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Abstract

The recent advances in the chronic implantation of electrodes have allowed the collection of extracellular activity from

neurons over long periods of time. To fully take advantage of these recordings, it is necessary to track single neurons

continuously, particularly when their associated waveform changes with time. Multiple spike sorting algorithms can track

drifting neurons but they do not perform well in conditions like a temporary increase in the noise level, sparsely firing

neurons, and changes in the number of detectable neurons. In this work, we present Spikes Link, a general framework to

track neurons under these conditions. Spikes Link can be implemented with different spike sorting algorithms, allowing

the experimenter to use the algorithm best fitted to their recording setup. The main idea behind Spikes Link is the

blockwise analysis of the recording using overlapping sets of spikes to equally represent all the putative neurons being

tracked on a given block. This way, we can link classes with clusters obtained in a new block based on an overlapping

metric. Moreover, the algorithm can fix temporary sorting errors (splits and merges). We compared an implementation of

Spikes Link with other algorithms using long-term simulations and obtained superior performance in all the metrics. In

general, the Spikes Link framework could be used for other clustering problems with concept drift and class imbalance.

1 Introduction

The recording of extracellular activity from electrodes implanted in the brain is one of the most estab-
lished techniques in contemporary neuroscience. In the past years, the chronic implantation of electrodes
had allowed the collection of data over a long period of time. Analyzing this data generates new chal-
lenges. At first glance, the computational scalability with the amount of data is one of them (Carlson
& Carin, 2019), but others related to the changes on the recording’s properties over time are not fully
characterized.

One of the main characteristics of a long recording is its stability; with a stable recording we can monitor
the same neurons over a long period of time. In general, the stability of the recordings will depend on
the electrodes used and the way they are anchored, leading to a large variety of scenarios, with examples
such as tetrodes on the dorsal striatum of rats (Schmitzer-Torbert & Redish, 2004), high-density CMOS-
integrated microelectrode array on mouse retina (Fiscella et al., 2012), immobile silicon probes in the
mouse cortex (Okun et al., 2016), hippocampal multilayer electrode array in moving rats (Senkov et al.,
2015), 672 microwires (in arrays with up to 128 wires) on the cortex of macaque monkeys (Nicolelis et
al., 2003), independently movable arrays of nichrome electrodes on the macaque dorsolateral prefrontal
cortex (Greenberg & Wilson, 2004), up to 1,024 polymer electrodes in freely behaving rats (Chung et al.,
2019), Utah arrays into the human neocortex (Mégevand et al., 2017), depth electrodes in the human
hippocampus that are anchored to the skull (Rey et al., 2015), and other recently developed neural
recording electrode technologies (Hong & Lieber, 2019). Furthermore, other experimental factors could
affect stability, for example, if the animal has its head fixed, if it is anesthetized, or freely moving.
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To fully take advantage of the long-term recordings and study, for example, the variance of neuronal
representations (Clopath et al., 2017) or the plasticity in neuronal processing (Lütcke et al., 2013), it is
necessary to track neurons even when the stability fluctuates. A clear example of these issues can be
found in recording sessions from the human medial temporal lobe where the microelectrodes are inserted
inside a flexible probe that is anchored to the skull nearly 6 cm away from the recording site (Rey et al.,
2015). In cases like this, similar responses to a given stimulus during sessions run on consecutive days
that are associated to putative neurons with a different waveform (as shown in Fig. 1) could come from
the same neuron following electrode drift, or from different neurons from the same assembly encoding
the given stimulus. Tracking the single neuron activity throughout continuous recordings is the only way
to discriminate these possibilities.
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Figure 1: Raster plots from putative hippocampal neurons recorded in consecutive days from the same
microwire. The left panel shows responses to Anfield (Liverpool FC stadium). Although the responses
seem to be stable across days, the waveforms associated to these neurons are very different. Therefore,
without tracking the neural activity over the whole time between sessions, it would be hard to argue
whether it is the same neuron or a different one from the network encoding the concept “Anfield”. The
right panel shows responses to Stonehenge on consecutive days. In this case, a sparse neuron in the first
session leads to a very selective response. In the next session, the response seems to be maintained, but
its selectivity is not the same. Tracking the activity would allow us to distinguish between a sorting error
(the cluster associated to the neuron being contaminated by spikes from other neurons) and an actual
change in the neuron’s firing dynamics.

