Monique Weemstra

and 3 more

Root traits and functioning: from individual plants to ecosystemsFine roots, the most distal portions of the root system, are responsible for the uptake of water and nutrients by plants, represent the main type of plant tissue contributing to soil organic matter accrual, and are key drivers of mineral weathering and soil microbial dynamics (Bardgett et al. 2014). Despite the overwhelming importance of fine root traits for plant and plant community functioning and biogeochemical cycles, basic information about their ecology is lacking, particularly compared to the wealth of information developed for leaves and stems. Testing hypotheses on how root traits underlie these ecosystem processes has been particularly hampered due to (1) a paucity of systematically collected data and (2) the complexity of the relationships between root traits and root, plant and ecosystem functioning. Nonetheless, the development of the field of root ecology in the last two decades has been outstanding, in particular in the compilation of belowground trait datasets (Iversen et al. 2017), methodological root ecological handbooks (Freschet et al. 2021b), novel conceptual frameworks to describe root trait diversity (Bergmann et al. 2020), its connection with belowground plant and community function (Bardgett et al. 2014, Freschet et al. 2021a), species’ distributions (Laughlin et al. 2021), and scaling up traits from the individual root to the ecosystem level (McCormack et al. 2017). The papers that feature in this Special Issue on Root traits and functioning: from individual plants to ecosystems cover different climate regions, taxonomic and spatial scales, and a diversity of traits (Table 1) and form perfect examples of this upward moment of the belowground component in plant ecology.

Weixian Zeng

and 8 more

Complementarity in resource use leading to increased resource partitioning is the most commonly proposed mechanism for explaining the positive relationship between plant diversity and productivity. However, we still have a poor understanding of the relationship between plant diversity and root biomass. We used molecular method to identify tree species and to estimate the biomass of fine root (≤ 2 mm in diameter) for each tree species in soil cores sampled from the plots along a tree species gradient elaborated in subtropical forests. Our objectives were to examine whether spatial resource partitioning and symmetric proliferation are responsible for the relationship between aboveground tree species richness (SRA) and fine root biomass. We found that increasing SRA led to higher fine root biomass and a support for symmetric proliferation strategies, but this pattern only appeared in nutrient-rich upper soil layer. Structural equation modelling (SEM) indicated that stand density was the dominant factor to mediate SRA effects on fine root biomass. Specifically, fine root biomass depended on the SRA × stand density interaction, with lower biomass at lower density and low richness, and this effect disappeared in higher density forests. Overall, we found inconsistent support for the vertical niche partitioning, indicating that greater soil volume filling is not the reason for belowground overyielding pattern. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the resource partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.