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Abstract 26 

We modify the Modified Cam-Clay (MCC) model for large stress ranges encountered in 27 

geological applications. The MCC model assumes that the friction angle and the slope of the 28 

compression curve of a mudrock are constant and thus predicts constant values for the lateral 29 

effective stress ratio under uniaxial strain (K0) and the undrained strength ratio (
𝑆𝑢

𝜎𝑣0
′ ). 30 

Experimental work, however, show that these properties vary significantly with stress over large 31 

stress ranges (up to 100 MPa). We incorporate the stress dependency of the friction angle and the 32 

slope of the compression curve into the MCC model. The modified model, with only one 33 

additional parameter, successfully predicts the stress dependency of the stress (K0) and strength 34 

(
𝑆𝑢

𝜎𝑣0
′ ) ratios. We encode the modified model and use it in the finite-element analysis of a salt 35 

basin in the deepwater Gulf of Mexico. The new model predicts that the stress field around salt is 36 

significantly different than predicted by the original MCC model. We also illustrate that the 37 

stress dependency of the friction angle has significant consequences for drilling and geological 38 

processes: it causes 1) a concave profile for the topography and convex profile for thrust faults in 39 

critical wedges with planar décollement; 2) higher magnitudes and narrower range for 40 

appropriate mud weights for drilling a wellbore; and 3) deep-seated failure of submarine channel 41 

levees at a lower angle. Our study could improve in situ stress and pore pressure estimation, 42 

wellbore drilling, and quantitative understanding of geological processes. 43 

 44 

 45 

 46 

 47 

 48 
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Table 1: Nomenclature  49 

Symbol  Description  

𝜌 Bulk density of sediments 

𝜌𝑤 Density of pore water 

𝑔 Gravitational acceleration 

𝛼𝑤 Dipping of the surface of a critical wedge 

𝛽𝑤 Dipping of décollement  

𝜇𝑏 Sliding friction coefficient of décollement 

𝜙𝑏 Friction angle of décollement 

𝜙 Internal friction angle 

𝜙𝑚𝑏 Internal friction angle at the wedge-base stress level 

H Thickness of a critical wedge 

X Horizontal distance along a critical wedge 

𝜎1
′ Effective maximum principal stress 

𝜎2
′  Effective intermediate principal stress  

𝜎3
′ Effective least principal stress 

𝜎𝑚
′  Effective mean stress 

𝜎𝑣
′  Effective vertical stress 

𝜎𝑣0
′  Pre-consolidation vertical effective stress 

𝜎𝑣 Total vertical stress 

𝜎1 Total maximum principal stress 

𝜎3 Total least principal stress 

h Height of slope 

𝛼 Central angle of failure surface in a slope 

𝛽 Slope angle 

𝜌′ Bulk density of sediments less density of sea water 

𝜌𝑤𝑠 Density of sea water 

𝑢 Pore pressure 

𝑢ℎ Hydrostatic pressure 

𝜆∗ Overpressure ratio 
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𝐾0 Ratio of effective horizontal to vertical stress under uniaxial strain 

𝑆𝑢 Undrained strength 

𝑆𝑢

𝜎𝑣0
′  Undrained strength ratio 

𝜺 Total strain tensor 

𝜺𝒆 Elastic strain tensor 

𝜺𝒑 Plastic strain tensor 

𝝈′ Effective stress tensor 

𝑒 Void ratio 

𝜅 Slope of recompression line 

𝑞 Deviatoric (shear) stress 

𝑀 Slope of failure envelope 

𝜎𝑚
′

0
 Isotropic pre-consolidation stress 

𝑓(𝝈′) Yield function 

Λ Multiplier of plastic strain increment tensor 

𝑁 Intercept of isotropic normal compression line 

𝜆 Slope of isotropic normal compression line 

𝜎𝑚
′

𝑐𝑟
 Mean effective stress at critical (failure) state 

𝑀0 Coefficient of power-law failure envelope 

𝑚 Power of power-law failure envelope 

𝜆0 Coefficient of power-law isotropic normal compression curve 

𝑛 Power of power-law isotropic normal compression curve 

𝜅0 Coefficient of power-law recompression curve 

𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 Minimum mud pressure for limited wellbore breakout 

W Weight of failing mass in a slope 

l Leverage of weight of failing mass in a slope 

R Radius of failure surface in a slope 

𝛾 Dipping of failure surface in a slope 

z Depth from slope top surface 
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𝜅𝑠𝑎𝑙𝑡 Slope of isotropic compression line of rock salt 

 50 

1 Introduction 51 

The friction angle and the compression curve are two of the most critical rock parameters for 52 

many geological and hydrocarbon-production processes. Friction angle controls the geometry 53 

and activity of faults (Hubbert and Rubey, 1959; Suppe, 2007), the stability of earth slopes 54 

(Hubbert and Rubey, 1959; Sawyer et al., 2014; Stigall and Dugan, 2010), and the geometry of 55 

critical tapers such as in accretionary wedges and fold-and-thrust belts (Dahlen, 1990; Davis et 56 

al., 1983; Gao et al., 2018). Friction angle also impacts hydrocarbon production in different 57 

ways. It affects the ratio of horizontal to vertical effective stress under uniaxial strain (K0) and 58 

thereby the least principal stress, which is a key control on the maximum hydrocarbon column in 59 

reservoirs (Flemings et al., 2002) and appropriate mud pressures for drilling wellbores (Alberty 60 

and McLean, 2004). The compression curve is a central factor in basin subsidence and 61 

deposition, pore pressure prediction (Hart et al., 1995), and seismic models and interpretation 62 

(Cook and Sawyer, 2015). 63 

The friction angle and the slope of the compression curve are typically assumed to be 64 

constant for a rock in the analyses of geologic processes. Examples include analytical models 65 

such as the critical-taper theory (Dahlen, 1990; Davis et al., 1983), the limit-state slope stability 66 

models (Hubbert and Rubey, 1959; Sawyer et al., 2014; Stigall and Dugan, 2010), the Earth’s 67 

strength profiles (Suppe, 2014), and wellbore stability models (Zoback, 2010). The assumption 68 

of constant rock properties is typical in numerical analyses too. For example, the Modified Cam-69 

Clay (MCC) model, a commonly-used constitutive model in finite-element analyses, assumes 70 

that the friction angle and the slope of the compression curve are constant and thus predicts 71 
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constant values for the K0 stress ratio and the undrained strength ratio (
𝑆𝑢

𝜎𝑣0
′ ). The assumption of 72 

constant rock properties is based on experimental observations over small stress ranges typically 73 

encountered in geotechnical engineering practice (< 1 MPa) (Muir Wood, 1990). 74 

Experimental tests carried out on mudrocks over large stress ranges encountered in 75 

geological settings (~ 100 MPa), however, show that the friction angle and the slope of 76 

compression curve are not constant but both vary substantially with stress. For example, Bishop 77 

et al. (1965) conducted undrained shear tests on London Clay samples that were resedimented 78 

and consolidated under isotropic stress of up to 7.5 MPa. They reported that as stress increased 79 

from low values to 6 MPa, the undrained strength ratio decreased from 0.24 to 0.2, and friction 80 

angle decreased from 21
o
 to 16.1

o
. Yassir (1989) conducted undrained shear tests on soils from a 81 

mud volcano in Taiwan that were resedimented and uniaxially consolidated. They reported a 82 

decrease in the friction angle from 26.1
o
 to 22.6

o
 when stress increased from 5 MPa to 68 MPa. 83 

Saffer and Marone (2003) made similar observations on the friction angle of illite- and smectite-84 

rich shales; they used a biaxial shear device to measure the friction angle for a large normal 85 

stress range of 5 to 150 MPa and observed that as the normal stress increased over this range, the 86 

coefficient of friction decreased from 0.30 to 0.07 for the smectitic shales and from 0.63 to 0.41 87 

for the illitic shales. Similarly, Ikari et al. (2007) conducted biaxial shear tests at different normal 88 

stresses of up to 100 MPa on Na- and Ca-montmorillonite-based fault gouges with different 89 

water and quartz contents and observed that the coefficient of friction in all cases decreased 90 

significantly with increase in normal stress (see Moore and Lockner (2007) for more references). 91 