There have been recent work to develop methods for long-term tracking of neurons over recordings
sessions (Fraser & Schwartz, 2012; Tolias et al., 2007; Emondi et al., 2004; Eleryan et al., 2014; Dickey
et al., 2009), over consecutive blocks of spikes or time (Niediek et al., 2016; Bar-Hillel et al., 2006; Wolf
& Burdick, 2009; Shalchyan & Farina, 2014; Shan et al., 2017; Dhawale et al., 2017), or gradually over
the whole recording (Calabrese & Paninski, 2011; Pouzat et al., 2004; Franke et al., 2009). All these
approaches can handle different degrees of recording stability, but in general their performance is very
poor when tracking neurons during epochs with high noise levels, sparse-firing neurons, or a variable
number of detectable neurons (neurons appearing or disappearing).

To handle these difficulties, we present a general framework to track drifting neurons over long periods
of time that does not rely on a specific spike sorting approach, i.e. the user can choose the spike sorter
that will be used in the core of the tracking algorithm (Chaure et al., 2018; Yger et al., 2018; Jun et al.,
2017; Chung et al., 2017; Hilgen et al., 2017).

2 Method

The method presented here, that will be called Spikes Link, requires an initial detection of spikes and
their separation in consecutive blocks of Nmax = 20, 000 spikes. When the length of a resulting block
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exceeds Tmax = 30 minutes, a smaller 30-minutes block is selected as long as the number of spikes is
larger than Nmin = 10, 000. Otherwise, a block with Nmin spikes is selected. Still, it would be possible
to adapt the algorithm to support blocks defined by a given duration instead of the number of spikes,
where spike detection could be done within each block by the specific sorter chosen.

Each block with Nti spikes will be labelled ti with i=1,2. . . ; given the variability of the firing rates the
duration of each block will be, in general, variable. These blocks will be sequentially examined to track
the previously detected putative neurons. As we track the activity of a putative neuron that is associated
to class j, we define Cti

j as the collection of spikes up to ti that were assigned to class j. At the same

time, when sorting is performed on block ti, spikes are separated into clusters C̃ti
k . To track the neurons’

activity, the spikes from each cluster will be assigned to one of the available classes; although they could
also be assigned to a new class if necessary, or even discarded.

2.1 Tracking Metric

On a given block ti, a set of NOS = 500 overlapping samples (spikes) is selected for each available class j,
which is denoted as OS(Cti

j ). To create each set, we first choose the most recent NOS/(1−pout) samples,
and remove the proportion pout = 0.2 of the spikes with the largest euclidean distance from the median
waveform, as they could be seen as potential outliers. When less than NOS spikes are available, the
“synthetic minority over-sampling technique” (Chawla et al., 2002) is used to complete the set. On the
following block ti+1, the spikes from all the overlapping sets OS(Cti

j ) are added to the Nti+1spikes before
applying the sorting algorithm to that block. Figure 2 depicts the procedure for creating the overlapping
sets on consecutive blocks with two drifting classes.

Figure 2: Schematic example with two drifting classes and the use of the overlapping sets
to track them. In the left panel, two clusters are detected by a sorting algorithm, and assigned to
classes Ct1

1 and Ct1
2 . Then, an OS is created for each of these classes, i.e. OS(Ct1

1 ) and OS(Ct1
2 ). In

the middle panel, the spike sorting result on the next block is shown, where clusters C̃t2
1 and C̃t2

2 were
separated. Since the overlapping sets were perfectly separated between the clusters, the overlapping
values will be 1 (see equation 1), and clusters C̃t2

1 and C̃t2
2 can be easily included to the classes Ct1

1

and Ct1
2 , resulting in the tracked classes Ct2

1 and Ct2
2 , as shown in the right panel (the arrows represent

the drifting direction of each class). In general, the feature space on each block would be different, as it
is defined by the sorting algorithm on each block.

