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Abstract14

Analog methods (AMs) have long been used for precipitation prediction and cli-15

mate studies. However, they rely on manual selections of parameters, such as predictor16

variables and analogy criteria. Previous work showed the potential of genetic algorithms17

(GAs) to optimize most of the AM parameters. This research goes one step further and18

investigates the potential of GAs for automating the selection of the input variables and19

the analogy criteria (distance metric between two data fields) in AMs. Our study focuses20

on the prediction of daily precipitation in central Europe, specifically Switzerland, as a21

representative case. Comparative analysis against established methods demonstrates the22

superiority of GA-optimized AMs in terms of predictive accuracy. The selected input vari-23

ables exhibit strong associations with key meteorological processes that influence the gen-24

eration of precipitation. Further, we identify a new analogy criterion inspired by the Teweles-25

Wobus criterion, which consistently performs better than other Euclidean distances and26

could be used in classic AMs. In contrast to conventional stepwise selection approaches,27

GA-optimized AMs display a preference for a flatter structure characterized by a sin-28

gle level of analogy and an increased number of variables. Overall, our study demonstrates29

the successful application of GAs in automating input variable selection for AMs, with30

potential implications for application in diverse locations and data exploration to pre-31

dict alternative predictands. In a broader context, GAs could be used to perform input32

variable selection in other data-driven methods, opening perspectives for a broad range33

of applications.34

1 Introduction35

Analog methods (AMs) are statistical techniques grounded in the intrinsic connec-36

tions between meteorological predictors, typically at a synoptic scale, and local weather37

patterns (Lorenz, 1956, 1969). AMs look for similar meteorological situations in the past38

to that of a target date of interest. They provide a conditional prediction based on the39

observed predictand values at these analog dates. Daily precipitation has often been the40

predictand of interest, either in the context of operational forecasting (e.g. T. Hamill &41

Whitaker, 2006; Bliefernicht, 2010; Marty et al., 2012; Horton et al., 2012; T. M. Hamill42

et al., 2015; Ben Daoud et al., 2016), climate change studies (e.g. Dayon et al., 2015; Ray-43

naud et al., 2016), or past climate reconstruction (Caillouet et al., 2016). AMs are also44

used for other predictands, such as precipitation radar images (Panziera et al., 2011; Foresti45

et al., 2015), temperature (Delle Monache et al., 2013; Caillouet et al., 2016; Raynaud46

et al., 2016; Jézéquel et al., 2017), wind (Delle Monache et al., 2013, 2011; Vanvyve et47

al., 2015; Alessandrini, Delle Monache, Sperati, & Nissen, 2015; Junk, Delle Monache,48

Alessandrini, Cervone, & von Bremen, 2015; Junk, Delle Monache, & Alessandrini, 2015),49

and solar radiation or power production (Alessandrini, Delle Monache, Sperati, & Cer-50

vone, 2015; Bessa et al., 2015; Raynaud et al., 2016). Although deep learning methods51

nowadays become more and more popular in the context of forecasting, postprocessing52

and downscaling (e.g. Chapman et al., 2022; Leinonen et al., 2020; Miralles et al., 2022;53

Otero & Horton, 2023), AMs are still relevant and offer the benefit of interpretability.54
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Some AMs combine different predictors together using weights in the calculation55

of the distances between the target and the analog situations (e.g. Keller et al., 2017;56

Meech et al., 2020). Others may consist of a stepwise selection of similar meteorologi-57

cal situations based on multiple predictors organized in different consecutive levels of anal-58

ogy, each of which conditions the subsequent selection. The similarity between two sit-59

uations is computed using an analogy criterion (distance metric) over a relevant spatial60

domain. For each level of analogy, a certain number of analogs are selected (Obled et61

al., 2002; Bontron, 2004).62

Stepwise AMs for predicting precipitation commonly have a first level of analogy63

based on the atmospheric circulation. The variable of interest is the geopotential height64

(Z) at various pressure levels and specific times throughout the day (Table 2; Obled et65

al., 2002; Horton et al., 2018). Bontron (2004) introduced a second level of analogy based66

on a moisture index that is the product of the relative humidity at 850 hPa and the to-67

tal precipitable water (RM3 method in Table 2). Other consecutive studies selected dif-68

ferent pressure levels (Horton et al., 2018, method RM4 in Table 2) or added a wind com-69

ponent to the moisture index (Marty, 2010). Ben Daoud et al. (2016) inserted an ad-70

ditional level of analogy between the circulation and the moisture analogy based on the71

vertical velocity at 850 hPa (methods RM6 in Table 2) and named it ”SANDHY” for72

Stepwise Analog Downscaling method for Hydrology (Ben Daoud et al., 2016; Caillouet73

et al., 2016).74

To calibrate the method, a semi-automatic sequential procedure (Bontron, 2004;75

Radanovics et al., 2013; Ben Daoud et al., 2016) has often been used to optimize the size76

of the domain and the number of analogs. However, predictor variables, vertical levels,77

temporal windows (time of day), and analogy criteria were manually selected. This man-78

ual selection requires the comparison of numerous combinations and a comprehensive79

assessment of some parameter ranges. Moreover, the sequential calibration procedure80

successively calibrates the different levels of analogy, and thus it does not handle param-81

eters inter-dependencies. Considering these limitations, Horton et al. (2017) introduced82

a global optimization of the AM using genetic algorithms (GAs). Using this approach,83

an automatic and objective selection of the temporal windows, the vertical levels, the84

domains, and the number of analogs became possible, improving the prediction skills of85

the method (Horton et al., 2018). A weighting of the predictor variables has also been86

introduced. The only parameters left for manual selection were the meteorological vari-87

ables and the analogy criteria.88

Selecting predictors for precipitation prediction with AMs in Europe has been the89

focus of multiple studies aiming to improve prediction skills (Obled et al., 2002; Bon-90

tron, 2004; Gibergans-Báguena & Llasat, 2007; Radanovics et al., 2013; Ben Daoud et91

al., 2016). Thus, the relevant predictors are likely to be known nowadays and supported92

by expert knowledge. However, transferring AMs to a region with different climatic con-93

ditions or to another predictand would involve reconsidering the selected meteorologi-94

cal variables. This work aims to test a fully automatic optimization of all AM param-95

eters, including the selection of the meteorological variables and even the analogy cri-96

teria, using GAs. GAs have already been used for input variable selection (IVS) in other97
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contexts (D’heygere et al., 2003; Huang et al., 2007; Cateni et al., 2010; Gobeyn et al.,98

2017).99

GAs have also been used in the context of AMs for other tasks, such as the selec-100

tion of optimal vertices in an unstructured grid approach to reduce computational re-101

sources when working with high-resolution data (Hu & Cervone, 2019). An alternative102

approach to IVS, proposed by Hu et al. (2023), is to compress multiple predictors into103

latent features using a deep learning network and then select the analogs in this latent104

space. This approach eliminates the need for the prior selection of predictors; however,105

it sacrifices the advantage of interpretability provided by an analogy computed on the106

original variables.107

Here, we seek to assess the potential of GAs for input variable selection in the con-108

text of the analog method. Moreover, we want to test the GAs’ ability to jointly select109

the distance metric in addition, i.e., the analogy criterion. To compare with well-established110

AMs, daily precipitation in central Europe, specifically in Switzerland, has been chosen111

as predictand. Also, as is often the case, the AMs were optimized in the perfect prog-112

nosis framework, using predictors from reanalyses. This work focuses mainly on the proof113

of concept of automatic IVS for AMs rather than the details of the case study.114

The paper is organized as follows. Section 2 describes the datasets, the fundamen-115

tals of AMs, the characteristics of the GAs implementation, the software used, and the116

details of the experiment setup. Section 3 presents the results of different analyses, such117

as the selection of the best predictor variable, the relevance of various AM structures,118

and the accuracy of the optimized methods. Section 4 discusses some findings of the work.119

Finally, section 5 summarizes the main contributions of the work and open perspectives120

for applications of the developed approach.121

2 Material and Methods122

2.1 Data123

The target variable (predictand) is daily precipitation derived from the RhiresD124

gridded dataset from MeteoSwiss (2021). It is a daily aggregation (from 06 UTC of day125

D to 06 UTC of day D+1) at a 1 km resolution with data from 1961 onward. It is pro-126

duced using an interpolation scheme between gauging stations (Frei & Schär, 1998). The127

gridded data were spatially aggregated across 25 catchments of about 200 km2 (Table128

1). These catchments were chosen to cover the different climatic regions of Switzerland129

(Schüepp & Gensler, 1980), as illustrated in Fig. 1.130

As is often done in the context of the perfect prognosis framework, we used vari-131

ables provided by global reanalyses. Although most reanalysis provides good quality data132

in Europe, differences still exist, and the choice of the reanalysis dataset can impact the133

accuracy of the AM even more substantially than the choice of the predictor variables134

(Horton & Brönnimann, 2019). Thus, it was considered advisable to test some of the fol-135

lowing analyses with another reanalysis to assess the robustness of the selected variables.136
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Figure 1. Location of the 25 selected catchments in Switzerland along with the climatic

regions (dashed lines) and the river network (source: SwissTopo, HADES).