Jones (2010) conducted undrained shear tests on resedimented Ugnu Clay from Northern Alaska 92 

for stresses of up to 10 MPa and reported that the friction angle decreased from 35.1
o
 to 23.6

o
 93 

when stress increased from 0.2 MPa to 9.8 MPa; they also observed a decrease in the undrained 94 
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strength ratio and an increase in the K0 ratio with stress. Recently, Abdulhadi et al. (2012) and 95 

Casey et al. (2016) conducted a series of triaxial and uniaxial tests on resedimented mudrocks 96 

with a wide variety of lithology and composition for a stress range of 0.1-100 MPa and observed 97 

that the residual (post-peak) friction angle, the K0 ratio, and the undrained strength ratio of all 98 

mudrocks varied systematically with stress. For instance, for resedimented material from a 99 

highly plastic (liquid limit=79%; clay fraction=63%), smectite-rich (smectite=87% of clay 100 

fraction) mudrock in the Eugene Island 330 field, Gulf of Mexico, (hereafter termed RGoM EI), 101 

as stress increased from 0.3 MPa to 63 MPa, the friction angle decreased dramatically from 102 

nearly 32 degrees to 12 degrees, the K0 stress ratio increased from 0.55 to 0.91, and the 103 

undrained strength ratio decreased from 0.3 to 0.1 (Table 2; points, Fig. 1b-d). Experimental data 104 

also show that the compression behavior of mudrocks and sands does not follow a linear trend 105 

over large stress ranges (Mesri and Olson, 1971; Pestana and Whittle, 1995; Velde, 1996). This 106 

behavior was also reported in tests conducted by Casey et al. (2019) (points, Fig. 1a). 107 

In this paper, we modify the Modified Cam-Clay (MCC) constitutive model to incorporate 108 

the stress dependency of the friction angle and the slope of the compression curve. The MCC 109 

model is the most widely used constitutive model to describe the behavior of clays and poorly 110 

lithified mudrocks because, with a minimal number of parameters, it satisfactorily represents 111 

essential mechanical characteristics of mudrocks such as dependence on the confining stress, 112 

strain hardening and softening, and the critical state (Muir Wood, 1990; Roscoe and Burland, 113 

1968). We calibrate the new model with the friction angles and the nonlinear compression curve 114 

measured over a stress range of 0.1-100 MPa for RGoM EI mudrocks (Casey et al., 2016) and 115 

use the calibrated model to predict the K0 ratio, undrained strength ratio, and undrained effective 116 

stress paths over a stress range of 0.1-100 MPa. We encode the new MCC model to use it in 117 
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conjunction with finite-element code Abaqus to predict stresses in a salt basin in the deepwater 118 

Gulf of Mexico. We also incorporate the stress dependency of the friction angle into analytical 119 

models developed for the topography of critical wedges, strength profile of Earth’s crust, 120 

stability of submarine channels, and appropriate drilling window and illustrate the significance of 121 

this dependency to these processes. 122 

 123 

Table 2: Stresses measurements from triaxial tests on resedimented mudrock samples from 124 

Eugene Island, Gulf of Mexico, reported at the end of uniaxial compression and undrained 125 

shearing phases (Casey et al., 2016). Rows represent tests at different pre-consolidation stresses 126 

(𝜎𝑣0
′ ). 127 

 128 

(a)                                                                                   (b) 129 

Uniaxial compression Undrained shearing 

𝜎𝑣0
′  𝜎ℎ0

′  𝐾0 =
𝜎ℎ0

′

𝜎𝑣0
′  𝜎𝑣𝑐𝑟

′  𝜎ℎ𝑐𝑟
′  𝜑 = 𝑠𝑖𝑛−1(

𝜎𝑣𝑐𝑟
′ − 𝜎ℎ𝑐𝑟

′

𝜎𝑣𝑐𝑟
′ + 𝜎ℎ𝑐𝑟

′ ) 
𝑐𝑢

𝜎𝑣0
′ =

𝜎𝑣𝑐𝑟
′ − 𝜎ℎ𝑐𝑟

′

2 𝜎𝑣0
′  

0.356 0.195 0.548 0.314 0.098 31.688 0.304 

0.379 0.223 0.589 0.280 0.118 24.134 0.214 

0.878 0.583 0.664 0.684 0.304 22.594 0.216 

1.959 1.361 0.694 1.649 0.807 20.052 0.215 

9.759 7.809 0.800 6.996 4.339 13.556 0.136 

63.470 57.789 0.910 38.285 25.219 11.873 0.103 



9 
 

0.1 1 10 100

0.2

0.4

0.6

0.8

1

1.2

1.4
V

o
id

 r
a
ti
o

, 
e

Vertical effective stress, '
v
 (MPa)

Lab data

Linear fit

Power-law fit

   

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

F
ri

c
ti
o
n
 a

n
g

le
, 

 (

d
e

g
re

e
s
)

Lab data

Mean effective stress, '
m
 (MPa) 

Average

Power-law fit

 130 
(c)                                                                                  (d) 131 
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 132 

Figure 1: Measured, fitted, and predicted data for RGoM EI mudrocks over a stress range of 0.1-133 

100 MPa. Measured data (dots) are from Casey et al. (2016). (a) Uniaxial compression. 134 

Measured data are from CRS consolidation tests. These data follow a nonlinear trend. (b) 135 

Friction angle. Measured data represent friction angles at the critical state in undrained triaxial 136 

tests. These data show that the friction angle decreases substantially with stress. (c) Uniaxial 137 

effective stress ratio (K0). Measured data are from triaxial tests under uniaxial-strain conditions. 138 

These data show that the stress ratio increases substantially with stress. (d) Undrained strength 139 

ratio (
𝑆𝑢

𝜎𝑣0
′ ). Measured data represent strengths measured at the critical state in undrained triaxial 140 

tests on samples uniaxially consolidated to different pre-consolidation stresses (𝜎𝑣0
′ ). These data 141 

show that the undrained strength ratio decreases substantially with stress. 142 

 143 
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2 A stress-level-dependent MCC model 144 

 145 

2.1 MCC model 146 

The MCC model is an elastic-plastic model; the total strain tensor (𝜺) is decomposed into 147 

elastic (𝜺𝒆) and plastic (𝜺𝒑) parts: 148 

𝜺 = 𝜺𝒆 + 𝜺𝒑.                                                                                                                                                   (1) 

The elastic strain is obtained from the effective stress tensor 𝝈′ using Hooke’s law. The bulk 149 

modulus in this law is obtained from the assumption that void ratio (𝑒) changes linearly with the 150 

logarithm of the mean stress (𝜎𝑚
′ =

𝜎1
′+𝜎2

′+𝜎3
′

3
) during elastic deformation: 151 

𝑑𝑒 = 𝜅 ∙ 𝑑(ln(𝜎𝑚
′ )),                                                                                                                                     (2) 

where 𝜅 is a constant. The shear modulus is either defined as an independent constant or 152 

obtained from the bulk modulus and a constant Poisson’s ratio using the relationship between 153 

these parameters. 154 

Inelastic (plastic) deformation occurs when stresses increase beyond a limit, which is 155 

characterized by the yield surface in the stress plot. This surface in the MCC model is assumed to 156 

have an elliptical form in the 𝑞 − 𝜎𝑚
′  stress plot (dashed lines, Fig. 2), where 𝑞 is the deviatoric 157 

stress (𝑞 = √(𝜎1
′−𝜎2

′)2+(𝜎1
′−𝜎3

′)2+(𝜎2
′−𝜎3

′)2

2
): 158 

𝑓(𝝈′) = 𝑞2 − 𝑀2 ∙ 𝜎𝑚
′ ∙ (𝜎𝑚

′
0

− 𝜎𝑚
′ ) = 0,                                                                                              (3) 

In the MCC model, the yield surface is also used to determine plastic strains; the plastic-159 

strain-increment tensor is assumed to be normal to the yield surface (an associated flow rule): 160 

𝑑𝜺𝒑 = Λ
𝜕𝑓(𝝈′)

𝜕𝝈′
                                                                                                                                            (4) 

where variable Λ ≥ 0 is a scalar function of stresses. 161 
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The MCC model follows the critical-state theory, which states that the volumetric plastic 162 

strain increment is zero at the critical (post-peak failure) state. Thus, the crest of the yield surface 163 