Based on the overlapping sets, we can define a metric for tracking classes between consecutive blocks.
Specifically, when processing block ti we can compute the proportion of spikes from each overlapping
set OS(C

ti−1

j ) that can be found on each cluster C̃ti
k th, i.e.:

Ovtij,k =

∣∣∣OS(C
ti−1

j ) ∩ C̃ti
k

∣∣∣
NOS

, (1)

where |·| denotes the number of elements in the set. This “overlapping value” lies between 0 and 1, with
large values providing strong evidence that the new spikes in cluster C̃ti

k (i.e. the ones resulting following
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the removal of those from the overlapping sets) should be incorporated to the class Cti
j . From here on,

when we say that spikes from a given cluster should be incorporated to a given class, we always assume
that all spikes from the overlapping sets have been removed in advance. To remove artifacts, only the
clusters with a firing rate higher than 0.03 Hz (computed after removing the spikes from the overlapping
set) will be considered for tracking on each block; otherwise, these spikes are discarded.

2.2 Tracking Loop

The tracking loop is applied after a sorting algorithm classified the spikes of a given block ti, which
includes all the sets OS associated to the classes from the previous block ti−1. Following the calculation
of the overlapping value Ovtij,k for every pair j, k, each cluster C̃ti

k will be associated to one of the following
cases:

1. The cluster is labeled as a “match” if it has an overlapping value higher than 0.5 against a single
class j∗ from the previous block. In this case, all the spikes from the cluster are incorporated into
the class j∗ (see Fig. 3A).

2. The cluster is labeled as a “split” if its highest overlapping value against all classes is between
0.2 and 0.5, and the second highest value is less than 50% of the highest and lower than 0.2 (see
cluster C̃t2

1 in Fig. 3B).
3. The cluster is labeled as a “merger” if it has overlapping values higher than 0.5 with more than

one class. In this case, the procedure explained below in 2.4 is applied (see Fig. 3D).
4. In any other case, the cluster is labeled as a “new class” (see cluster C̃t2

3 in Fig. 3C).

If the sum of the overlapping values from a given class j′ for all the clusters labeled as split or match
is higher than 0.5, the spikes from the split clusters are incorporated to the class j′ (see clusters C̃t2

1

and C̃t2
3 in Fig. 3B); otherwise they are assigned to a “new class” (see cluster C̃t2

1 in Fig. 3C). Using this
criterion it is possible to fix cases where the sorting algorithm generates overclustering on a given block.

2.3 Class Survival

When dealing with real data, it is expected that some blocks could be dominated by noise or artifacts,
so the contribution of neurons could be masked. To handle this issue, a survival criterion was added
to the method. Under this condition, any class would survive for a maximum of CS = 3 consecutive
blocks, even if the tracking method is not able to associate clusters to that class in the intervening blocks.
Within these blocks, the same overlapping set for the class is used (as no new spikes are incorporated).
If no spikes are assigned to the class after CS consecutive blocks, the class is labeled as “disappeared”,
and it is no longer tracked.

2.4 Merge Criteria

When a merger is detected for a cluster C̃ti
k , a set of steps is followed to protect the classes against sorting

errors in particular blocks. First, if more than one of the classes with Ovtij,k > 0.5 were “new classes” in
block ti−1, they are merged into a single “new class” in block ti−1; if this results in just a single class
associated to the merger, that class is labeled as a “new class” and matched with C̃ti

k . Next, if there is
only one “new class” and only one “old class” associated to the merger, these classes are merged as a
single “old class” in block ti−1 and matched with C̃ti

k .