The main reanalysis used in this work is ERA-Interim (ERA-I, Dee et al., 2011),137

which was produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)138

and covers the period from 1979 to 2019. The forecast model uses a hybrid sigma-pressure139

vertical coordinate on 60 layers and has a T255 horizontal resolution (about 79 km) and140

a 30 min time step. The output variables have a grid resolution of 0.75◦. This work started141

before the release of ERA5, the successor of ERA-I.142

The Climate Forecast System Reanalysis (CFSR, Saha et al., 2010), provided by143

NCEP, was used for the first experiment to compare the results obtained with ERA-I.144

The model used to produce CFSR has a horizontal resolution of T382 (about 38 km) and145

64 levels on sigma-pressure hybrid vertical coordinates. The period covered is 1979 to146

August 2019, and the output variables have a spatial resolution of 0.5◦.147

Finally, ERA5 (Hersbach et al., 2019) was used for the last analysis. ERA5 pro-148

vides more variables and a higher spatial (0.25◦, but used here at 0.5◦) and temporal res-149

olution (hourly, but used here at a 3-hourly time step). ERA5 assimilates considerably150

more data than ERA-I and provides, among others, more consistent sea surface temper-151

ature and sea ice, improved representation of tropical cyclones, better balance of evap-152

oration and precipitation, and improved soil moisture. ERA5 also relies on more appro-153

priate radiative forcing and boundary conditions (e.g., changes in greenhouse gases, aerosols,154

SST, and sea ice) (Hersbach et al., 2019).155
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Table 1. Characteristics of the 25 selected catchments in Switzerland

Id Name of the river Climatic region Area Mean elevation
(km2) (m a.s.l.)

1 L’Allaine Eastern Jura 209.1 571
2 Ergolz Eastern Jura 150.3 589
3 L’Orbe Western Jura 209.3 1229
4 La Birse Western Jura 203.3 920
5 La Broye Western Plateau 184.5 791
6 Murg Central Plateau 184.8 658
7 Aabach Central Plateau 180.0 562
8 Töss Northeastern Plateau 189.3 745
9 Sense Western alpine north slope 179.6 1238
10 La Sarine Western alpine north slope 200.8 1779
11 Weisse Lütschine Western alpine north slope 165.0 2149
12 Emme Central alpine north slope 206.9 1151
13 Engelberger Aa Central alpine north slope 204.3 1654
14 Linth Eastern alpine north slope 195.7 1959
15 Sitter Eastern alpine north slope 162.2 1069
16 Dranse d’Entremont Valais 154.2 2340
17 La Navisence Valais 210.5 2541
18 Lonza Valais 161.7 2370
19 Doveria Southern Alps 170.5 2241
20 Ticino Southern Alps 208.5 2019
21 Verzasca Southern Alps 187.4 1656
22 Valser Rhein North and Central Grisons 185.8 2215
23 Plessur North and Central Grisons 207.7 1928
24 Mera Southern Alps 190.6 2142
25 Flaz Engadine 193.1 2599

2.2 Analog Methods156

AMs are based on the rationale that two similar synoptic situations may produce157

similar local weather (Lorenz, 1956, 1969). It thus consists of extracting past atmospheric158

situations similar to a target date. Selected predictor fields define this similarity. The159

analogy is defined by:160

1. The selected meteorological variables (predictors).161

2. The vertical levels at which the predictors are selected.162

3. The spatial windows (domains) over which the predictors are compared.163

4. The hours of the day at which the predictors are considered.164

5. The analogy criteria (distance metric to rank candidate situations).165

6. Possible weights between the predictors.166

7. The number of analog situations Ni to select for the level of analogy i.167

AMs usually start with a seasonal preselection to cope with seasonal effects (Lorenz,168

1969). The seasonal preselection is often implemented as a moving window of 120 days169

centered around the target date (Bontron, 2004; Marty et al., 2012; Horton et al., 2012;170

Ben Daoud et al., 2016). Alternatively, the candidate dates can be preselected based on171

similar air temperatures at the nearest grid point (Ben Daoud et al., 2016, methods RM5172
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and RM6 in Table 2). In this work, we used the temporal moving window to reduce the173

number of potential candidate dates and, thus, the computing time.174

Table 2. Some analog methods listed by increasing complexity. The analogy criterion is S1 for

Z and RMSD for the other variables. The predictors are described by meteorological variables

(e.g., Z), pressure levels (e.g., 1000), and time windows (e.g., 12h UTC). Multiple time steps can

be considered. For example, ’MI850@12+24h’ indicates that the moisture index is being consid-

ered at 12h and 24h UTC. In the case of ’W850@06-24h’, all 6-hourly time steps between 6h and

24h UTC are being used.

Method Preselection First level Second level Third level Reference

RM1 ±60 days
Z1000@12h

Bontron (2004)
Z500@24h

RM2 ±60 days

Z1000@06h

Horton et al. (2018)
Z1000@30h
Z700@24h
Z500@12h

RM3 ±60 days
Z1000@12h

MI850@12+24h Bontron (2004)
Z500@24h

RM4 ±60 days

Z1000@30h

Horton et al. (2018)
Z850@12h MI700@24h
Z700@24h MI600@12h
Z400@12h

RM5
T925@36h Z1000@12h MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

RM6
T925@36h Z1000@12h

W850@06-24h
MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

Z, geopotential height; T, air temperature; W, vertical velocity; MI, moisture index.

The first level of analogy in AMs for precipitation is often based on the atmospheric175

circulation using the geopotential height (Z) at different pressure levels and hours of the176

day (Table 2). The distance (analogy criterion) between two Z fields is calculated on the177

vector components of the gradient, i.e., using the difference between adjacent grid cells,178

rather than comparing absolute values. The Teweles–Wobus criterion (S1, Eq. 1, Tewe-179

les & Wobus, 1954; Drosdowsky & Zhang, 2003) was identified as the most suitable by180

different studies (Wilson & Yacowar, 1980; Woodcock, 1980; Guilbaud & Obled, 1998;181

Bontron, 2004). It is defined as follows:182

S1 = 100

∑
i

|∆ẑi −∆zi|∑
i

max {|∆ẑi|, |∆zi|}
(1)

where ∆ẑi is the gradient component between the ith pair of adjacent points from the183

geopotential field of the target situation, and ∆zi is the corresponding gradient compo-184

nent in the candidate situation. The gradient components are computed in both the lat-185

itude and longitude directions. S1 ranges from 0 to 200. The smaller the S1 values, the186
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more similar the shape of the pressure fields and therefore the atmospheric circulation.187

S1 was developed to verify prognostic charts (Teweles & Wobus, 1954). It was computed188

using pressure differences between stations arranged in north-south and east-west lines.189

The ”difficulty coefficient” (the denominator) reduces the influence of the seasons and190

the strength of the weather systems on the score.191

After selecting a certain number of analog dates based on Z, subsequent steps can192

be added to subsample a lower number of analog situations based on other predictors.193

The method developed by Ben Daoud et al. (2016) has, for example, three levels of anal-194

ogy (and a preliminary level for the preselection) where each level subselects a smaller195

number of analog situations from the candidates provided by the previous level (RM6196

method in Table 2). For other predictors than the geopotential height (e.g., for mois-197

ture variables), classic criteria representing Euclidean distances between grid point val-198

ues are used.199

The output of the AM is a probabilistic prediction for the target day. It is provided200

by the empirical conditional distribution of the Ni predictand values corresponding to201

the Ni dates selected at the last level of analogy.202

2.3 Genetic Algorithms203

Genetic Algorithm (GA) is a global optimization technique inspired by genetics and204

natural selection (Holland, 1992). It belongs to the family of evolutionary algorithms and205

comprises different operators such as natural selection, couples selection, chromosome206

crossover, mutation, and elitism. These operators act on parameter sets of the problem207

to optimize by mixing, combinations, and random modifications. GA aims to combine,208

over time, the strength of different parameter sets and to explore the parameter space209

while converging toward the global optimum. The optimization starts here with 2000210

random parameter sets (as defined in Sect. 2.2) and is stopped when the best param-211

eter set cannot be improved after 30 iterations.212

A variant of GA has been tailored to optimize AMs by Horton et al. (2017). All213

the parameters of the method, except the meteorological predictor variables and the anal-214

ogy criteria, have already been successfully optimized using GAs (Horton et al., 2018).215