(points, Fig. 2), at which volumetric plastic strain increment vanishes (Eqn. 4), represents the 164 

critical state (Atkinson and Bransby, 1977). Further, parameter M in Eqn. 3, which expresses the 165 

slope of the line emanating from the origin to the crest of the yield surface, represents the secant 166 

slope of the critical-state (failure) envelope in the q − 𝜎𝑚
′  stress plot (solid lines, Fig. 2). This 167 

parameter can be obtained from the residual (post-peak) friction angle (𝜙) of the rock as 168 

M =
6 sin (𝜙)

3−sin (𝜙)
. 169 

 170 
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Figure 2: Yield surface and critical-state (failure) envelope in original (blue) and new (red) MCC 172 

models. In both models, the yield surface is an ellipsoid and the critical-state envelope passes 173 

through the crest of the yield surface. The failure envelope, however, is different in the two 174 

models; it is linear in original model and curvilinear in new model. 175 

 176 
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Variable 𝜎𝑚
′

0
 in Eqn. 3 is the horizontal intercept of the yield surface in the q − 𝜎𝑚

′  stress 177 

plot (Fig. 2) and represents the isotropic pre-consolidation stress. This stress controls the size of 178 

the yield surface and is assumed to vary with the volumetric plastic strain. This variation can be 179 

obtained from the isotropic normal compression curve, which describes the change in the void 180 

ratio during isotropic loading of the rock. In the MCC model, this curve is assumed to be linear 181 

when the void ratio is plotted against the logarithm of the mean stress: 182 

𝑒 = 𝑁 − 𝜆 ∙ ln(𝜎𝑚
′

0
)                                                                                                                                   (5) 

where 𝜆 is the slope and 𝑁 is the intercept of the isotropic normal compression curve at 𝜎𝑚
′

0
= 1. 183 

 184 

2.2 Modification of MCC model for large stress range 185 

We modify the failure envelope and the normal compression curve in the MCC model to 186 

incorporate the stress dependency of the friction angle and the slope of the normal compression 187 

curve (Fig. 1a, b). 188 

 189 

2.2.1 Nonlinear failure envelope 190 

We replace the linear form of the failure envelope with a power-law form to represent the 191 

stress dependency of the friction angle (Fig. 1b). This form of the failure envelope was envisaged 192 

in Mohr’s pioneering work on failure envelopes (Holtz and Kovacs, 1981). We do this 193 

replacement by expressing parameter M, which is the secant slope of the failure envelope, as a 194 

power-law function of the mean stress at critical (failure) state (𝜎𝑚
′

𝑐𝑟
) as 195 

𝑀 = 𝑀0 ∙ 𝜎𝑚
′

𝑐𝑟
𝑚

;                                                                                                                                          (6)  196 

where 𝑀0 > 0 and 𝑚 < 0 are material constants. 197 

 198 
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2.2.2 Nonlinear compression curve 199 

We replace the linear form of the normal compression curve with a power-law form to 200 

represent the stress dependency of the slope of the compression curve (Fig. 1a): 201 

𝑒 = 𝜆0 ∙ 𝜎𝑚
′

0
𝑛

;                                                                                                                                                (7)  202 

where 𝜆0 > 0 and 𝑛 < 0 are material constants. 203 

The power-law form in Equation 7 leads to a linear relationship between ln (𝑒) and ln (𝜎𝑚
′

0
). 204 

Pestana and Whittle (1995) studied uniaxial compression of sands with various mineralogy and 205 

showed that this linear relationship holds true for sands over large stress ranges. In contrast, 206 

Hashiguchi (1974) and Butterfield (1979) proposed a linear relationship between ln (1 + 𝑒) and 207 

ln (𝜎𝑚
′

0
). Both the traditional linear relationship (Eqn. 5) and the one that these authors propose 208 

have a physically unacceptable property that predict negative porosity at high stresses. Our 209 

power-law relationship (Eqn. 7) does not have this issue, predicting zero void ratio at high 210 

stresses.  211 

In accordance with the normal compression curve, we also replace the linear form of the 212 

elastic (unloading-reloading) compression curve with a power-law form with the same power 213 

coefficient as the normal compression curve (𝑛, Eqn. 7): 214 

𝑑𝑒 = 𝜅0 ∙ 𝑑(𝜎𝑚
′ 𝑛

);                                                                                                                                       (8) 

where 𝜅0 is a constant. Experimental data indicate that the slope of the elastic compression curve 215 

decreases with stress and thus the linear form of the elastic compression curve, which assumes a 216 

constant slope (𝜅, Eqn. 2), is not suitable, overestimating the swelling of rocks unloaded at high 217 

stresses (Hashiguchi, 1995). Because the slope of the elastic compression curve in our power-law 218 

form (Eqn. 8) decreases with stress, our proposed form does not have this experimentally 219 

unacceptable property. 220 
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In the new MCC model, we modify only the failure envelope (Eqn. 6) and the compression 221 

curves (Eqns. 7 and 8). Other components of the MCC model, including the elliptic shape of the 222 

yield surface (Eqn. 3) and the associativity of the flow rule (Eqn. 4), are maintained in the new 223 

MCC model. In Appendix A, we demonstrate that our enhancements maintain the compatibility 224 

of the MCC model with thermomechanical principles. 225 

 226 

2.3 Performance of stress-level-dependent MCC model 227 

We first calibrate the original and the new MCC models with the same compression behavior 228 

and friction angle data for RGoM EI mudrocks over the stress range of 0.1-100 MPa (Casey et 229 

al., 2016). The compression data are available for uniaxial compression (points, Fig. 1a). There is 230 

an analytical relation between the parameters of the isotropic and of the uniaxial compression 231 

curves in the original MCC model. This relation is used to calibrate the parameters of the 232 

isotropic-compression curve in the original MCC model (𝜆 and 𝑁, Eqn. 5) from the uniaxial 233 

compression data. In the new MCC model, however, because such a relation does not exist, we 234 

use trial and error to calibrate the parameters of the isotropic-compression curve (𝜆0 and 𝑛, Eqn. 235 

7) from the uniaxial compression data. The power-law form proposed in the new MCC model 236 

represents the compression data points much more accurately than the linear form in the original 237 

MCC model (Fig. 1a). 238 

The parameters of the failure envelope (𝑀0 and 𝑚, Eqn. 6) are determined by plotting values 239 

of parameter M for friction angles measured in the compressional triaxial lab tests against the 240 

effective mean stresses at failure in these tests (𝜎𝑚
′

𝑐𝑟
=

𝜎𝑣𝑐𝑟
′ +2𝜎ℎ𝑐𝑟

′

3
, Table 2) and fitting a power-241 

law form to the data points. The friction angles obtained from the calibrated failure envelope 242 

remarkably fit the measured friction angles (Fig. 1b). An average, constant value of friction 243 
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angle, assumed in the original MCC model (dashed line, Fig. 1b), obviously fails to represent the 244 

significant variation of the friction angle with stress. Tables 3 and 4 list the value of the material 245 

parameters in the original and the new MCC models. The calibrated models are used to predict 246 

the K0 ratio, the undrained strength ratio, and the undrained effective stress paths at different 247 

stress levels. 248 

 249 

 250 

Table 3: Value of input parameters in original MCC model 251 

Parameter  Value  

Slope of failure envelope (M) 0.788 

Poisson’s ratio () 0.1 

Intercept of isotropic normal compression line () 0.899 

Slope of isotropic normal compression line () 0.161 

Slope of recompression line () 0.064 

 252 

 253 

Table 4: Value of input parameters in new MCC model 254 

Parameter  Value  

Coefficient for slope of failure envelope (M0) 0.773 

Power coefficient for slope of failure envelope (m) -0.186 

Poisson’s ratio () 0.1 

Coefficient for isotropic normal compression curve () 0.882 

Power coefficient for isotropic normal compression curve (n) -0.284 

Coefficient for recompression curve () 0.35 

 255 

 256 

2.3.1 K0 and 
𝑆𝑢

𝜎𝑣0
′  ratios 257 
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The K0 and 
𝑆𝑢

𝜎𝑣0
′  ratios that the new MCC model predicts over the large stress range of 0.1-100 258 

MPa vary substantially with stress (red solid lines, Fig. 1c, d). The predicted values of both ratios 259 

are in satisfactory agreement with the experimental values (points, Fig. 1c, d), slightly 260 

overestimating experimental values at all stress levels. This systematic overestimation is an 261 

attribute inherited from the original MCC model. McDowell and Hau (2003) showed that the 262 