In general, the cluster labeled as a merger will have a set of classes from the previous block associated
to it, which we call the “merge list” ML. The first time the merger cluster is detected, it is actually
considered as a temporary merger (see Fig. 3D left). In this scenario, the overlapping sets associated to
the classes from the list ML will be included in the next block, to give the algorithm a chance to find
them separately and continue the individual track of the putative neurons (see Fig. 3D middle). This
procedure is repeated for MS = 3 consecutive blocks as long as the detected merger is associated to
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Figure 3: Schematic examples of different tracking scenarios. For simplicity, only the ele-
ments of the overlapping sets are shown for each cluster. A Clusters C̃t2

1 and C̃t2
2 generate a match

with classes Ct1
1 and Ct1

2 as the overlapping sets lead to large overlapping values. B In this case, clus-
ters C̃t2

2 and C̃t2
3 are matches with classes Ct1

2 and Ct1
1 , respectively, but cluster C̃t2

1 is labeled as a
split with respect to class Ct1

1 . Since clusters C̃t2
3 and C̃t2

1 together include the majority of the spikes
of OS(Ct1

1 ), they are automatically combined and included in class Ct1
1 to generate class Ct2

1 . C For
this example, C̃t2

2 is a match with class Ct1
2 , but clusters C̃t2

1 and C̃t2
3 are labeled as new classes. Clus-

ter C̃t2
1 is a split of class Ct1

1 , but without another split or match it cannot be included in the class.
Cluster C̃t2

3 has a reasonable overlap with both classes (so it cannot be a split) but not large enough to gen-
erate matches. D In the left panel, cluster C̃t2

1 is labeled as a temporary merger at block t2 (associated
to classes Ct1

1 and Ct1
2 , that define its ML list). In the next block, the same overlapping sets will be

used (i.e. OS(Ct2
1 ) = OS(Ct1

1 ) and OS(Ct2
2 ) = OS(Ct1

2 )). The middle panel shows that during
block t3 , clusters C̃t3

1 and C̃t3
2 were matched to the previous classes, so the merger is not confirmed

and cluster C̃t2
1 will be later resolved as explained below in the Graph Reduction phase (see Fig. 4D).

Alternatively, as shown in the right panel, cluster C̃t3
1 is another merger associated to the same ML list.

If this situation is repeated for MS consecutive blocks, the merger is confirmed, a new class is associated
to the merged cluster in all MS blocks, and the individual classes from the ML list “disappear”.

the same ML list (see Fig. 3D right). If the situation persisted for all MS blocks, the merger is then
confirmed, a new class is associated to the merger cluster in all MS blocks, and the individual classes
from the ML list “disappear”, i.e. they are no longer used to create overlapping sets in the following
blocks and will therefore be no longer tracked individually.

2.5 Graph Reduction

After the analysis of a long-term recording has been performed, some classes will be present in only
a few blocks, and later disappear or be merged with others. Usually, these classes are non-resolved
overclusterings from another class within a block and, in most cases, they should be combined together.
At the same time, some of them can be created by errors from the spike sorting algorithm and should be
discarded to preserve the quality of the results. We define as spurious classes (SC) those that appeared
in less than STH = 3 blocks throughout the whole recording, and the clusters associated to these classes
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in those blocks are not labeled as mergers. Otherwise, if a class appears in at least STH blocks, it is
considered a “stable class”.

First, a graph is created for the whole recording, where nodes that could be mergers, new classes, or
matches, are connected with edges across consecutive blocks according to the tracking criteria explained
above (see Fig. 4A). Next, all the graph components (isolated sub-graphs) are obtained; in the case of
Fig. 4A , 3 sub-graphs a-b, c-d , and e . If no “stable classes” are included on a given sub-graph, all the
classes in that sub-graph are discarded (see black node in sub-graph e in Fig. 4A). Then, minimal sub-
graphs containing spurious classes are further isolated by removing edges linking nodes from the same
stable classes (i.e. edges connecting nodes of the same color). For example, in Fig. 4A , these sub-graphs
can be found within the sub-graphs a , b and c, with resulting sub-graph d having no spurious classes.