All parameters were optimized jointly on the different levels of analogy. The use of GAs216

provided for the first time an objective and global optimization of AMs, resulting in gains217

in prediction accuracy. To bring the optimization further, the selection of the predictor218

variables and the analogy criteria were performed here by GAs.219

The reason why the predictor variables and analogy criteria were left out in the pre-220

vious GA-AM setup by Horton et al. (2017) is the different nature of these variables. The221

parameters optimized so far by Horton et al. (2017) were quantitative variables, that is,222

numerical values (e.g. location and size of the spatial windows or the number of analogs),223

which have a notion of continuity. However, the parameters characterizing the selected224

predictors or analogy criteria are entries in a list of possible variables/criteria that can225

be considered as categorical variables as there is no relationship among entries. They are226

treated as arrays of independent values by the algorithm. Therefore, the mutation op-227
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erator relying on a search radius in the parameter space (Horton et al., 2017) cannot be228

applied. Instead, a simple random sampling was used for these parameters when selected229

for mutation. In addition to the increased difficulty due to the higher number of param-230

eters to optimize, this aspect will likely slow down the optimization.231

In GAs, the mutation operator changes a parameter value (gene) if this parame-232

ter was selected to mutate (all parameters have a certain mutation probability). The new233

value assigned depends on the rules of the mutation operator applied. This operator en-234

ables the optimization to explore new areas of the parameter space and was shown to235

have the greatest impact on the success of AM optimizations (Horton et al., 2017). Thus,236

as suggested in Horton et al. (2017), five variants of this operator were used in parallel237

optimizations (see details in Appendix B): three variants of the non-uniform mutation238

(Michalewicz, 1996), the multiscale mutation, and the chromosome of adaptive search239

radius. The non-uniform mutation aims to reduce the magnitude of the search in the pa-240

rameter space with the evolution of the population to transition from the exploration241

of the whole parameter space to the exploitation of local solutions. This operator has242

three controlling variables, which makes it difficult to adjust, and thus is used with three243

different configurations. The multiscale mutation considers both exploration and exploita-244

tion in parallel. It has no controlling parameters and no evolution during the optimiza-245

tion. The chromosome of adaptive search radius was introduced by Horton et al. (2017)246

and is inspired by the non-uniform mutation. It takes an auto-adaptive approach by adding247

two chromosomes, one for the mutation rate and one for controlling the search magni-248

tude (see details in Horton et al., 2017). Therefore, it has no controlling parameters, is249

thus easier to use, and automatically transitions from the exploration phase to exploita-250

tion.251

2.4 Software252

The optimization of AMs with GAs is implemented in the open-source AtmoSwing253

software1 (Horton, 2019a) that has been used for this work. AtmoSwing is written in object-254

oriented C++ and has been optimized for computational performance. It scales well on255

HPC infrastructures, as the different members of the GAs populations, i.e., the various256

parameter sets, can be assessed in parallel using multiple independent threads. However,257

due to the increasingly large number of assessments needed by GAs with the increasing258

complexity of the problem, a further reduction in computing time became necessary. In-259

deed, while applying AMs to perform a prediction for a single target date is a very fast260

and light process, GAs require a substantial amount of parameter assessments over long261

calibration periods.262

Despite being simple methods, AMs require many comparisons of gridded fields dur-263

ing the calibration phase. For example, this work used a 24-year calibration period. For264

each target day, a gridded predictor needs to be compared to about 2820 candidate sit-265

uations (24*120-60, using a 120-day temporal window minus 60 days in the target year266

1 https://atmoswing.org/
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that are excluded). Over the entire calibration period, this amounts to about 2.47·107267

(24*365*2820) field comparisons per predictor of the first level of analogy. Here, one op-268

timization required, on average, about 200 generations made of 2000 individuals, which269

brings the average number of grid comparisons to about 1·1013 per predictor of the first270

level of analogy. The comparison of the gridded predictors — i.e., the calculation of the271

analogy criteria – was identified by profilers as the most time-consuming task, despite272

using the efficient linear algebra library Eigen 3 (Guennebaud et al., 2010).273

A first attempt to reduce the computing time was based on storing the whole his-274

tory of the optimization in memory and looking up for similar already-assessed param-275

eters to a newly generated parameter set. However, this approach turned out to be even276

more time-consuming after several generations and led to memory issues for long opti-277

mizations. Finally, computation using graphics processing units (GPUs) was implemented278

for this study in a new version of AtmoSwing, v.2.1.2 (Horton, 2019b). The calculation279

of the analogy criteria has been written using NVIDIA’s CUDA. The details of the im-280

plementation and the results of a benchmark experiment can be found in Appendix A.281

When optimizing the methods using ERA5 at a 3-hourly time step and 0.5◦ resolution,282

the difference is substantial. One generation (2000 evaluations) took 8 to more than 10283

hours using 20 CPU threads, while 50 to 80 minutes were needed using 3 CPU threads284

and 3 GPU devices (NVIDIA GeForce703 RTX 2080).285

2.5 Experimental Setup286

The experiments were carried out over a 30-year period, from 1981 to 2010, divided287

into a calibration period (CP) and an independent validation period (VP). An additional288

test period (TP), covering the years 2011 to 2017, was allocated to evaluate the accu-289

racy of the optimized methods on unseen data (Sect. 3.4). To reduce the impact of po-290

tential inhomogeneities in the time series, the selection of the validation period (VP) was291

evenly distributed over the entire series (as in Ben Daoud, 2010). A total of 6 years was292

used for the VP by selecting one year out of every five (explicitly: 1985, 1990, 1995, 2000,293

2005, 2010). The archive period (AP), where the analog dates are being retrieved, is the294

same as the CP. The VP is also excluded from the AP (days from the VP were never295

used as candidate situations for the selection of analogs), as well as a period of ±30 days296

around the target date to exclude potential dependent meteorological situations. Un-297

less stated otherwise, all results are presented for the VP.298

The GAs optimized all parameters of the method. Only the AM structure (num-299

ber of analogy levels and predictors) was not optimized. Different structures were tested300

in section 3.2. For each level of analogy and each predictor, the following parameters were301

optimized within the corresponding ranges:302

1. Meteorological variable: see section 2.5.1.303

2. Vertical level: see section 2.5.1.304

3. Temporal windows (time of the day): from day D 00 UTC to D+1 06 UTC (c.f.305

precipitation accumulation period, sect 2.1)306

–10–



manuscript submitted to Water Resources Research

4. Spatial window (domain): latitudes=[35, 55], longitudes=[-10, 20]. The spatial win-307

dows differ between predictors, even within the same level of analogy.308

5. Analogy criterion: see section 2.5.2.309

6. Weight: [0, 1] with a precision of 0.01 (0.05 for experiment 2). The optimizer can310

turn off a variable by setting its weight to zero.311

7. Number of analogs: varies according to the structure, but with an overall range312

of [5, 300] and a step of 5. The optimizer can turn off a level of analogy by set-313

ting its number of analogs to the same value as the previous level of analogy.314

The CRPS (Continuous Ranked Probability Score; Brown, 1974; Matheson & Win-315

kler, 1976; Hersbach, 2000) was used to assess the accuracy of the predictions and is the316

objective function used by the GAs. It evaluates the predicted cumulative distribution317

functions F (y), here of the precipitation values y associated with the analog situations,318

compared to the single observed value y0 for a day i:319

CRPSi =

∫ +∞

0

[
Fi(y)−Hi(y − y0i )

]2
dy, (2)

where H(y − y0i ) is the Heaviside function that is null when y − y0i < 0, and 1 other-320

wise; the better the prediction, the lower the score. The CRPS was here computed us-321

ing the rectangle approximation based on the discrete precipitation values provided by322

the analog dates.323

2.5.1 Meteorological Variables324

The meteorological variables were considered for different types of vertical levels:325

surface or entire atmosphere (to capture, for example, the moisture content of an entire326

air column), pressure levels (1000, 950, 900, 850, 800, 700, 600, 500, 400, 300, 200 hPa,327

to capture the vertical structure), potential temperature levels (290, 300, 310, 320, 330,328