MCC model has this deficiency because it uses an associated flow rule (Eqn. 4), which leads to 263 

overestimation of plastic strains. They showed that this issue can be eliminated if the MCC 264 

model is used with a non-associated flow rule. The ratios that the original MCC model predicts 265 

are constant (dashed lines, Figs. 1c, d), obviously failing to represent the substantial stress 266 

dependency of the ratios. To evaluate the share that the nonlinearity of the failure envelope and 267 

the compression curve each has in the stress dependency of the ratios, we predict K0 and 
𝑆𝑢

𝜎𝑣0
′  268 

ratios for a constant friction angle and a nonlinear compression curve: identical constant values 269 

are obtained for both ratios, illustrating that the nonlinearity of the compression curve contributes 270 

neither to the magnitude nor to the stress dependency of these ratios. 271 

Several empirical relationships have been suggested between the K0 ratio of a mudrock and 272 

the mudrock friction angle (e.g., Brooker and Ireland, 1965; Mesri and Hayat, 1993). Among 273 

them, 𝐾0 = 1 − sin (𝜙) is most widely used (Jaky, 1948; Mayne and Kulhawy, 1982). We use 274 

this relation to calculate the K0 ratio over the effective vertical stress range of 0.1-100 MPa. To 275 

obtain the friction angle for a given effective vertical stress, we calculate the effective mean 276 

stress at that stress (using the K0 ratio predicted by the new MCC model (red solid line, Fig. 1c)) 277 

and input the calculated mean stress in the friction angle-effective mean stress relation (solid 278 

line, Fig. 1b). The 𝐾0 ratios that relation 𝐾0 = 1 − sin (𝜙) produces (green line, Fig. 1c) vary 279 
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with stress and satisfactorily predict the measured K0 ratios at low stresses but underestimate this 280 

ratio at high stresses. 281 

 282 

2.3.2 Undrained effective stress paths 283 

Porosity of a rock is constant during an undrained test. Therefore, the effective-stress path in 284 

an undrained test constitutes effective stresses that the rock can have for a certain porosity. 285 

Effective-stress paths have thus found a key role in modern prediction of overpressure in 286 

subsurface mudrocks from their porosity (Flemings and Saffer, 2018; Goulty, 2004; Hauser et 287 

al., 2014; Heidari et al., 2018). 288 

Casey et al. (2016) conducted undrained triaxial tests on RGoM EI mudrocks pre-289 

consolidated under uniaxial-strain condition to different effective vertical stress levels. We show 290 

the effective stress path in two of these tests, one at a low pre-consolidation stress of 𝜎𝑣0
′ =291 

0.356 MPa (dashed lines, Fig. 3a) and one at a high pre-consolidation stress of 𝜎𝑣0
′ = 63.47 292 

MPa (dashed lines, Fig. 3b). Each path begins with a uniaxial-strain (K0) stress state (solid 293 

points, Fig. 3) and ends at the critical (shear failure) state (hollow points, Fig. 3). We use the 294 

original and the new MCC models to predict the effective-stress paths in these two tests. At both 295 

stress levels, the new MCC model predicts the effective stress path (green solid line, Fig. 3a; red 296 

solid line, Fig. 3b) more accurately than the original MCC model (blue lines, Fig. 3a, b). This is 297 

in part due to the fact that the new model predicts the beginning and the end points of the paths 298 

more accurately: the location of the beginning points (solid circles, Fig. 3), representing uniaxial-299 

strain pre-consolidation, is a function of the K0 ratio and the location of the end points (hollow 300 

circles, Fig. 3), representing the critical state, is a function of the 
𝑆𝑢

𝜎𝑣0
′  ratio; these ratios are more 301 
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accurately predicted by the new MCC model than the original model at the two stress levels (Fig. 302 

1c, d). 303 

We display the effective stress paths in a normalized-stress plot to illustrate the effect of the 304 

mudrock’s stress-level-dependent behavior on its effective stress path. The effective stress paths 305 

predicted by the original MCC model map into a single, stress-level-independent path (blue line, 306 

Fig. 3c) (Muir Wood, 1990). The stress paths predicted by the new MCC model, however, map 307 

into different, stress-level-dependent paths; the stress path at low stress levels (green solid line, 308 

Fig. 3c) is larger than the original model’s path (blue line, Fig. 3c), and, as stress level increases, 309 

the stress path approaches the original model’s path and becomes smaller than this path at high 310 

stress levels (red solid line, Fig. 3c). 311 

 312 
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Figure 3: Measured effective stress paths in undrained triaxial tests (dashed line) vs. those 317 

predicted by original (blue line) and new (green and red solid lines) MCC model. Measured 318 

paths are for RGoM EI mudrocks (Casey et al., 2016). (a) at a low pre-consolidation stress of 319 

𝜎𝑣0
′ = 0.356 MPa. (b) at a high pre-consolidation stress of 𝜎𝑣0

′ = 63.47 MPa. (c) at both stress 320 

levels in a plot with stresses normalized by the equivalent stress (𝜎𝑒
′), i.e., the horizontal intercept 321 

of the paths. The original MCC model produces a single, stress-level-independent path for both 322 

stress levels, thereby failing to predict the stress-level-dependent measured paths. In contrast, the 323 

new MCC model produces stress-level-dependent paths that successfully predict the measured 324 

paths. 325 

 326 

2.4 Limitations of new MCC model 327 

Like the original MCC model, the new MCC model describes the intrinsic behavior of 328 

mudrocks (Burland, 1990; Fearon and Coop, 2000) and does not include the effects of features 329 

such as structure (Liu and Carter, 2002; Suebsuk et al., 2010), cementation (Nguyen et al., 2014), 330 

and or anisotropy (Rouainia and Muir Wood, 2000; Whittle and Kavvadas, 1994), which are 331 

typically observed in natural mudrocks. The effect of these features could be superimposed on 332 

the proposed model. 333 

 334 

3 Geological applications 335 
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We discuss the impacts of the stress dependency of the friction angle on a range of geological 336 

and drilling processes. We study the topography of critical wedges, appropriate drilling mud 337 

weights, the Earth’s strength profile, and the stability of levees in submarine channels. Analytical 338 

models have been developed for these processes assuming a constant friction angle for 339 

mudrocks. We revisit and modify these models for a mudrock with a stress-dependent friction 340 

angle. The modified models are calibrated for RGoM EI mudrocks and used to quantitatively 341 

illustrate the impacts of the stress dependency of the friction angle on the chosen processes. 342 

Lastly, we encode the new MCC model and use it in conjunction with a finite-element model to 343 

estimate stresses in a salt basin in the Gulf of Mexico. 344 

 345 

3.1 Topography of critical wedges 346 

The fold-and-thrust belts and submarine accretionary wedges that lie along compressive plate 347 

boundaries are one of the most recognized features of the Earth's crust (Dahlen, 1990; Kearey et 348 

al., 2009; Moore and Vrolijk, 1992; Saffer and Tobin, 2011; Stern, 2002). The base of these 349 

regions, typically a detachment or décollement fault, commonly dip opposite to the region’s 350 

surface, resulting in a wedge-shaped cross section (Fig. 4a). Subduction of the plate below 351 

critical wedges imposes frictional drag on the wedge along the wedge’s base, causing significant 352 

lateral deformation in the wedge recorded by elevated porosity loss and abundant imbricate 353 

thrust faults and folds. 354 

The critical-taper theory is the most-widely used model to understand the mechanics of 355 

critical wedges and quantitatively assess their geometry (Dahlen, 1990; Davis et al., 1983). In 356 

this model, it is assumed that the lateral drag imposed by the subducting plate on the wedge 357 

brings sediments within the wedge to the Coulomb frictional failure. Based on this assumption, 358 
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the wedge angle (𝛼𝑤 + 𝛽𝑤, Fig. 4a) is at a critical, maximum value. Davis et al. (1983) used 359 

equilibrium equations and derived equations to estimate the wedge angle for a thin-skinned, 360 

critical wedge with rocks of constant friction angle. Dahlen (1990) and Skarbek and Rempel 361 

(2017) improved these equations for wedges with spatially varying (heterogeneous) properties. 362 

We use these equations and derive the angle for a wedge with stress-dependent friction angle. 363 

