Biol. Rev.
Cohen, P., West, S.G. & Aiken, L.S. (2014). Applied multiple regression/correlation analysis for the behavioral sciences . Psychology Press.
Davison, A.C. & Hinkley, D.V. (1997). Bootstrap methods and their application . Cambridge university press.
Domisch, T., Finer, L., Dawud, S.M., Vesterdal, L. & Raulund-Rasmussen, K. (2015). Does species richness affect fine root biomass and production in young forest plantations?Oecologia , 177, 581-594.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37, 4302-4315.
Fitter, A., Caldwell, M. & Pearcy, R. (1994). Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity.Exploitation of environmental heterogeneity by plants: ecophysiological processes above-and belowground , 305-323.
Fornara, D.A., Tilman, D. & Hobbie, S.E. (2009). Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J. Ecol. , 97, 48-56.
Forrester, D.I. & Bauhus, J. (2016). A Review of Processes Behind Diversity—Productivity Relationships in Forests. J. Curr. Forestry Rep. , 2, 45-61.
Freschet, G.T., Valverde-Barrantes, O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C. et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. , 105, 1182-1196.
Germon, A., Guerrini, I.A., Bordron, B., Bouillet, J.-P., Nouvellon, Y., de Moraes Gonçalves, J.L. et al. (2017). Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m.Plant Soil , 424, 203-220.
Gould, I.J., Quinton, J.N., Weigelt, A., De Deyn, G.B. & Bardgett, R.D. (2016). Plant diversity and root traits benefit physical properties key to soil function in grasslands.Eco. Lett. , 19, 1140-1149.
Guderle, M., Bachmann, D., Milcu, A., Gockele, A., Bechmann, M., Fischer, C. et al. (2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Funct. Ecol. , 32, 214-227.
Hajek, P., Hertel, D. & Leuschner, C. (2014). Root order- and root age-dependent response of two poplar species to belowground competition. Plant Soil , 377, 337-355.
Hedges, L.V., Gurevitch, J. & Curtis, P.S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology , 80, 1150-1156.
Jobbágy, E.G. & Jackson, R.B. (2001). The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry , 53, 51-77.
Lange, M., Habekost, M., Eisenhauer, N., Roscher, C., Bessler, H., Engels, C. et al. (2014). Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. Plos One , 9, e96182.
Lei, P., Scherer-Lorenzen, M. & Bauhus, J. (2012). The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia , 169, 1105-1115.
Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G. et al. (2016). Positive biodiversity-productivity relationship predominant in global forests.Science , 354.
Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments.Nature , 412, 72-76.
Ma, Z. & Chen, H.Y.H. (2016). Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Global Ecol. Biogeogr. , 25, 1387-1396.
Ma, Z. & Chen, H.Y.H. (2017). Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. J. Ecol. , 105, 237-245.
Ma, Z., Chen, H.Y.H., Kumar, P. & Gao, B. (2019). Species mixture increases production partitioning to belowground in a natural boreal forest. Forest Ecol. Manag. , 432, 667-674.
Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M. et al. (2018). Evolutionary history resolves global organization of root functional traits.Nature , 555, 94-97.
Maestre, F.T., Callaway, R.M., Valladares, F. & Lortie, C.J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities.J. Ecol. , 97, 199-205.
Makita, N., Hirano, Y., Mizoguchi, T., Kominami, Y., Dannoura, M., Ishii, H. et al. (2010). Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol. Res. , 26, 95-104.
Martin-Guay, M.O., Paquette, A., Reich, P.B. & Messier, C. (2019). Implications of contrasted above- and below-ground biomass responses in a diversity experiment with trees.J. Ecol. , doi, 10.1111/1365-2745.13265.
Newbold, T., Hudson, L.N., Hill, S.L., Contu, S., Lysenko, I., Senior, R.A. et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature , 520, 45-50.
Oram, N.J., Ravenek, J.M., Barry, K.E., Weigelt, A., Chen, H., Gessler, A. et al. (2018). Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. , 106, 265-277.
Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M.R., Lõhmus, K. et al. (2007). Specific root length as an indicator of environmental change. Plant Biosyst. , 141, 426-442.
Paquette, A. & Messier, C. (2011). The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecol. Biogeogr. , 20, 170-180.
R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing .
Reich, P.B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. , 102, 275-301.
Reich, P.B., David Tilman, Forest Isbell, Kevin Mueller, Sarah E. Hobbie, Dan FB Flynn, and Nico Eisenhauer. (2012). Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. Science , 336, 589-592.
Salahuddin, Rewald, B., Razaq, M., Lixue, Y., Li, J., Khan, F. et al. (2018). Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition. Sci. Rep. , 8, 9815.
Searle, E.B. & Chen, H.Y.H. (2019). Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada.