchel, I., Troch, P.A., & Lyon, S.W. (2013). Separating physical and meteorological controls of variable transit times in zero-order catchments. Water Resources Research , 49 (11), 7644–7657. doi: 10.1002/2012WR013149
Hrachowitz, M., Benettin, P., van Breukelen, B.M., Fovet, O., Howden, N.J.K., Ruiz, L., van der Velde, Y., & Wade, A.J. (2016). Transit times-the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water , 3 (5), 629–657. doi: 10.1002/wat2.1155
Hrachowitz, M., Savenije, H., Bogaard, T.A., Tetzlaff, D., & Soulsby, C. (2013). What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences , 17 (2), 533–564. doi: 10.5194/hess-17-533-2013
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J.J.C., & Malcolm, I.A. (2009). Regionalization of transit time estimates in montane catchments by integrating landscape controls. Water Resources Research , 45 (5) doi: 10.1029/2008WR007496
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I.A., & Schoups, G. (2010). Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for time‐variant transit time assessment. Water Resources Research , 46 (10), 2010WR009148. doi: 10.1029/2010WR009148
Hu, K., Chen, H., Nie, Y., & Wang, K. (2015). Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China. Scientific Reports , 5 (1), 10215. doi: 10.1038/srep10215
Husic, A., Fox, J., Adams, E., Ford, W., Agouridis, C., Currens, J., & Backus, J. (2019). Nitrate Pathways, Processes, and Timing in an Agricultural Karst System: Development and Application of a Numerical Model. Water Resources Research , 55 (3), 2079–2103. doi: 10.1029/2018WR023703
Jasechko, S., Kirchner, J.W., Welker, J.M., & McDonnell, J.J. (2016). Substantial proportion of global streamflow less than three months old.Nature Geoscience , 9 (2), 126–129. doi: 10.1038/ngeo2636
Kirchner, J.W. (2003). A double paradox in catchment hydrology and geochemistry. Hydrological Processes , 17 (4), 871–874. doi: 10.1002/hyp.5108
Kirchner, J.W. (2016a). Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences , 20 (1), 279–297. doi: 10.5194/hess-20-279-2016
Kirchner, J.W. (2016b). Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity. Hydrology and Earth System Sciences , 20 (1), 299–328. doi: 10.5194/hess-20-299-2016
Kirchner, J.W., Feng, X., & Neal, C. (2000). Fractal stream chemistry and its implications for contaminant transport in catchments.Nature , 403 (6769), 524–527. doi: 10.1038/35000537
Kuppel, S., Tetzlaff, D., Maneta, M.P., & Soulsby, C. (2018a). EcH 2 O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model. Geoscientific Model Development , 11 (7), 3045–3069. doi: 10.5194/gmd-11-3045-2018
Kuppel, S., Tetzlaff, D., Maneta, M.P., & Soulsby, C. (2018b). What can we learn from multi-data calibration of a process-based ecohydrological model? Environmental Modelling & Software , 101, 301–316. doi: 10.1016/j.envsoft.2018.01.001
Lutz, S.R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L., & Merz, R. (2018). Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments. Water Resources Research , 54 (7), 4767–4784. doi: 10.1029/2017WR022216
Maxwell, R.M., Condon, L.E., Kollet, S.J., Maher, K., Haggerty, R., & Forrester, M.M. (2016). The imprint of climate and geology on the residence times of groundwater. Geophysical Research Letters , 43 (2), 701–708. doi: 10.1002/2015GL066916
McCallum, J.L., Engdahl, N.B., Ginn, T.R., & Cook, P.G. (2014). Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time? Water Resources Research , 50 (3), 2022–2038. doi: 10.1002/2013WR014974
McDonnell, J.J., & Beven, K. (2014). Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research , 50 (6), 5342–5350. doi: 10.1002/2013WR015141
McGuire, K.J., & McDonnell, J.J. (2006). A review and evaluation of catchment transit time modeling. Journal of Hydrology , 330 (3–4), 543–563. doi: 10.1016/j.jhydrol.2006.04.020
McMillan, H., Tetzlaff, D., Clark, M., & Soulsby, C. (2012). Do time-variable tracers aid the evaluation of hydrological model structure? A multimodel approach. Water Resources Research , 48 (5) doi: 10.1029/2011WR011688