For a wedge with hydrostatic pore pressure, this angle is 364 

𝛼𝑤 + 𝛽𝑤 =
𝑑𝐻

𝑑𝑋
=

1 − sin(𝜙𝑚𝑏)

1 + sin(𝜙𝑚𝑏)
(𝛽𝑤 + 𝜇𝑏);                                                                                        (9) 

where 𝜙𝑚𝑏 is the friction angle of the rocks at the stress level that exists at the base of the 365 

wedge. 𝐻 is the wedge thickness, which varies with distance from the toe of the wedge (𝑋). 366 

Parameter 𝜇𝑏 is the sliding friction coefficient on the décollement, which can be expressed as 367 

𝜇𝑏 = tan (𝜙𝑏), where 𝜙𝑏 is the Coulomb friction angle for sliding on the décollement. In 368 

general, in order for slip to occur on the decollement, the décollement must be frictionally 369 

weaker than adjacent rocks. If pore pressure in the décollement is the same as that in adjacent 370 

rocks, this requires that 𝜙𝑏 ≤ 𝜙𝑚𝑏 (e.g., Davis et al., 1983). Equation 9 is the same as the 371 

equation for the angle of a wedge with a constant friction angle 𝜑 (see Equation 16 in Dahlen 372 

(1990)) if 𝜑 is replaced with 𝜑𝑚𝑏. 373 

We use Equation 9 to calculate the angle of a thin-skinned submarine (accretionary) wedge 374 

composed of RGoM EI mudrocks and under hydrostatic pore pressure. The décollement has a 375 

dip of 𝛽𝑤 = 2𝑜 and a constant sliding friction coefficient of 𝜇𝑏 = 0.12. The bulk density of 376 

mudrocks in the wedge is 𝜌 = 2.4 𝑔𝑟/𝑐𝑐, and the density of pore water is 𝜌𝑤 = 1.0 𝑔𝑟/𝑐𝑐. We 377 

first calculate the friction angle 𝜑𝑚𝑏, which varies along the wedge because the stress level at the 378 

base of the wedge varies along the wedge due to the wedge thickening: given the hydrostatic 379 

pore pressure in the wedge, the effective vertical stress at the base of the wedge is obtained as a 380 
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function of the wedge thickness as 𝜎𝑣
′ = (𝜌 − 𝜌𝑤)𝑔𝐻, where 𝑔 is the gravitational acceleration. 381 

Because in a thin-skinned critical wedge, horizontal stress is the maximum stress, 𝜎𝑣
′  is the least 382 

effective principal stress. The stress-dependent friction angle of mudrocks can be described as a 383 

function of different stress measures. Here, because the least principal stress is known, we 384 

describe the friction angle as a function of the least principal stress. To determine this function 385 

for RGoM EI mudrocks, the friction angle measured at each stress level (Table 2) is cross plotted 386 

against the effective least principal stress at that stress level (points, Fig. 4b) and then a function 387 

that best fits the data points is chosen, which is a power-law function for RGoM EI mudrocks 388 

(line, Fig. 4b). This curve is used with 𝜎𝑣
′  to calculate 𝜙𝑚𝑏. The resulting friction angle is a 389 

function of the wedge thickness (𝐻), turning Equation 9 into a first-order differential equation. 390 

We integrate this equation numerically to find the wedge thickness along the wedge (𝐻(𝑋)) and 391 

then to find the wedge angle (
𝑑𝐻

𝑑𝑋
). 392 

 393 

(a) 394 

 395 

 396 

(b)                                                                                      (c) 397 
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Figure 4: Profiles predicted for topography and thrust faults of an accretionary wedge composed 401 

of mudrocks with stress-dependent friction angle. (a) Schematics of profiles. (b) Friction angle of 402 

mudrocks within the wedge as a function of minimum effective stress. Lab data are for RGoM EI 403 

mudrocks (Casey et al., 2016). (c) Friction angle of mudrocks at the overburden stress at the base 404 

of the wedge (𝜙𝑚𝑏) and the slope of the wedge topography () along the wedge. (d) Dipping of 405 

thrust faults over depth. 406 

 407 
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The stress dependency of the friction angle results in a wedge angle that increases with 408 

distance from the toe of the wedge (𝛼𝑤, Fig. 4c), resulting in a concave topographic surface for 409 

the wedge (Fig. 4a). The reason is that as distance from the toe of the wedge increases, the 410 

overburden stress at the base of the wedge increases with increase in the wedge thickness, and 411 

the friction angle at the base thus decreases (𝜑𝑚𝑏, Fig. 4c), resulting in higher wedge angle 412 

(Equation 9). The dipping of the wedge surface changes at a rapid rate near the toe and a much 413 

slower rate far from the toe (Fig. 4a; 𝛼𝑤, Fig. 4c), reflecting rapid change of friction angle at low 414 

stresses near the toe and its slow change at high stresses far from the toe (Fig. 4b; 𝜑𝑚𝑏, Fig. 4c). 415 

This profile is markedly different from the linear profile that a constant friction angle predicts 416 

(constant 𝜑𝑚𝑏, Equation 9). 417 

We also investigate how the stress dependency of the friction angle affects the dipping of 418 

thrust faults in the wedge. Given that, in a thin-skinned critical wedge, the maximum stress is 419 

almost horizontal and the least principal stress is almost vertical, thrust faults have a dip of 420 

nearly 𝛿 = 45𝑜 −
𝜙

2
, where 𝜙 is the friction angle of the rocks in the wedge. We calculate the dip 421 

of thrust faults over the depth of a wedge with RGoM EI mudrocks by calculating the friction 422 

angle over depth. The friction angle at any given depth is calculated by using the effective 423 

vertical stress at that depth in the friction angle-least principal stress power-law relationship 424 

(line, Fig. 4b).  The stress dependency of the friction angle results in a dip angle that increases 425 

with depth (𝛿, Fig. 4d), resulting in a convex profile for thrust faults (Fig. 4a). The increase in 426 

the dip angle with depth results from an increase in the overburden stress with depth and the 427 

associated decrease in friction angle (Fig. 4b), resulting in increase in the dip angle with depth 428 

(𝛿 = 45𝑜 −
𝜙

2
). The dip angle changes at a rapid rate near the surface of the wedge and at a much 429 

slower rate deep in the wedge (Figs. 4a, d), reflecting rapid change of friction angle at low 430 
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stresses near the surface of the wedge and its slow change at high stresses deep in the wedge 431 

(Fig. 4b). This fault profile differs markedly from the planar profile that a constant friction angle 432 

predicts. 433 

Our prediction of a concave profile for the wedge surface agrees with the finding of Dahlen 434 

et al. (1984), who predicted this profile for critical wedges with rocks that have cohesion in 435 

addition to friction angle. This agreement derives from the fact that the Mohr failure envelope of 436 

rocks with a stress-dependent friction angle is a curvilinear curve (red solid line, Fig. 2) that can 437 

be approximated by a tangent linear envelope with cohesion. 438 

Natural examples of critical wedges with concave surface and convex thrust faults are scarce. 439 

One reason could be that the predicted change in the surface angle (𝛼𝑤, Fig. 4c) along the wedge 440 

is not larger than the margin of error for the measurement of this angle (Dahlen et al., 1984). 441 

Another reason could be that the surface concavity is canceled out or even reversed by other 442 

processes that produce convexity of the wedge surface. Examples of these processes include 443 

increase in rock cohesion due to lithification or decrease in overpressure with distance from the 444 

toe of the wedge (Zhao et al., 1986) and decrease in porosity with depth (Breen and Orange, 445 

1992). 446 

In contrast to the scarcity of convex thrust faults, there are abundant examples for concave 447 

listric normal faults in extensional settings, which can be explained by the stress dependency of 448 

the friction angle. In extensional settings, the maximum stress is vertical and the minimum stress 449 

is horizontal, thus, faults have a dip angle of 45𝑜 + 𝜙/2. In contrast to thrust faults, the decrease 450 

of friction angle with depth due to increase in stresses produces a decrease in the dip angle with 451 

depth, resulting in a concave profile for faults. 452 

 453 
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3.2 Appropriate drilling mud-weights 454 