350, 400 K, necessary to include potential vorticity), and potential vorticity levels. The329

selected variables are listed in Table 3. The optimization can pick any variable on any330

level type and value, as long as it is available. Precipitation variables from reanalyses331

were not considered potential predictors. Precipitation is often considered as a predic-332

tor in AMs used in a post-processing context (where the same precipitation product is333

used for training and then predicting). However, AMs targeting downscaling tasks or al-334

ternative forecasts to NWP models do not rely on precipitation, as a method developed335

in the perfect prognosis context (using reanalyses datasets that can potentially assim-336

ilate precipitation data) would then be difficult to use in other contexts (using other model337

outputs) due to the high uncertainties and the biases associated with precipitation pre-338

dicted by an NWP or a climate model.339

The variables were standardized (using the overall climatology) on-the-fly by At-340

moSwing when loaded from files. Standardization has no impact on the selection of ana-341

log situations for a single predictor, but it makes the combination of predictors within342

one level of analogy more balanced, as they might have very different orders of magni-343
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tude and units. It allows for a more effective optimization of the weights between pre-344

dictors.345

2.5.2 Analogy Criteria346

During the optimization, the GAs can select different analogy criteria for the dif-347

ferent predictors, with the aim of identifying the best criteria per predictor. These are348

then combined using weights to provide a single analogy distance value. The most com-349

mon analogy criteria in AMs are the Root Mean Square Deviation (RMSD) and the Teweles–350

Wobus criterion (S1, see section 2.2). Other criteria were made available to the GAs in351

order to explore potential new characterizations of the analogy metrics. Two of these352

criteria are new and are derived from S1. The potential criteria made available to the353

GAs are the following:354

1. RMSD: the Root Mean Square Deviation.355

2. MD: the Mean Absolute Difference, or Mean Absolute Error. It differs from the356

RMSD in that the differences are not squared.357

3. S1: the Teweles–Wobus index as defined in Eq. 1 from section 2.2. It consists of358

a comparison of the gradients, mainly used for the geopotential height.359

4. S2: inspired by the Teweles–Wobus index, we introduced a new criterion based360

on the second derivative of the fields instead of the gradients:361

S2 = 100

∑
i

|∇2x̂i −∇2xi|∑
i

max
{
|∇2x̂i|, |∇2xi|

} (3)

where ∇2x̂i is the second derivative between the ith triplet of adjacent points from362

the predictor field of the target situation, and ∇2xi is the corresponding second363

derivative in the candidate situation. Please note that it differs from the S2 in-364

dex from Teweles and Wobus (1954).365

5. S0: as with S2, this new criterion is derived from S1 and is processed on the raw366

grid values. It differs from the MD mainly in that it is normalized by the sum of367

the maximum values instead of the number of points:368

S0 = 100

∑
i

|x̂i − xi|∑
i

max {|x̂i|, |xi|}
(4)

where x̂i is the ith point from the predictor field of the target situation, and xi369

is the corresponding point in the candidate situation. The reason for adding such370

a criterion was accidental, as it was an erroneous implementation of S2. However,371

it turned out to be relevant (see sections 3 and 4).372

6. DSD: difference in standard deviation over the spatial window. It is a non-spatial373

criterion, as the location of the features does not matter.374
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Table 3. Selected variables for ERA-I, CFSR, and ERA5 for different types of vertical levels.

Variable Id Unit ERA-I CFSR ERA5
Levels: PL PT PV SC PL PT PV SC PL SC

CIRCULATION VARIABLES
Geopotential height Z gpm • • • • • •
Geopotential height anomaly ZA gpm •
Zonal wind U m s−1 • • • •a • • • • •a
Meridional wind V m s−1 • • • •a • • • • •a
Pressure PRES Pa • • •c • ••c •c
Vertical velocity W Pa s−1 • • • • •
Divergence D s−1 • • •
Vorticity VO s−1 • •
Potential vorticity PV m2 s−1 K kg−1 • • • •
Stream function STRM m2 s−1 •
Velocity potential VPOT m2 s−1 •
Montgomery potential MONT m2 s−2 •
Montgomery stream function MNTSF m2 s−1 •

MOISTURE VARIABLES
Relative humidity RH % • • • • •
Specific humidity SH kg kg−1 • • •
Total column water TCW kg m−2 • •
Total column water vapour TCWV kg m−2 • •
Cloud water CWAT kg m−2 •
Surface moisture flux IE kg m−2 s−1 •

TEMPERATURE VARIABLES

Temperature T K • •b • • • • •b
Potential temperature PT K •
Dewpoint temperature* DT K •a
Sea surface temperature SST K •
0◦ C isothermal level DEG0L m • •

RADIATION VARIABLES
Surf. net solar radiation SSR J m−2 • •
Surf. solar rad. downwards SSRD J m−2 • •
Surf. net thermal radiation STR J m−2 • •
Surf. thermal rad. downwards STRD J m−2 • •
Surf. latent heat flux SLHF J m−2 •
Surf. sensible heat flux SSHF J m−2 •
Top net solar radiation TSR J m−2 •
Top net thermal radiation TTR J m−2 •

STABILITY INDICES
Convective avail. pot. energy CAPE J kg−1 • • •
Convective inhibition CIN J kg−1 • •
Best (4 layer) lifted index 4LFTX K •
Surface lifted index LFTX K •
Lapse rate LAPR K m−1 •

OTHERS
Cloud cover CC (0 - 1) •
Low cloud cover LCC (0 - 1) •
Total cloud cover TCC (0 - 1) •
Snow depth SD m of w.e. •

PL = pressure levels, PT = pot. temp. levels, PV = pot. vorticity levels, SC = single level, surface, or total column

*moisture and temperature variable, aat 10 m, bat 2 m, cat mean sea level.
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7. DMV: absolute difference in mean value. It is also non-spatial, as the means are375

computed over the spatial window before comparison.376

2.5.3 Design of Experiments377

The input variable selection with GAs has been assessed in sequential steps. First,378

GAs were used to identify the single best predictor variables and their associated anal-379

ogy criteria for each catchment (Sect. 3.1). The objective was to assess the consistency380

of the selected variables in the most straightforward configuration. Then, since AMs can381

be made of different levels of analogy with multiple predictors, the second experiment382

assessed the accuracy associated with different structures and the ability of GAs to deal383

with these, using a limited number of catchments (Sect. 3.2). Based on these results, the384

third experiment performed the input variable selection for each catchment (Sect 3.3).385

For all experiments, the GAs used the CRPS of the precipitation prediction as the ob-386

jective function. The selection of the meteorological variables and the analogy criteria,387

along with the other parameters, is thus done to improve the accuracy of the AM.388

3 Results389

3.1 Best Single Variables390

The first experiment evaluates the use of GAs to select a single predictor variable391

and analogy criterion for each catchment. The selection has been performed using ERA-392

I (Fig. 2) but also CFSR for comparison (Fig. 3), with six optimizations per catchment393

and dataset. The six optimizations were based on different mutation operators (the five394

variants but twice the chromosome of adaptive search radius). The purpose of using two395

reanalyses is to assess the consistency and possible differences in the variable selection396

between two datasets.397

One of the first elements that can be seen for both datasets is the dominance of398

the S0 criterion, selected 60% of the time for ERA-I and more than 55% of the time for399

CFSR, along with the other criteria based on Teweles–Wobus (Fig. 4). The other anal-400

ogy criteria were rarely selected, if at all. The same applies to the RMSD, commonly used401

in analog methods. The GAs could better predict using S0 as a metric for the Euclid-402

ian distance between the predictor fields. This result is further discussed in Sect. 4.403

The variable selection results show some variability per catchment but similar ac-404

curacy. Although GAs can, in theory, identify the global optimum, this search is highly405

time consuming for such complex problems, and we have to stop the optimizations at406

a good-enough solution. These factors explain the variability that can be observed in the407

results. Nevertheless, this variability provides information about alternative variables408

with almost the same predictive accuracy.409

Figures 2 and 3 demonstrate that the optimal variables can vary across different410

regions. Figure 5 illustrates this information spatially for the ERA-I variables. In terms411

of similarities, the vertical velocity (W) at 700 and 800 hPa is the most frequently se-412

lected for both data sets and is quantified using the S0 criteria. Upward vertical winds413
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Figure 2. Best single variable selected (ordinate; see Table 3 for the variables abbreviations)

from ERA-I for the 25 catchments (abscissa). The colors represent the analogy criteria, and the

size of the dots is proportional to the accuracy of the resulting method (the larger the dots, the

better), within a range of 5% of the best result (those with lower accuracy are hidden).
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Figure 3. Same as Fig. 2 but for CFSR.

at these levels are typically associated with precipitation generation. Within the south-414

ern Alpine climatic region (catchments 19, 20, 21), Z (based on the S1 criterion) emerges415

as the best single predictor for ERA-I, which is not so clear with CFSR. Heavy precip-416

itation events in this region are primarily the result of orographic effects related to sus-417

tained southerly advection of moisture-laden air masses (Massacand et al., 1998). Other418

regional clusters can be observed using ERA-I, such as the meridional wind V (with S1)419

in the eastern part of Switzerland, also likely related to the southerly advection, STR(D)420

(surface net thermal radiation and surface thermal radiation downwards) in northern Switzer-421

land (see the discussion in Sect. 4), and the second derivative of Z (with S2) for several422

catchments at similar latitudes. The second derivative of Z is also frequently selected for423

CFSR. While cloud water (CWAT) is often chosen from CFSR, it is not available directly424

in ERA-I.425
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Figure 4. Frequency of the criteria selection for both reanalysis datasets.
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Figure 5. Map of the best variables for ERA-I for each catchment.