All the minimal sub-graphs containing SC are then analyzed with the following criteria:

1. If only one stable class is on the sub-graph, all the SC are combined into that stable class. For
example, in Fig. 4A red and green are combined in ti+5, while yellow, brown and grey are combined
in ti+3.

2. If only two stable classes are in the sub-graph, denoted by C∗ and C ′, with C∗ being a merger
and C ′ being on its ML list, then all the spurious classes in the sub-graph are combined with C ′

(see sub-graph a in Fig. 4A, where green would be C∗, orange would be C ′ and blue would be the
spurious class).

3. In any other case, the SC are discarded.

The changes in the spurious classes will modify the composition of the mergers. If the updated ML list
has a single class, then the merger class can be seen as a match of that class (see sub-graph reduction a, b
and c in Fig. 4B). This step (merger reduction) might be applied recursively until all the ML lists can no
longer be updated. Finally, stable classes throughout the recording might be temporarily merged (e.g.
yellow and violet at ti+1) or permanently merged after a certain block (e.g. yellow and violet after ti+8).
In those cases, the nodes are labeled in a way that represents that those classes are merged at those
blocks (Fig. 4B, d). The classes should be handled with care during these blocks; e.g. it would make no
sense to compute a cross-correlation between them.
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Figure 4: Example of different scenarios of graph reduction on 11 consecutive blocks. A For a
given class, multiple nodes are created, one for each block from the creation of the class until its possible
disappearance. Filled circles are nodes associated to classes that were updated on that block with new
spikes. The edges of the graph connect the nodes across different blocks according to the rules explained
above in the tracking loop. Empty circles with a solid line denote classes that were not updated with
new spikes on that block, although their overlapping sets were included in the sorter. Different classes
are represented by different colors. The arrows at the very left of the graph denote that the class has
been tracked over several previous blocks, a class with no arrow on the left is a new class, and if a class
ends with an arrow at the very right of the graph it means that it will continue being tracked afterward.
Sub-graph f has no stable classes so it will be discarded. In a the blue node is associated to a new class
at ti and matched in the next block; next, it merged with the stable orange class, leading to the green
nodes, with the merge being confirmed after 3 blocks. This behavior could be the result of overclustering
(blue class) by the sorting algorithm. In b the green class has a temporary overclustering (red class), that
was not automatically merged in the following block, but was merged in the next one (light green node),
but only for that block. In c, multiple SC (grey and brown) are created (possibly due to overclustering),
but they are not all merged together on the next block. Only partial temporal merges with other classes
were found, without sharing the exact same ML list. The case d depicts a temporary merge during
only one block, which could be easily caused by changes in the noise level of the recording. After a few
blocks of separable activity, the classes were then combined in a confirmed merger. B Resulting graphs
following the graph reduction criteria. In this case, 3 different classes are obtained during the 11 blocks
of recording analyzed. Case a uses criterion 2, whereas b uses criterion 1; both, in turn, are combined
into a single class following merger reduction. Notice that the class was not found during block ti+9

(dotted circle), but the survival criterion prevented it from disappearing. Case c is combined all the
classes into the yellow using criterion 2, and using merge reduction in conjunction with case d, leads to
2 classes being tracked.
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3 Results

3.1 Simulated Dataset

The simulated dataset was created using 15 simulations with 4 to 6 neurons from (Pedreira et al., 2012).
This dataset has been made public (Rey et al., 2015), and it has been used for testing the tracking ability
of spike sorting algorithms (Niediek et al., 2016). On each simulation we concatenated 70 repetitions of
the simulated spikes and linearly increase/decrease the mean waveform amplitude of each class by a factor
of 2.5 (i.e. increase from 1 to 2.5, or decrease from 2.5 to 1), but without changing the distance between
each spike an its corresponding mean waveform (i.e. each spike gets the old mean waveform subtracted
and then the new mean waveform added, with the latter being time-dependent). This way, we changed
the centroid of the cluster associated with the class without affecting the high order statistics. Finally
a Gaussian noise was added to each spike with a standard deviation of 10% of the maximum amplitude
of the waveforms associated to the original classes (i.e. before drifting). A similar approach was used
by Niediek et al. (Niediek et al., 2016), but all the spikes were just scaled throughout the simulation to
simulate the drifting, so higher order statistics were affected. An example of one of our simulations is
shown in Fig. 5.

