Biol. Rev.
Cohen, P., West, S.G. & Aiken, L.S.
(2014). Applied multiple regression/correlation analysis for the
behavioral sciences . Psychology Press.
Davison, A.C. & Hinkley, D.V.
(1997). Bootstrap methods and their application . Cambridge
university press.
Domisch, T., Finer, L., Dawud, S.M.,
Vesterdal, L. & Raulund-Rasmussen, K. (2015). Does species richness
affect fine root biomass and production in young forest plantations?Oecologia , 177, 581-594.
Fick, S.E. & Hijmans, R.J. (2017).
WorldClim 2: new 1-km spatial resolution climate surfaces for global
land areas. Int. J. Climatol. , 37, 4302-4315.
Fitter, A., Caldwell, M. & Pearcy,
R. (1994). Architecture and biomass allocation as components of the
plastic response of root systems to soil heterogeneity.Exploitation of environmental heterogeneity by plants:
ecophysiological processes above-and belowground , 305-323.
Fornara, D.A., Tilman, D. & Hobbie,
S.E. (2009). Linkages between plant functional composition, fine root
processes and potential soil N mineralization rates. J. Ecol. ,
97, 48-56.
Forrester, D.I. & Bauhus, J. (2016).
A Review of Processes Behind Diversity—Productivity Relationships in
Forests. J. Curr. Forestry Rep. , 2, 45-61.
Freschet, G.T., Valverde-Barrantes,
O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C. et
al. (2017). Climate, soil and plant functional types as drivers of
global fine-root trait variation. J. Ecol. , 105, 1182-1196.
Germon, A., Guerrini, I.A., Bordron,
B., Bouillet, J.-P., Nouvellon, Y., de Moraes Gonçalves, J.L. et
al. (2017). Consequences of mixing Acacia mangium and Eucalyptus
grandis trees on soil exploration by fine-roots down to a depth of 17 m.Plant Soil , 424, 203-220.
Gould, I.J., Quinton, J.N., Weigelt,
A., De Deyn, G.B. & Bardgett, R.D. (2016). Plant diversity and root
traits benefit physical properties key to soil function in grasslands.Eco. Lett. , 19, 1140-1149.
Guderle, M., Bachmann, D., Milcu, A.,
Gockele, A., Bechmann, M., Fischer, C. et al. (2018). Dynamic
niche partitioning in root water uptake facilitates efficient water use
in more diverse grassland plant communities. Funct. Ecol. , 32,
214-227.
Hajek, P., Hertel, D. & Leuschner,
C. (2014). Root order- and root age-dependent response of two poplar
species to belowground competition. Plant Soil , 377, 337-355.
Hedges, L.V., Gurevitch, J. &
Curtis, P.S. (1999). The meta-analysis of response ratios in
experimental ecology. Ecology , 80, 1150-1156.
Jobbágy, E.G. & Jackson, R.B.
(2001). The distribution of soil nutrients with depth: Global patterns
and the imprint of plants. Biogeochemistry , 53, 51-77.
Lange, M., Habekost, M., Eisenhauer,
N., Roscher, C., Bessler, H., Engels, C. et al. (2014). Biotic
and abiotic properties mediating plant diversity effects on soil
microbial communities in an experimental grassland. Plos One , 9,
e96182.
Lei, P., Scherer-Lorenzen, M. &
Bauhus, J. (2012). The effect of tree species diversity on fine-root
production in a young temperate forest. Oecologia , 169,
1105-1115.
Liang, J., Crowther, T.W., Picard,
N., Wiser, S., Zhou, M., Alberti, G. et al. (2016). Positive
biodiversity-productivity relationship predominant in global forests.Science , 354.
Loreau, M. & Hector, A. (2001).
Partitioning selection and complementarity in biodiversity experiments.Nature , 412, 72-76.
Ma, Z. & Chen, H.Y.H. (2016).
Effects of species diversity on fine root productivity in diverse
ecosystems: a global meta-analysis. Global Ecol. Biogeogr. , 25,
1387-1396.
Ma, Z. & Chen, H.Y.H. (2017).
Effects of species diversity on fine root productivity increase with
stand development and associated mechanisms in a boreal forest. J.
Ecol. , 105, 237-245.
Ma, Z., Chen, H.Y.H., Kumar, P. &
Gao, B. (2019). Species mixture increases production partitioning to
belowground in a natural boreal forest. Forest Ecol. Manag. , 432,
667-674.
Ma, Z., Guo, D., Xu, X., Lu, M.,
Bardgett, R.D., Eissenstat, D.M. et al. (2018). Evolutionary
history resolves global organization of root functional traits.Nature , 555, 94-97.
Maestre, F.T., Callaway, R.M.,
Valladares, F. & Lortie, C.J. (2009). Refining the stress-gradient
hypothesis for competition and facilitation in plant communities.J. Ecol. , 97, 199-205.
Makita, N., Hirano, Y., Mizoguchi,
T., Kominami, Y., Dannoura, M., Ishii, H. et al. (2010). Very
fine roots respond to soil depth: biomass allocation, morphology, and
physiology in a broad-leaved temperate forest. Ecol. Res. , 26,
95-104.
Martin-Guay, M.O., Paquette, A.,
Reich, P.B. & Messier, C. (2019). Implications of contrasted above- and
below-ground biomass responses in a diversity experiment with trees.J. Ecol. , doi, 10.1111/1365-2745.13265.
Newbold, T., Hudson, L.N., Hill,
S.L., Contu, S., Lysenko, I., Senior, R.A. et al. (2015). Global
effects of land use on local terrestrial biodiversity. Nature ,
520, 45-50.
Oram, N.J., Ravenek, J.M., Barry,
K.E., Weigelt, A., Chen, H., Gessler, A. et al. (2018).
Below-ground complementarity effects in a grassland biodiversity
experiment are related to deep-rooting species. J. Ecol. , 106,
265-277.
Ostonen, I., Püttsepp, Ü., Biel, C.,
Alberton, O., Bakker, M.R., Lõhmus, K. et al. (2007). Specific
root length as an indicator of environmental change. Plant
Biosyst. , 141, 426-442.
Paquette, A. & Messier, C. (2011).
The effect of biodiversity on tree productivity: from temperate to
boreal forests. Global Ecol. Biogeogr. , 20, 170-180.
R Core Team (2019). R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing .
Reich, P.B. (2014). The world-wide
‘fast-slow’ plant economics spectrum: a traits manifesto. J.
Ecol. , 102, 275-301.
Reich, P.B., David Tilman, Forest
Isbell, Kevin Mueller, Sarah E. Hobbie, Dan FB Flynn, and Nico
Eisenhauer. (2012). Impacts of Biodiversity Loss Escalate Through Time
as Redundancy Fades. Science , 336, 589-592.
Salahuddin, Rewald, B., Razaq, M.,
Lixue, Y., Li, J., Khan, F. et al. (2018). Root order-based
traits of Manchurian walnut & larch and their plasticity under
interspecific competition. Sci. Rep. , 8, 9815.
Searle, E.B. & Chen, H.Y.H. (2019).
Complementarity effects are strengthened by competition intensity and
global environmental change in the central boreal forests of Canada.