3.2 Assessment of AM Structures426

The analysis of different AM structures (Sect. 2.5.3) aims to identify the best per-427

forming structures, i.e., the optimal number of analogy levels and predictors. We first428

considered one to four levels of analogy, with one to four predictors per level. Five op-429

timizations were performed for each of these 16 structures with the different mutation430

operators. As this assessment requires 80 optimizations, it was performed on only four431

catchments (L’Allaine (1), Sitter (15), Doveria (19), Flaz (25)). These were selected to432

maximize the diversity of climatic conditions represented. A complementary analysis was433

performed on two catchments (L’Allaine (1) and Doveria (19)) to explore the use of up434

to eight predictors on one and two levels of analogy. These experiments also allowed com-435

paring the performance of the mutation operators for different problem complexities.436
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Even though the structure is provided to the GAs, it can still evolve to a simpler437

version by assigning a zero weight to some predictors or by setting the same number of438

analogs for two successive levels of analogy. This simplification often happened, such as439

that no solution ended up with the structure 4 x 4 (four levels of analogy with four pre-440

dictors each). The best performing methods in the validation period were always made441

of one or two levels of analogy (Fig. 6 and 7). Although some AMs have up to four lev-442

els of analogy (Sect. 2.2), the use of normalized variables and weights might here favor443

their combination in the same level of analogy. Methods with fewer levels of analogy present444

less of a hierarchy among the predictors. However, not having a systematic constraint445

by the atmospheric circulation, as in most AMs, results in more influence from other vari-446

ables. Although atmospheric circulation is often of primary importance for heavy pre-447

cipitation events, there may be situations where it is preferable to relax these constraints.448

Nevertheless, we cannot conclude that two levels of analogy are the maximum to be con-449

sidered, as the optimizer might have failed to optimize complex structures satisfactorily.450

The results also show notable performance differences between the mutation op-451

erators (Sect. 2.3). The chromosome of adaptive search radius (option #1) provides the452

best performing parameter sets 76.3% of the time for the calibration period and 62.5%453

of the time for the validation period (Fig. B1). The second best is the non-uniform mu-454

tation with a mutation probability (pmut) of 0.1 (option #4), which is the best option455

for 11.3% of the optimizations for the calibration period and 21.3% for the validation456

period. However, the same operator with a mutation probability (pmut) of 0.2 (option457

#5; Gm,r=100) is the worst-performing option, with a success rate of 1.3% for the cal-458

ibration period and 2.5% for the validation period. It quite well illustrates the difficulty459

of tuning such operators and the risk of a badly-configured mutation operator, and thus460

the benefit of an auto-adaptive option such as the chromosome of adaptive search ra-461

dius with no controlling parameters. Moreover, the latter usually performed better for462

more complex AM structures.463
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Figure 6. CRPS scores obtained for different AM structures with up to four levels of analogy

and four variables per level for four catchments in Switzerland. Lower CRPS (yellow) represents

a better accuracy. Five optimizations were started for each structure. The numbers inside the

cells show the optimizations that ended with the given structure. The numbers in parenthesis

illustrate the number of optimizations gained by a simplification of an initially more complex

structure (positive values) or lost in favour of simpler structures (negative values).
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Figure 7. Same as Fig. 6 for different AM structures with up to two levels of analogy and

eight variables per level for two catchments in Switzerland.
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3.3 Full Optimization464

The third experiment used different AM structures to perform the full input vari-465

able selection for each catchment. Only the chromosome of adaptive search radius has466

been used because of its higher performance.467

3.3.1 Using Variables from ERA-I468

Based on the previous results, three AM structures were selected: 1 level of anal-469

ogy with 8 (1 x 8) or 12 predictors (1 x 12), and 2 levels with 6 predictors (2 x 6) (Sect.470

2.5.3). Two optimizations were performed by structure and catchment. The structure471

with two levels of analogy (2 x 6) turned out to be simplified by the GAs to a single level472

of analogy (1 x 6) for several catchments. Consequently, this structure resulted in lower473

accuracy as fewer predictors were used. Therefore, only structures with a single level of474

analogy (1 x 8 and 1 x 12) are further analyzed here.475
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Figure 8. Selected variables (see Table 3 for the variables abbreviations) from ERA-I for the

1 x 8 and 1 x 12 structures for the different catchments. The colors represent the analogy crite-

ria, and the size of the dots is proportional to the weight given to the predictor within the range

[0.02, 0.2]. Variables that were never selected with a weight equal to or larger than 0.05 are not

represented.
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Figure 9. Statistics of the 30 most selected variables from ERA-I for the 1 x 8 and 1 x 12

structures for the different catchments (100 optimizations) along with the analogy criteria,

the temporal window (30 = next day at 06 UTC; some radiation variables were considered at

15 UTC), and the spatial windows (longitudes and latitudes). The extent of Switzerland is shown

in gray on the plots of the spatial windows.

Figure 8 shows the different variables selected for each catchment along with the476

analogy criteria (color) and the weights (size). Figure 9 synthesizes the 30 most often477
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selected variables and the associated analogy criteria, temporal windows, and spatial win-478

dows across catchments. These results again show a strong dominance of the S0, S1, and479

S2 analogy criteria, the others being only rarely selected, including RMSD. S0 is most480

often selected. The properties of S0 are further discussed in Sect. 4.481

Vertical velocity (W) at 700 hPa (and sometimes at 600 or 800 hPa) is the most482

frequently selected variable, also for the catchments that previously selected another best483

single variable (Sect. 3.1). Those with higher elevations and located in the southern part484

of the country additionally selected W at 500 hPa or even higher.485

The surface solar radiation downward (SSRD) is the second most selected variable486

and is mainly relevant when compared in terms of gradients (S1) rather than absolute487

values. Other radiation variables occupy the fourth and fifth ranks, such as surface ther-488

mal radiation downwards (STRD) and surface net thermal radiation (STR). These are489

mainly relevant when compared in terms of absolute values (S0), although there is a non-490

negligible representation of the S1 criteria (see discussion on radiation variables in Sect.491

4).492

CAPE is the third most selected variable, and the total column water (TCW) is493

the sixth variable. In the ninth position comes the meridional wind at 10 m, but using494

S1 or even S2. The derivative of the wind can be informative on the location of frontal495

systems and convergence or divergence zones. Then comes the meridional wind on the496

PV level. The 2 m temperature has the 12th position and is compared in terms of gra-497

dients (S1), which can reflect the position of fronts. Follows the geopotential height (Z)498

at 700 and 600 hPa compared primarily using the second derivatives of the fields (S2).499

The curvature of the geopotential height helps to identify and characterize synoptic-scale500

features, such as ridges and troughs in the atmosphere. A bit further down on the list,501

SLP is also compared in terms of its second derivative. Other variables such as RH, PV,502

D, and U also populate the 30 best variables.503

The optimal spatial windows (Figure 9) cover Switzerland most of the time, with504

different extents depending on the variables. For example, while the medians of the op-505

timal domains for W and CAPE are slightly larger than Switzerland, PV is here con-506

sidered over a larger domain. The 2m temperature (T2m) is characterized by unusual507

longitudinally extended domains, with the main body in southern Switzerland extend-508

ing to the northern Mediterranean. Thus, it likely represents information at a synoptic509

scale, such as the location of fronts, rather than local conditions. Note that SST was also510

in the pool of potential variables, but has never been selected as relevant.511

The optimal temporal windows (time of day) show substantial variability between512

the predictor variables. At the lower end of the range is TCW, which is considered bet-513

ter at the beginning of the precipitation accumulation period (06 UTC). The top of the514

range (06 UTC the next day, corresponding to the end of the accumulation period) was515

favored by the divergence (D at 285◦K) and some low-level W (W900 and W950) or Z516