It is common practice to maintain the pressure of drilling mud in the open (uncased) section 455 

of a wellbore to be less than the least principal stress in the surrounding formation (𝜎3). This 456 

practice limits outflow of drilling mud into formations due to extensive hydraulic fracturing and 457 

consequently loss of the drilling mud. The least principal stress in a formation consolidated 458 

under purely vertical, uniaxial strain is 459 

𝜎3 = 𝐾0 ∙ 𝜎𝑣
′ + 𝑢                                                                                                                                         (10) 

where 𝜎𝑣
′  is the effective vertical stress, and 𝑢 is pore pressure. It is also common practice to 460 

maintain the pressure of the drilling mud to be higher than a minimum pressure (𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) to 461 

prevent excessive breakout of wall rocks (Willson and Fredrich, 2005; Zoback, 2010). If no 462 

drainage occurs in wall rocks during drilling of a wellbore (undrained conditions), the collapse 463 

pressure 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 for a vertical wellbore in a uniaxially-consolidated formation is (Kirsch, 1898) 464 

𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 𝜎3 − 𝑆𝑢,                                                                                                                                   (11) 

where 𝑆𝑢 is the undrained strength. Mud pressures between 𝜎3 and 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 are thus appropriate 465 

pressures for drilling. 466 

To show how the stress dependency of the friction angle of the formation rocks affects 467 

appropriate drilling mud pressures, we calculate 𝜎3 and 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 along a vertical wellbore in a 468 

formation composed of RGoM EI mudrocks and consolidated uniaxially under hydrostatic pore 469 

pressure. To calculate 𝜎3 for a given depth, we calculate the effective vertical stress (𝜎𝑣
′) at that 470 

depth by subtracting hydrostatic pore pressure (𝑢ℎ) from the overburden stress (𝜎𝑣) (𝜎𝑣
′ = 𝜎𝑣 −471 

𝑢ℎ). The calculated 𝜎𝑣
′  is then used in the K0-𝜎𝑣

′  relationship for RGoM EI mudrocks (red solid 472 

line, Fig. 1c) to calculate K0 (red solid line, Fig. 5a). Finally, the calculated K0 and 𝜎𝑣
′  are used in 473 

Equation 10 (𝜎3 = 𝐾0 ∙ 𝜎𝑣
′ + 𝑢ℎ) to calculate 𝜎3. The calculated 𝜎3 is shown along the wellbore 474 



27 
 

in Equivalent Mud Weight, 𝐸𝑀𝑊 (ppg) =
𝜎3 (MPa)

𝐷𝑒𝑝𝑡ℎ (km)
∗ 0.85

(ppg)

(
MPa

km
)
 (red solid line, Fig. 5b), which 475 

is a common way to illustrate this stress in wellbore drilling. To calculate 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 for a given 476 

depth, the calculated 𝜎𝑣
′  for that depth is used in 

𝑆𝑢

𝜎𝑣0
′ -𝜎𝑣

′  relationship for RGoM EI mudrocks 477 

(solid line, Fig. 1d) to calculate 
𝑆𝑢

𝜎𝑣0
′  ratio and hence 𝑆𝑢 by multiplying the ratio by 𝜎𝑣

′ . Finally, the 478 

calculated 𝑆𝑢 and 𝜎3 are used in Equation 11 to calculate 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒, which is shown along the 479 

wellbore in Equivalent Mud Weight, 𝐸𝑀𝑊 (ppg) =
𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 (MPa)

𝐷𝑒𝑝𝑡ℎ (km)
∗ 0.85

(ppg)

(
MPa

km
)
 (red dashed line, 480 

Fig. 5b). We also calculate 𝜎3 and 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 along the wellbore (blue lines, Fig. 5b) for the case a 481 

constant, average value is chosen for the friction angle of RGoM mudrocks (dashed line, Fig. 482 

1b). The K0 and 
𝑆𝑢

𝜎𝑣0
′  ratios in this case are constant along the wellbore (blue lines, Fig. 5a). 483 

Approximating the stress-dependent friction angle with a constant, average value results in the 484 

followings: 485 

1) underestimation of the K0 ratio and the least principal stress (𝜎3) at non-shallow depths. 486 

Because a constant friction angle does not capture the decrease of the friction angle with 487 

stress (Fig. 1b), the K0 ratio that it produces underestimates this ratio at high stresses (Fig. 488 

1c) at non-shallow depths (solid lines, Fig. 5a), leading to underestimation of the least 489 

principal stress at these depths (Equation 10) (solid lines, Fig. 5b). 490 

2) overestimation of the 
𝑆𝑢

𝜎𝑣0
′  ratio and the difference (𝜎3 − 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) at non-shallow depths. 491 

Because the constant friction angle does not capture the decrease of the friction angle 492 

with stress (Fig. 1b), the 
𝑆𝑢

𝜎𝑣0
′  ratio that it produces overestimates this ratio and thus the 493 

undrained strength (𝑆𝑢) at high stresses (Fig. 1d) at non-shallow depths (dashed lines, 494 
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Fig. 5a). Because the difference (𝜎3 − 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) equals the undrained strength (𝑆𝑢) 495 

(Equation 11), this leads to overestimation of this difference at these depths (shaded 496 

areas, Fig. 5b). 497 

Approximating the friction angle with a constant, average value thus leads to underestimating 498 

the magnitudes of appropriate mud weights and overestimating the margin of these mud weights 499 

(𝜎3 − 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) (shaded areas, Fig. 5b). 500 
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Fig. 5: Stress and strength ratios and appropriate mud weights predicted along a vertical wellbore 506 

with and without considering the stress dependency of the friction angle. (a) Stress ratio (K0) and 507 

undrained strength ratio (
𝑆𝑢

𝜎𝑣0
′ ) over depth. (b) Minimum stress (𝜎3), minimum mud pressure 508 

necessary for wellbore stability (𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒), and appropriate mud weights over depth. uh 509 

represents hydrostatic pressure, and 𝜎𝑣 represents lithostatic stress. 510 

 511 

3.3 Stability of submarine channel systems 512 

Rotational, deep-seated levee failure is common in submarine channels (Bohn et al., 2012; 513 

Jobe et al., 2011; Sawyer et al., 2014; Winker and Shipp, 2002). These failures cause large 514 

volumes of sediments to fail from the channel levees into the channel, significantly affecting the 515 

form and function of the channel-levee system. 516 

Gibson and Morgenstern (1962) and later Hunter and Schuster (1968) analyzed the circular 517 

failure of submarine levees. Consider a mass in a levee delineated by a circular cut through the 518 

levee (Fig. 6a). The moment that the weight of the mass produces around the center of the 519 

circular cut (W∙l, Fig. 6a) drives the down-slope rotational failure of the mass. This failure is 520 
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resisted by the moment that the shear strength of rocks along the circular cut produces 521 

(∫ 𝑆𝑢 𝑅2𝑑𝜃
2𝛼

0
, Fig. 6a). The stability of a levee is controlled by a mass that has the lowest ratio 522 

of resisting to driving moments. This lowest ratio is called the safety factor of the levee. A levee 523 

is stable if its safety factor is greater than one, unstable if its safety factor is smaller than one, and 524 

at the verge of failure if its safety factor is one. 525 

Gibson and Morgenstern (1962) and Hunter and Schuster (1968) calculated the safety factor 526 

for levees with a constant strength ratio (
𝑆𝑢

𝜎𝑣0
′ ) and hydrostatic pore pressure. We revisit their 527 

analysis for levees with overpressure and stress-dependent strength ratio. In a levee with angle 𝛽 528 

and height ℎ (Fig. 6a) and assuming that the rocks of the levee have consolidated uniaxially and 529 

have a uniform overpressure ratio (𝜆∗ =
𝑢−𝑢ℎ

𝜎𝑣−𝑢ℎ
), we obtain the ratio of driving to resisting 530 

moments for a mass with angles 𝛼 and 𝛾 (Fig. 6a) as 531 

3 (1 − 𝜆∗) ∫
𝑆𝑢

𝜎𝑣0
′ 𝑧 𝑑𝜃

2𝛼

0

ℎ 𝐺(𝛼, 𝛾, 𝛽)
,        𝑓𝑜𝑟  0 < 𝛾 < 𝛽     𝑎𝑛𝑑      0 < 𝛼 <

𝜋

2
                                               (12) 

where 𝐺(𝛼, 𝛾, 𝛽) = 𝑠𝑖𝑛2𝛼 𝑠𝑖𝑛2𝛾  [1 − 2 𝑐𝑜𝑡2𝛽 + 3 (𝑐𝑜𝑡𝛾 𝑐𝑜𝑡𝛽 + 𝑐𝑜𝑡𝛾 𝑐𝑜𝑡𝛼 − 𝑐𝑜𝑡𝛼 𝑐𝑜𝑡𝛽)], and 532 