Minet, E.P., Goodhue, R., Meier-Augenstein, W., Kalin, R.M., Fenton, O., Richards, K.G., & Coxon, C.E. (2017). Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Research , 124, 85–96. doi: 10.1016/j.watres.2017.07.041
Panno, S.., Hackley, K.., Hwang, H.., & Kelly, W.. (2001). Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chemical Geology , 179 (1–4), 113–128. doi: 10.1016/S0009-2541(01)00318-7
Peralta-Tapia, A., Soulsby, C., Tetzlaff, D., Sponseller, R., Bishop, K., & Laudon, H. (2016). Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment.Journal of Hydrology , 543, 7–16. doi: 10.1016/j.jhydrol.2016.01.079
R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria DOI: R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Remondi, F., Kirchner, J.W., Burlando, P., & Fatichi, S. (2018). Water Flux Tracking With a Distributed Hydrological Model to Quantify Controls on the Spatiotemporal Variability of Transit Time Distributions.Water Resources Research , 54 (4), 3081–3099. doi: 10.1002/2017WR021689
Seeger, S., & Weiler, M. (2014). Reevaluation of transit time distributions, mean transit times and their relation to catchment topography. Hydrology and Earth System Sciences , 18 (12), 4751–4771. doi: 10.5194/hess-18-4751-2014
Song, C., Wang, G., Liu, G., Mao, T., Sun, X., & Chen, X. (2017). Stable isotope variations of precipitation and streamflow reveal the young water fraction of a permafrost watershed. Hydrological Processes , 31 (4), 935–947. doi: 10.1002/hyp.11077
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., & Tetzlaff, D. (2015). Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research , 51 (9), 7759–7776. doi: 10.1002/2015WR017888
Stockinger, M.P., Bogena, H.R., Lücke, A., Diekkrüger, B., Cornelissen, T., & Vereecken, H. (2016). Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution. Journal of Hydrology , 541, 952–964. doi: 10.1016/j.jhydrol.2016.08.007
von Freyberg, J., Allen, S.T., Seeger, S., Weiler, M., & Kirchner, J.W. (2018). Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments. Hydrology and Earth System Sciences , 22 (7), 3841–3861. doi: 10.5194/hess-22-3841-2018
White, W.B. (2007). Cave sediments and paleoclimate. Journal of Cave and Karst Studies.
Wilusz, D.C., Harman, C.J., & Ball, W.P. (2017). Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates. Water Resources Research , 53 (12), 10231–10256. doi: 10.1002/2017WR020894
Worthington, S.R.H. (2009). Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeology Journal , 17 (7), 1665–1678. doi: 10.1007/s10040-009-0489-0
Xiao, H.-W., Xiao, H.-Y., Long, A.-M., Wang, Y.-L., & Liu, C.-Q. (2013). Chemical composition and source apportionment of rainwater at Guiyang, SW China. Journal of Atmospheric Chemistry , 70 (3), 269–281. doi: 10.1007/s10874-013-9268-3
Yang, P., Yuan, D., Ye, X., Xie, S., Chen, X., & Liu, Z. (2013). Sources and migration path of chemical compositions in a karst groundwater system during rainfall events. Chinese Science Bulletin , 58 (20), 2488–2496. doi: 10.1007/s11434-013-5762-x
Yue, F.-J., Li, S.-L., Liu, C.-Q., Lang, Y.-C., & Ding, H. (2015). Sources and transport of nitrate constrained by the isotopic technique in a karst catchment: an example from Southwest China.Hydrological Processes , 29 (8), 1883–1893. doi: 10.1002/hyp.10302
Yue, F.-J., Waldron, S., Li, S.-L., Wang, Z.-J., Zeng, J., Xu, S., Zhang, Z.-C., & Oliver, D.M. (2019). Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Science of The Total Environment , 696, 134062. doi: 10.1016/j.scitotenv.2019.134062
Zhang, Z., Chen, X., Cheng, Q., & Soulsby, C. (2019). Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes. Hydrology and Earth System Sciences , 23 (1), 51–71. doi: 10.5194/hess-23-51-2019
Zhang, Z., Chen, X., & Soulsby, C. (2017). Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes , 31 (19), 3421–3436. doi: 10.1002/hyp.11268
Zhang, Z., Chen, X., Chen, X., & Shi, P. (2013). Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses. Hydrogeology Journal , 21 (7), 1619–1631. doi: 10.1007/s10040-013-1041-9
Zhang, Z., Chen, X., Ghadouani, A., & Shi, P. (2011). Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of southwest China. Hydrological Processes , 25 (15), 2456–2470. doi: 10.1002/hyp.8022