(Z900). It should be noted here that the radiation variables used were cumulative vari-517

ables that were not decomposed prior to the analysis. Therefore, most of the selected518

temporal windows correspond to the beginning of the accumulation period, i.e., 15 UTC.519
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3.3.2 Using Variables from ERA5520

A similar experiment has been carried out using ERA5 and a single method struc-521

ture (1 x 12). ERA5 has been used at a 3-hourly time step, which may be more relevant522

than 6-hourly when considering radiation variables, and at a 0.5◦ spatial resolution. The523

potential analogy criteria were limited to S0, S1 and S2 and the spatial domains were524

slightly reduced (latitudes=[39, 55], longitudes=[-4, 20]). If previously the weights could525

be null for a predictor, a minimum of 0.01 was enforced here to force the GAs to select526

a relevant predictor. Finally, some predictors, often selected in the previous experiment,527

were forced: W700 (with S0 criterion), CAPE (with S0 criterion), TCW (with S0 or S1528

criteria); leaving nine predictors unconstrained.529

In addition, only the variables found relevant when using ERA-I were selected as530

potential predictors, thus decreasing the pool of variables. Also, potential temperature531

levels and PV levels were not considered further. However, cloud cover variables were532

added to the potential predictors to assess whether the radiation variables served as a533

proxy for cloud cover. Therefore, this experiment should not be considered a complete534

exploration of ERA5 as it builds on the results obtained for ERA-I.535
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Figure 10. Selected variables (see Table 3 for the variables abbreviations) from ERA5 for the

1 x 12 structure for the different catchments. The variables that were forced into the AM are

marked with a rectangle. The colors represent the analogy criteria, and the size of the dots is

proportional to the weight given to the predictor within the range [0.02, 0.2]. Variables that were

never selected with a weight equal to or larger than 0.05 are not represented.
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Figure 11. Statistics of the 30 most selected variables from ERA5 for the 1 x 12 structure for

the different catchments (50 optimizations) along with the analogy criteria, the temporal window

(30 = next day at 06 UTC), and the spatial windows (longitudes and latitudes). The extent of

Switzerland is shown in gray on the plots of the spatial windows.

The selected variables from ERA5 are shown in Figures 10 and 11. When compared536

with the ERA-I results, TCW gained importance, as it was the most selected variable537

here. Similarly, the relative humidity at 1000 and 850 hPa increased in importance as538
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if its relevance improved in ERA5. There were also changes in the radiation variables,539

with the added top (top-of-atmosphere) net thermal radiation (TTR) taking the fourth540

slot and being completed by other ones in the top 30 variables: top net solar radiation541

(TSR), surface latent heat flux (SLHF), surface net thermal radiation (STR), surface so-542

lar radiation downwards (SSRD), and surface net solar radiation (SSR). These variables543

are likely highly correlated, and the selection could be reduced. It can also be noted that544

these variables are still often considered in terms of gradient (using S1), even though cloud545

cover variables were made available (see discussion on radiation variables in Sect. 4). As546

for cloud cover variables, different ones were selected in the top 30: low cloud cover (LCC)547

and cloud cover (CC) at 600, 1000, and 500 hPa. Although LCC was most often con-548

sidered in terms of gradients, the absolute values of the other cloud cover variables were549

mostly selected. The importance of low-level PV also increased compared to ERA-I. Con-550

versely, the geopotential height was only selected at 500 hPa in the top 30 predictors,551

SLP is no longer among the best, and the presence of the divergence variables also de-552

creased.553

The optimal spatial domains are comparable with those selected for ERA-I, includ-554

ing the 2-meter temperature extension to the south. Regarding the temporal windows,555

TCW is again mainly selected between 6 and 12 UTC, and RH at different times of the556

day. PV is often selected at the end of the day, along with W at 1000 hPa, the surface557

latent heat flux (SLHF), and the 2-meter temperature (T2m). The other variables are558

mainly selected during the daytime.559

3.4 Accuracy of the optimized methods560

To assess the relevance of the methods optimized in this work, their accuracy has561

been compared to the benchmark methods (Sect. 2.2). Figure 12 shows the CRPS skill562

score and the Brier skill scores for different thresholds (1 mm, 10 mm, 50 mm) using the563

simplest RM1 method (for the CP) as reference. The best optimization result per catch-564

ment was selected based on the VP score. The scores for the test period (TP) were then565

calculated from unseen data for these selected parameter sets.566

The skill scores are shown for the first single variable selection from ERA-I (ERA-567

I GAS 1x1), and the full optimizations using ERA-I (ERA-I GAS 1x8, 1x12) or ERA5568

(ERA5 GAS 1x12). One can see in Fig. 12 that the selection of a single best variable569

(GAS 1x1) shows similar accuracy to the RM1 method. Obviously, the skill of a single570

variable remains lower than that of more complex AMs. The other optimized methods571

(GAs 1x8 or 1x12) show a higher CRPSS than the benchmark methods. Thus, despite572

having a single level of analogy, they outperform complex stepwise AMs in terms of CRPS.573

Brier skill scores for the prediction of the precipitation occurrence (threshold of 1 mm)574

of the optimized methods show values similar to those of RM6 when ERA-I is used and575

some further improvements when ERA5 is used. Brier skill scores of the optimized meth-576

ods show similar skill to the best benchmark methods for a threshold of 10 mm, but lower577

values for a threshold of 50 mm. This can result from either an underestimation or an578

overestimation of the prediction. The GAs optimized the methods by minimizing the CRPS579

only, and a combined objective function that also accounts for the Brier score, for ex-580
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Figure 12. Skill scores (CRPSS and Brier skill score) of the different benchmark and opti-

mized methods on the calibration, validation, and test periods for the 25 catchments. The skill

scores use the RM1 method on the CP as a reference. An LxP code represents the structures,

with L being the number of levels of analogy and P being the number of predictors per level.
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Figure 13. Rank histogram for the prediction by the optimized AM for the Ergolz catchment

on both the calibration and test periods. The frequencies were averaged over a boostrapping of

1000 realizations to smooth out the effect of the random rank attribution of the zero precipita-

tion cases.

ample, could be used instead to improve other properties of the resulting AMs. The gain581

obtained by using ERA5 instead of ERA-I may be due to higher spatial and temporal582

resolutions or better variables (Horton, 2021).583

Some differences can be observed between the three splits (CP, VP, TP), also for584

the benchmark methods. However, there is no clear trend, and the distributions remain585

relatively close. These differences can have multiple origins: the presence of stronger pre-586

cipitation events in some splits, inhomogeneities in the quality of the predictor variables,587

or just natural variability. The three splits of the method optimized with ERA5 provide588

very similar results, which can be due to its higher quality, the variables selected, or just589

luck. Anyway, the selection of the predictor variables and the analogy criteria by GAs,590

along with all other parameters, provides AMs that prove relevant and consistent among591

different periods. No overfitting from the GAs can be observed.592

Rank histograms have been computed for some catchments. Figure 13 shows such593

a plot for the Ergolz catchment. Other catchments show similar results, i.e. that the pre-594

diction by AMs tends to be over-dispersive without presenting a clear bias. This obser-595

vation is not specific to these results, but is a common behaviour of AMs.596

An additional experiment has been attempted by forcing the predictor variables597

(along with their vertical level and their time) and the analogy criteria and letting the598

GAs optimize the weights between these variables, along with the spatial domains. To599

this end, 26 of the most commonly selected ERA5 variables were provided to the opti-600

mizer, organized in a single level of analogy (1x26). The results are shown in Appendix601

C. This approach did not provide the best accuracy (not shown), which can be due to602

non-optimal choices made to homogenize the vertical levels or times of the day, for ex-603

ample. In addition, this approach is not computationally efficient, as it requires load-604

ing variables that barely play a role in the selection of analog situations. Therefore, we605

do not recommend using this strategy.606
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Figure 14. Illustration of predictions for the strongest precipitation event of the test period

for several catchments. The predictions provided by the AMs are illustrated by their whole range

as well as some quantiles often considered in operational forecasting.
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The predictions provided by the optimized AMs for the strongest precipitation event607

of the test period are illustrated for some catchments in Fig. 14. While most of these608

heavy precipitation events were captured satisfactorily by the optimized AMs, few were609

underestimated in some catchments as shown in Fig. 14 (bottom), where the two worst610

predictions are shown.611

4 Discussion612

The primary objective of this study was to assess the relevance of GAs in select-613

ing input variables for AMs. The results demonstrated that GAs could identify perti-614

nent predictors and analogy criteria. However, caution is due when extrapolating the use615

of these selected predictors to different contexts, as their applicability may not be uni-616

versally optimal. In fact, the compilation of potential variables must be tailored to the617

specific requirements of the AM application. For example, in forecasting applications,618

only meteorological variables deemed reliably predicted should be included. In the con-619

text of climate impact studies, the selection is constrained by the limited availability of620

meteorological variables compared to the extensive output provided by reanalysis and621