𝑧 is depth from the updip surface of the levee (Fig. 6a). We calculate the safety factor by finding 533 

the lowest value of this ratio among different angles 𝛼 and 𝛾. 534 

To show the impact of the stress dependency of the friction angle on the analysis of levees, 535 

we use our model to analyze deep-seated rotational failures in the levees of submarine channels 536 

in Ursa Basin, Gulf of Mexico (Sawyer et al., 2014). In these levees, 𝛽 = 10𝑜, ℎ = 275 𝑚, and 537 

𝜌 = 2 𝑔𝑟/𝑐𝑐. We use the friction angles of RGoM EI mudrocks for these levees assuming that 538 

mudrocks in the two regions of the Gulf of Mexico (Ursa Basin and Eugene Island) have similar 539 

mechanical properties. Because failure has occurred in these levees, the safety factor is one. We 540 
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use this to back-calculate the overpressure ratio (𝜆∗) in these levees at the time of failure. For 541 

levees with a constant friction angle, the maximum stable levee angle can be described as a 542 

function of the reduced undrained strength ratio (
𝑆𝑢

𝜎𝑣0
′ (1 − 𝜆∗)) (Fig. 6b). If the friction angle of 543 

mudrocks in the Ursa Basin levees is approximated with a constant, average value (𝜑 = 21𝑜; 544 

Fig. 1b), the undrained strength ratio is 
𝑆𝑢

𝜎𝑣0
′ = 0.23 (dashed line, Fig. 1d); for this strength ratio 545 

and the angle of the Ursa Basin levees (𝛽 = 10𝑜), the overpressure ratio is obtained as 𝜆∗ = 0.62 546 

(circle, Fig. 6b). In contrast, if the stress dependency of the friction angle is taken into account 547 

(solid line, Fig. 1b), a lower overpressure ratio of 𝜆∗ = 0.54 is obtained. Assuming a constant 548 

friction angle leads to overestimation of the overpressure ratio because the constant friction angle 549 

does not capture the decrease of the friction angle with stress (Fig. 1b), so the strength ratio that 550 

it produces overestimates this ratio at high stresses (Fig. 1d) in non-shallow rocks of the levee 551 

(dashed lines, Fig. 5a). Because of overestimating the strength of the levee rocks, the constant 552 

friction angle requires higher overpressures for the levee to fail. 553 

 554 

(a)  555 
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 559 

Fig. 6: Stability of a submarine levee against deep-seated rotational failure. (a) Schematics of 560 

slope and circular failure surface. Weight of failing mass (W) drives down-slope rotation of the 561 

mass, and shear strength of rocks (Su) along the failure surface resists this rotation. (b) Levee 562 

angle at failure as a function of reduced undrained strength ratio. 563 
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 564 

3.4 Strength profile of Earth’s crust 565 

The stress difference in rocks cannot exceed the rock strength. This notion has been used to 566 

set limits on the in situ stress difference in the Earth’s crust. The rock strength, according to the 567 

Coulomb criterion, can be expressed as: 568 

𝜎1 − 𝜎3 =
2 sin(𝜙)

1 + sin(𝜙)
𝜎1

′.                                                                                                                         (13) 

where 𝜎1 is the total maximum principal stress, and 𝜎1
′ is the effective maximum principal stress. 569 

A constant value for the friction angle is typically used to estimate the rock strength (e.g., 570 

Suppe, 2014; Zoback et al., 1993). To show the impact of the stress dependency of the friction 571 

angle on the estimation of the rock strength-depth profiles, we use Equation 13 to predict the 572 

rock strength along a wellbore in Brazos or Corsair region of offshore Texas, Gulf of Mexico 573 

(Xiao et al., 1991) taking into account the stress dependency of the friction angle. Estimates of 574 

the rock strength are available along the well (hollow circles, Fig. 7c), allowing us to evaluate 575 

the predicted rock strengths. These estimates are based on leak-off tests carried out at several 576 

depths along the well (Xiao et al., 1991). These tests provide an estimate of the least principal 577 

stress (𝜎3). The estimated 𝜎3 are subtracted from the overburden stress (𝜎1) to calculate stress 578 

difference (𝜎1 − 𝜎3). Because the well lies in a region of active normal faults, the calculated 579 

stress differences are inferred to equal the rock strength. We use the friction angles of RGoM EI 580 

mudrocks in our prediction of the rock strength assuming that mudrocks in the two regions of the 581 

Gulf of Mexico (Brazos and Eugene Island) have similar mechanical properties. We calculate 𝜎1
′ 582 

in Equation 13 by subtracting pore pressure from the overburden stress (𝜎1
′ = 𝜎𝑣 − 𝑢), where 583 

pore pressure, 𝑢, is estimated from sonic logs along the wellbore. The estimated pore pressure is 584 

almost hydrostatic along the wellbore above a well-defined depth and increases almost parallel to 585 



34 
 

the lithostatic gradient below this depth (solid line; Fig. 7b). As a result, stress 𝜎1
′ increases 586 

above the overpressure-onset depth and is approximately constant below this depth (dashed line, 587 

Fig. 7b). To calculate the friction angle 𝜙 in Equation 13, because 𝜎1
′ is known along the well, 588 

we describe the friction of mudrocks (Table 2) as a function of 𝜎1
′. This function is determined 589 

by cross plotting friction angles measured in the experimental tests against the effective 590 

maximum stress (Table 2; points, Fig. 7a) and fitting an appropriate function to the data points, 591 

which is a power-law function for RGoM EI mudrocks (solid line, Fig. 7a). This function is used 592 

with the calculated 𝜎1
′ along the wellbore (dashed line, Fig. 7b) to calculate the friction angle 593 

along the wellbore. 594 

If a typical, low-stress, constant value is used for the friction angle (e.g., 𝜙 = 24𝑜; green 595 

dashed line, Fig. 7a), the predicted strengths are a constant factor of 𝜎1
′ (Equation 13), therefore, 596 

they increase linearly above the overpressure-onset depth and remain constant below this depth 597 

(green dashed line, Fig. 7c). The predicted strengths disagree with the strengths estimated from 598 

leak-off tests (hollow circles, Fig. 7c). In contrast, if the stress dependency of the friction angle is 599 

taken into account (red solid line, Fig. 7a), the predicted strengths are variable factors of 𝜎1
′ 600 

(Equation 13), therefore, they increase nonlinearly above the overpressure-onset depth (red solid 601 

line, Fig. 7c). Taking into account the stress dependency of the friction angle substantially 602 

improves prediction of the rock strengths. The small discrepancy between the predicted and the 603 

estimated rock strengths (red solid line vs. points, Fig. 7c) could be from possible difference 604 

between the mechanical properties, in particular the friction angle, of intact mudrocks at the 605 

wellbore site (Brazos) and RGoM EI mudrocks used in our analysis, which could be due to 606 

possible difference in the lithology of these two mudrocks or due to the intact versus 607 

resedimented states of the two mudrocks. 608 
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 613 

Fig. 7: Earth strength profiles predicted along a wellbore in offshore Texas, Gulf of Mexico 614 

(Suppe, 2014; Xiao et al., 1991) with and without considering the stress dependency of the 615 

friction angle. (a) Friction angle as a function of maximum effective stress. Lab data are for 616 

RGoM EI mudrocks (Casey et al., 2016). (b) Pore pressure, lithostatic stress, and effective 617 

vertical stress over depth (modified after Suppe (2014)). Pore pressure is estimated from sonic 618 

velocity log. (c) Predicted earth strength profiles (lines) vs. strengths estimated from leak-off 619 

tests (hollow circles) (modified after Suppe (2014)). 620 
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 621 

We also find the constant friction angle that provides the best fit (blue dashed line, Fig. 7c) to 622 

the estimated rock strengths (hollow circles, Fig. 7c). This friction angle (𝜙 = 14𝑜; blue dashed 623 

line, Fig. 7a) is markedly lower than typical values used for the friction angle of mudrocks (e.g., 624 