NWP models. Furthermore, it is crucial to exercise discretion in selecting variables that622

exhibit a causal relationship with the predictand of interest and avoid undesirable co-623

variability. Essentially, adapting the pool of potential variables to the application at hand624

is fundamental for a robust use of the optimized AM.625

Radiation variables were often selected as relevant predictors. When using ERA-626

I, SSRD is the second most selected variable, and STRD and STR are the fourth and627

fifth. When using ERA5, TTR is the fourth most important variable. As these variables628

were selected so often, they did provide useful information for precipitation prediction,629

but their role is not easily interpretable. Hereafter, we propose some hypotheses about630

the information that can potentially be retrieved from these variables. First, STR val-631

ues for days with high precipitation values show positive anomalies, meaning that the632

long-wave radiation from the atmosphere towards the surface is anomalously high (ver-633

tical fluxes are positive downward). Thermal radiation emitted by clouds and the atmo-634

sphere contributes to the downward STR. It is possible that the thermal radiation flux635

towards the surface is increased due to a high concentration of water vapor in the lower636

atmosphere and/or the presence of low clouds (with a higher cloud base temperature).637

Therefore, it can be used as a proxy for the presence of low clouds. Low clouds can in-638

teract with the topography, and this interaction might not be reflected in the vertical639

motion in ERA-I due to the relatively coarse spatial resolution of the orography in the640

reanalysis. The information from STR would then compensate for missing local processes641

at some locations, which potentially have a better representation in ERA5.642

Then, SSRD was selected as a relevant predictor, but with the analogy criteria com-643

paring the gradients rather than the absolute values, meaning that the pattern of SSRD644

matters more than its values. Gradients in SSRD could be an indication of the presence645

of fronts or thunderstorm clouds. Finally, in ERA-5, TTR anomalies are selected. They646

can be a proxy for high cloud tops with lower temperatures and, therefore, might pro-647
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vide information on the cloud thickness. Further research is needed to explore these hy-648

potheses.649

The triplet S0, S1 and S2 dominate the selection of analogy criteria. The S1 score650

originally developed by Teweles and Wobus (1954) to verify prognostic charts was then651

used because it penalizes forecasters who tend to be overly conservative by forecasting652

weak systems too often. The rationale behind this lies in the denominator, which is de-653

termined by the sum of the maximum gradients of either the forecast or the observation.654

Consequently, forecasting a weaker system incurs a greater penalty than forecasting a655

stronger one. However, it should be noted that this approach may lead to the opposite656

effect, as forecasters may find it safer to predict stronger systems with larger gradients,657

thereby inflating the denominator (Thompson & Carter, 1972). This can be transposed658

to the AM, where stronger gradients in Z from analog situations are preferred over weaker659

ones.660

The S0 and S2 criteria share a key characteristic with S1 by imposing heavier penal-661

ties on weaker fields. Consequently, the analog selection based on S0, S1, and S2 exhibits662

asymmetry, favoring the selection of analog fields close to the target but tending towards663

greater rather than weaker values (see Appendix C). The inherent asymmetry of S0, S1,664

and S2 proves advantageous for prediction. Optimal analog situations are skewed toward665

being slightly stronger than weaker. Considering that the CRPS is strongly influenced666

by heavy precipitation events, this suggests a hypothesis: given the potential underrep-667

resentation of large precipitation events in the archive, AMs benefit from selecting stronger668

predictor fields, often associated with higher precipitation. This selection bias may func-669

tion as a compensatory mechanism for the underrepresentation of intense precipitation670

events. These assumptions would need to be further investigated.671

5 Conclusions672

The objective of the work was to assess the ability of GAs to select the input vari-673

ables of the analog method along with the analogy criteria. The experiment was success-674

ful, as the selected predictors provided better accuracy (in terms of CRPS that was used675

as the objective function for the optimizations) than the benchmark methods, without676

overfitting. In addition, most of the selected variables can be related to the meteorolog-677

ical processes involved in precipitation generation. For example, among the most selected678

variables are: the vertical velocity (W) at 700 hPa (along with other levels), the total679

column water (TCW), the convective available potential energy (CAPE), radiation vari-680

ables, the potential vorticity (PV), the relative humidity (RH), cloud cover variables, wind681

components, the geopotential height, air temperature, and the divergence.682

The selection of analogy criteria also proved fruitful, as there were clear trends to-683

ward a dominant criterion for a given variable. The unexpected result was the success684

of the criterion S0, inspired by the Teweles-Wobus criterion. This new S0 turned out to685

be the most often selected analogy criterion for the characterization of Euclidean dis-686

tances. Three analogy criteria were most often selected and all are derived from the Teweles-687

Wobus criterion; one is based on the raw point values, another on the gradients, and the688
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third on the second derivative of the fields. All of them are normalized by the sum of689

the largest point(pair)-wise values from the target or the candidate fields. This normal-690

ization makes the criteria asymmetrical, so that higher values are preferred to lower ones.691

These new criteria should be further investigated and could be used in classic AMs.692

Another unexpected result is the preferred structure for analog methods. While693

most benchmark methods build on a stepwise selection of predictors with successive lev-694

els of analogy subsampling from the previous one by using different predictors, here, the695

GAs preferred a flatter structure, mainly with a single level of analogy, but more vari-696

ables. The benchmark methods most often start with selecting candidate analogs using697

the geopotential height and then narrowing down the selection using vertical velocity or698

moisture variables. A primary difference with the benchmark methods is that the vari-699

ables are standardized here and weights are used (and optimized) to combine them in700

a given level of analogy. These two elements make the combination of variables with dif-701

ferent value ranges easier. However, it cannot be excluded that deeper structures can pro-702

vide better results, but that GAs did not find these solutions.703

Such optimization is computationally intensive. The new GPU-based computations704

brought notable time improvement, particularly for high-resolution data. Other approaches705

could be considered to decrease the computation time, such as a faster exploration of the706

dataset using a smaller period for data pre-screening, or the division of the whole pe-707

riod into smaller batches. An alternative could be to reduce the number of days with small708

precipitation amounts, as they have a small impact on the CRPS, while weighting their709

contributions by using a weighted CRPS approach.710

This work opens new perspectives for input variable selection in the context of the711

analog method. While the variables selected in these experiments may not be transfer-712

able to other contexts, the approach was proven successful and can be applied to other713

datasets. The potential variables must be chosen wisely with respect to the intended ap-714

plication. Such an approach can, for example, be used to select the relevant variables715

to predict precipitation for a new location, or as a data mining technique to explore a716

dataset to predict a new predictand of interest. Using GAs to perform input variables717

selection can be applied to other data-driven methods, opening perspectives for a broad718

range of applications.719

Appendix A GPU Implementation and Benchmark720

Several GPU implementations were tested, with the most successful aiming to re-721

duce the data copy to the device while increasing the load of parallel processing. It con-722

sisted in copying the predictor data to the device and calling the kernel2 for every tar-723

get date, thus assessing all candidates for that target date in one call. The main ben-724

efit of this variant is that it allows overlapping – using streams – the calculation of the725

analogy criteria on the GPU and other calculations on the CPU, such as the extraction726

2 A kernel is a numerical function executed in parallel on the GPU.
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of the indices corresponding to the candidate dates (using a temporal moving window727

of 120 days) and the sorting of the resulting analogy criteria.728

Threads on the GPU are organized in dynamically defined blocks with a size from729

32 to 1024 threads. Here, every candidate date is assigned to a different block, with in-730

ternal loops for cases where the number of grid points is greater than the number of threads731

in the block. All analogy criteria need a reduction step to synthesize a two-dimensional732

array into a single value. The reduction is part of the analogy criteria calculation and733

is thus also done on the GPU. The threads are organized in groups of 32, called warps,734

which are synchronous and can access each other’s registers. The reduction on the de-735

vice was performed with an efficient warp-based reduction using the CUDA shuffle in-736

struction. Different block sizes were evaluated and the size of 64 threads was identified737

as optimal as it leaves fewer threads inactive during the reduction. Access to the GPU’s738

global memory has also been kept to a minimum because of its higher latency.739

The Google benchmark library was used to assess the computing time of different740

AM structures – single or two levels of analogy and up to four predictors per level – along741

with various grid sizes. Figure A1 shows the results for the analogy criterion S1, with742

gradients pre-processed using CPUs only (counted in the total time). The other anal-743

ogy criteria showed similar results. The task consisted of extracting analogs for 32 years744

using the other 31 years as archives for candidate situations within a 120-days tempo-745

ral window. It makes a total of 43.5·106 field comparisons per predictor of the first level746

of analogy.747
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Figure A1. Computing time for the extraction of analogs over 32 years using the S1 criteria

for different grid sizes and various structures of AMs. An LxP code represents the structures,

with L being the number of levels of analogy and P being the number of predictors per level.

Time is given for using (s) standard CPUs and (c) CUDA on GPUs (NVIDIA GeForce RTX

2080). Note the logarithmic axes.
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The experiment was carried out on the UBELIX cluster of the University of Bern,748

using the same node for the whole benchmark and processing on a single NVIDIA GeForce749

RTX 2080 graphics card. The CPU processing – using the linear algebra library Eigen750

3 (Guennebaud et al., 2010) – was done on a single thread. Although AtmoSwing can751

parallelize the calculation of the analogy criteria on multiple CPU threads, it uses a sin-752

gle thread for this task when optimizing with GAs because it parallelizes the evaluation753

of the different individuals on multiple threads. With GPUs, it still assesses the individ-754

uals on multiple CPU threads, each of them being able to use a different GPU device755

to calculate the analogy criteria. It is thus parallelizing both on CPUs and GPUs.756

The benchmark (Fig. A1) shows that GPU computations are systematically faster757

than those on the CPU, and this difference increases with the number of grid points. The758

GPU computations were 13 times faster on average and up to 38 times faster (5.2 sec759

instead of 3.3 min) when using 2048 points. NWP model outputs and reanalyses show760

an increase in spatial resolution; therefore, the impact on the computation time will be-761

come increasingly important. When using CPU only, adding a predictor in the first level762

of analogy has a much higher impact on time than adding a second level of analogy. It763

is explained by the fact that it needs to process the analogy criteria for the whole archive764

for each predictor of the first level of analogy, while the second level has only a few can-765

didate situations to assess.766

Appendix B Performance of the Mutation Operators767

As suggested in Horton et al. (2017), five variants of the mutation operator were768

used in parallel optimizations:769

1. Chromosome of adaptive search radius (Horton et al., 2017)770

2. Multiscale mutation (Horton et al., 2017)771

3. Non-uniform mutation (pmut=0.1, Gm,r=50, w=0.1)772

4. Non-uniform mutation (pmut=0.1, Gm,r=100, w=0.1)773

5. Non-uniform mutation (pmut=0.2, Gm,r=100, w=0.1)774

where pmut is the mutation probability, Gm,r is the maximum number of gener-775

ations (G) during which the magnitude of the research varies, and w is a threshold cho-776

sen to maintain a minimum search magnitude when G > Gm,r.777

Figure B1 shows the performance of these five mutation operators for different AM778

structures and the different catchments considered in Sect. 3.2. Overall, the chromosome779

of adaptive search radius has a success rate of 76.25% in calibration and 62.5% in val-780

idation, the multiscale mutation 7.5%, and 8.75% respectively, and the non-uniform mu-781

tation with its different options: (3) 11.25% and 10%, (4) 11.25% and 21.25%, and (5)782

1.25% and 2.5% respectively.783

Thus, it is quite clear that the chromosome of adaptive search radius obtains the784

best results, all the more so with more complex structures, i.e., more predictor variables.785

Although its success rate decreases slightly in validation, it remains much larger than786
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the other options. The non-uniform mutation shows notable variability of performance787

depending on its options.788
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Figure B1. Performance of the five mutation operators (Sect. 2.3) for different AM structures

and the different catchments considered in Sect. 3.2. The values represent the number of opti-

mizations for one mutation operator that resulted in the best performing AM. Results are shown

for both calibration and validation. When multiple operators obtain the same accuracy, they all

get a point.
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Appendix C Analysis of the new S0 Criteria789

The S0 and S2 criteria have the same characteristic as S1, i.e., they penalize weaker790

fields more heavily. Consider a field F1 with values 50% lower than the target field (F),791

and another one, F2, with values 50% higher. Then, S0(F, F1) = 50 and S0(F, F2) =792

33.3 while the absolute differences between the target (F) and F1 or F2 are equal. F2793

will then be selected as a better analog. To get the same S0 value, F2 would need to dou-794

ble the target field values. The consequence is that the selection of analogs based on S0,795

S1 and S2 is not symmetrical, and these criteria tend to select fields that are close to the796

reference but preferably stronger than weaker.797

To further investigate the characteristics of S0, we considered a variation named798

here S0obs that uses the observation (here, target situation) values only for the denom-799

inator and not the maximum between observation and forecast (here, candidate analog).800

It is then similar to MAPE (Mean Absolute Percent Error) and is symmetrical. We per-801

formed a classic calibration of a simple AM using only W700 with (1) the S0 criteria,802

(2) the RMSD criteria, and (3) the S0obs criteria. The calibration was performed sep-803

arately for each setup. Using RMSD deteriorates the accuracy by 8.7% on average, and804

S0obs also deteriorates the accuracy by 9.8%. Thus, the asymmetrical property of S0 is805

beneficial for the prediction.806

We then considered the RM3 benchmark method and performed a classic calibra-807

tion for the 25 catchments by replacing one or the other criterion. When using S1obs (S1808

normalized by the gradients of the observations only) instead of S1 for Z, the accuracy809

deteriorates by 4.8% on average. However, when replacing the RMSD of the second level810

of analogy (MI) with S0, there is a slight performance loss of 0.5%. As there is strong811

conditioning by the first level of analogy that provides the sample of candidate analog812

dates to be subsampled on moisture variables, the criterion of the second level of anal-813

ogy has a lower impact.814

The asymmetrical properties of S0, S1, and S2 are beneficial for the prediction. Ana-815

log situations are best considered a bit stronger than weaker while being close to the tar-816

get situation. The CRPS is mainly sensitive to high precipitation values, even more so817

when the precipitation is not transformed (see Bontron, 2004, for precipitation trans-818

formation). Thus, one hypothesis is that large precipitation events being underrepresented819

in the archive, AMs are better off selecting stronger predictor fields, often associated with820

higher precipitation. It might then play a role of bias compensation for underrepresented821

high precipitation events. The reason for such behavior should be further investigated.822

Appendix D An Attempt to Constrain the Algorithms823

An additional experiment has been attempted by pre-selecting the predictor vari-824

ables (along with their vertical level and their time) and the analogy criteria and letting825

the GAs optimize the weights between these variables, along with the spatial domains.826

To this end, 26 of the most frequently selected ERA5 variables were provided to the op-827

timizer, organized in a single level of analogy. The results are shown in Figure D1 and828
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depict high weight values for W at 600 and 700 hPa. Surprisingly, Z700 based on S2 also829

has relatively high weight values. However, these results turned out to be lower in terms830

of accuracy compared to the fully optimized methods.831
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Figure D1. Results of the optimization with preselected 26 variables for the different catch-

ments. (top) The colors represent the analogy criteria, and the size of the dots is proportional

to the weight given to the predictor within the range [0.01, 0.2]. (bottom) Boxplot of the weight

values for the different variables.
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Open Research832

The precipitation dataset, RhiresD (MeteoSwiss, 2021), used as predictand in the833

study, is available upon request at MeteoSwiss (https://www.meteoswiss.admin.ch/) for834

research-only purposes. The catchment extents (Bühlmann & Schwanbeck, 2018) used835

for aggregating the precipitation can be downloaded from the Hydrological Atlas of Switzer-836

land website (https://hydromaps.ch/). The ERA-Interim reanalysis (Dee et al., 2011)837

was obtained from the ECMWF Data Server at http://apps.ecmwf.int/datasets but has838

now been decommissioned. The Climate Forecast System Reanalysis (Saha et al., 2010,839

CFSR) is available for download from the NCAR Research Data Archive at https://doi.org/10.5065/D69K487J.840

The ERA5 reanalysis (Hersbach et al., 2017, Complete ERA5 global atmospheric reanal-841

ysis) is available for download from the Copernicus Climate Change Service at https://doi.org/10.24381/cds.143582cf.842

The software used, AtmoSwing (Horton, 2019b), is open-source (CDDL-1.0 license) and843

can be downloaded from GitHub at https://github.com/atmoswing/atmoswing. AtmoSwing844

version 2.1.2 was used in the study and the corresponding source code is available on Zen-845

odo at https://doi.org/10.5281/zenodo.3559787.846
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