𝜙 = 24𝑜). Previous studies, which assume a constant friction angle, attribute this anomalously 625 

low friction angle to possibly very weak clay-rich smear gouges in normal faults in the well 626 

region (Brown et al., 2003; Numelin et al., 2007; Suppe, 2014). Our analysis, in contrast, 627 

suggests that the low friction angle indicated by the well data could result from a significant 628 

decrease of the friction angle with stress (red solid line, Fig. 7a). 629 

 630 

 631 

3.5 Stress field in a salt basin 632 

We estimate stresses around a submarine salt body below the Sigsbee Escarpment in Mad 633 

Dog Field, deepwater Gulf of Mexico (Fig. 8a). The strain and stress states of the rocks can 634 

differ significantly from those at purely vertical, uniaxial strain because of the salt body and the 635 

significant topography at the Sigsbee Escarpment (Fig. 8a). The Escarpment updip rocks tend to 636 

move laterally toward the Escarpment downdip, resulting extension in updip rocks and 637 

compression in downdip rocks. As a result, lateral strain below the Escarpment is far different 638 

from zero and stresses are thus far different from those under purely vertical, uniaxial strain. In 639 

contrast with other rocks, salt rock relaxes the differential (shear) stress over geologic time. This 640 

can impose significant changes to the magnitude and orientation of strain and stress in rocks 641 

surrounding salt, resulting in stresses that are far different from those under uniaxial strain 642 

condition (Fredrich et al., 2003; Heidari et al., 2017; Nikolinakou et al., 2014). The magnitude 643 
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and extent of the stress changes that the salt and the basin topography cause depend on the 3D 644 

mechanical behavior of the rocks surrounding the salt body. 645 

We use the original and the new MCC models for rocks. This allows us to assess the impact 646 

of the stress-level-dependent behavior of the rocks on stresses. The constitutive equations of the 647 

MCC models are integrated numerically using the backward Eulerian method and then encoded 648 

as a UMAT subroutine. This subroutine is linked to the finite-element model of the salt basin 649 

that we build in code Abaqus to estimate stresses (DassaultSystems, 2013; Nikolinakou et al., 650 

2013). 651 

The finite-element model is a 2D plane-strain model. Horizontal displacement is fixed at the 652 

side boundaries and vertical displacement is fixed at the bottom boundary of the model (Fig. 8a). 653 

Salt is modeled as a nearly incompressible (compressibility coefficient, 𝜅𝑠𝑎𝑙𝑡 = 0.01) poro-654 

elastic material with small shear stiffness (shear modulus, G=0.01 MPa). The density of salt is 655 

22.00 gr/cm
3
. The mechanical parameters of RGoM EI mudrocks are used for rocks in our model 656 

assuming that rocks in the Mad Dog field have similar properties as those in Eugene Island. The 657 

density of rocks is 22.53 gr/cm
3
. Pore pressure is assumed to be hydrostatic everywhere in the 658 

model (drained analysis). The model begins with almost zero initial stresses everywhere and then 659 

the weight of salt and sediments is applied gradually over time. Stresses are obtained after the 660 

entire weight is applied. 661 

The ratio of minimum to maximum effective stress predicted by the original MCC model 662 

(Fig. 8b) significantly differs from the value of this ratio at uniaxial strain condition (K0=0.76; 663 

Fig. 1c) particularly in subsalt rocks. The significant change in the seabed topography at Sigsbee 664 

Escarpment leads to a decreases in the stress ratio in the updip rocks, including rocks below salt 665 

and to the left of the salt body. This decrease is reversed in rocks to the left of the salt body by a 666 
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higher increase in the stress ratio that the lateral push from salt causes, resulting in stress ratios in 667 

this area higher than the K0 ratio (Fig. 8b). 668 

The new MCC model predicts significantly different stresses. For example, it predicts that 669 

the stress ratio is higher (Fig. 8c) than predicted by the original MCC model in non-shallow 670 

rocks (Fig. 8b). This could be attributed to the fact that the friction angle at high stresses in non-671 

shallow rocks is lower in the new MCC model (solid line, Fig. 1b) than the average value used in 672 

the original model (dashed line, Fig. 1b). 673 

 674 

(a) 675 

 676 

(b) 677 

 678 
(c) 679 
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 680 

Figure 8: Plane-strain finite-element model of a salt basin in Mad Dog Field, deepwater Gulf of 681 

Mexico. Geometry of salt body and seabed topography are based on seismic data provided by BP 682 

& Partners. (a) Finite-element mesh and boundary conditions. (b) Ratio of minimum to 683 

maximum effective stress predicted by original MCC model. (c) Ratio of minimum to maximum 684 

effective stress predicted by new MCC model. 685 

4 Conclusions 686 

We modify the MCC model to incorporate the decrease of the friction angle and the slope of 687 

the compression curve with stress over large stress ranges encountered in geological settings (up 688 

to 100 MPa). With only one additional parameter, the new model successfully predicts variation 689 

of the stress and undrained-strength ratios with stress. We encode the new MCC model to use it 690 

in conjunction with a finite-element model of a salt basin. The new model predicts significantly 691 

different stresses around salt than the original MCC model. 692 

We also demonstrate the implications of the stress dependency of the friction angle for 693 

drilling wellbores and geological processes such as the topography of critical wedges, stability of 694 

submarine channel levees, and the strength profile of the Earth’s crust. We revisit and modify 695 

analytical models developed for these processes and show that the decrease of the friction angle 696 

with stress has significant consequences. It causes 1) a concave topography for critical wedges 697 

and convex profile for thrust faults in these wedges; 2) higher magnitudes and a narrower margin 698 

of appropriate mud weights for drilling a wellbore; and 3) failure of submarine channel levees at 699 

a lower angle. 700 
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Our study could improve estimation of stresses, pore pressure, appropriate mud weights for 701 

drilling wellbores, and quantitative analysis of geological processes that depend on the friction 702 

angle. 703 
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 711 

Appendix A. Thermomechanics of the new MCC model 712 

A constitutive model must be able to simulate experimental observations successfully. This, 713 

nonetheless, is not sufficient; a constitutive model must also satisfy thermodynamics principles. 714 

The second principle of thermomechanics states that, during elastic deformation, the material 715 

conserves the mechanical work done by stresses; as a result, no energy is stored or dissipated at 716 

the end of a loading-unloading cycle. The volumetric elastic equation in the original MCC model 717 

(Eqn. 2) results in an energy-conserving elastic model if it is used along with a constant shear 718 

modulus; Zytynski et al. (1978) showed that the variable shear modulus obtained from the bulk 719 

modulus and a constant Poisson’s ratio does not yield an energy-conserving model. Houlsby 720 

(1985) and Borja et al. (1997) proposed variable shear moduli that conserved energy. It can be 721 

easily shown that the new volumetric elastic equation that we propose (Eqn. 8) conserves energy 722 

if used with a constant shear modulus. Variable shear moduli that conserve energy could also be 723 
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derived for the new volumetric equation following the approach taken by Houlsby (1985) and 724 

Borja et al. (1997). 725 

The second principle of thermomechanics also requires that, during plastic deformation, part 726 

of the mechanical work done by stresses dissipate; in other words, the dissipation, defined as the 727 

total mechanical work less the energy stored in the material, is positive. In the original MCC 728 

model, the increment of dissipation (𝑑Φ) that occurs during an increment of plastic deformation 729 

(𝑑𝜺𝒑) is (Collins and Kelly, 2002) 730 

𝑑Φ = 𝜎𝑚
′

𝑐𝑟
[(𝑑𝜀𝑣

𝑝
)

2
+ (𝑀 ∙ 𝑑𝜀𝛾

𝑝
)

2
]

1
2  

> 0                                                                                        (𝐴 − 1) 

where 𝜎𝑚
′

𝑐𝑟
=

𝜎𝑚
′

0

2
, and 𝑑𝜀𝑣

𝑝
 and 𝑑𝜀𝛾

𝑝
 are the volumetric and deviatoric parts of 𝑑𝜺𝒑, respectively. 731 

The dissipation increment in the new MCC model is given by the same equation but with a 732 

parameter M that is not constant and a function of 𝜎𝑚
′

𝑐𝑟
 (Eqn. 6). Thus, like the original MCC 733 

model, the new MCC model meets the thermomechanics requirement of a positive dissipation 734 

during plastic deformation. 735 
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