Figure 5: Example of simulated long-term recording number 24. The spikes were separated in
blocks as explained in the Method section (19 blocks in this example). The mean waveforms of the
simulated neurons (classes) in the first block are shown in the left panel. In the middle panel the peak
to peak amplitude of each spike is shown color-coded, so the drifting dynamics of each class can be
seen. The vertical lines indicate the separation between blocks. Finally, the right panel shows the mean
waveforms of the neurons during the last block. In this simulation, half of the neurons increased their
amplitude and the other half decreased it.

3.2 Performance evaluation

For the implementation of Spikes Link presented here, we used Wave Clus (Chaure et al., 2018) as
the spike sorting algorithm applied on each block. In the following, we labeled this combination as
Spikes Link WC. We compared the performance of Spikes Link WC against the standard Wave Clus
(i.e. providing the whole long-term recording to the spike sorting algorithm) and Combinato (Niediek et
al., 2016), a spike sorting algorithm that can be applied to long-term single channel recordings and uses
a specific approach to solve the drifting problem. In both cases, the default parameters presented in the
respective papers were used (in the case of Combinato, other sets of parameters were tested but without
qualitative changes in the performance).

We used different metrics to quantify the performance. Recall, precision and accuracy were calculated
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in the same way as defined by Jun et al. (Jun et al., 2017). Given the set of spikes from a simulated

neuron k, and a class c from a given algorithm (i.e. a putative single neuron), nk,cmatch is defined as the

number of spikes that belong to the intersection of both sets, nk,cfp is defined as the number of spikes

belonging to class c that are not from the neuron k, and nk,cmiss is defined as the number of spikes from
neuron k that are not included in class c. Then, the metrics are defined as:

precision (k, c) =
nk,c
match

nk,c
match+nk,c

fp

recall (k, c) =
nk,c
match

nk,c
miss+nk,c

match

accuracy (k, c) =
nk,c
match

nk,c
match+nk,c

miss+nk,c
fp

Finally, for each neuron k the class c* with the highest accuracy is used as the best match, and the
metrics for the pair (k,c* ) are the ones reported for that neuron.

Figure 6 shows a simulated long-term recording with 4 neurons (top) and the results obtained by each
algorithm. The borders of each block calculated by Spikes Link are shown with dotted lines, and the
mean waveform of the classes within each block was computed. Spikes Link WC was able to track the
classes with high performance (µa=0.998, µp=0.99, and µr=0.99, for accuracy, precision, and recall),
but the other algorithms (particularly the standard Wave clus) tend to split the simulated neurons in
multiple classes (overclustering). In this simulation, Wave clus did not merge parts of the simulated
neurons (as reflected by its precision with µp=0.99), but Combinato merged together two simulated
neurons (as reflected by its precision with µp=0.75). This is due to the final step of Combinato, which
merges together all the classes with mean waveforms that are close enough in euclidean space without
using temporal information.

The performance for all the simulated neurons (each represented by a symbol with a unique combination
of color and shape) is shown for each algorithm in Figure 7. The accuracy of Spikes Link WC was
significantly larger than the one of the other algorithms (p<2e-19). This difference is produced mainly
by the lower recall obtained for the other algorithms (p<1e-15). A lower recall value is expected when the
algorithms do overclustering. On the other hand for some simulated neurons, the performance showed a
lower precision, as different neurons were merged into the same class. Still, this was resolved better by
Spikes Link WC , showing a significant improvement in precision against the other algorithms (p<2e-3)
.

Additional comparisons were performed. To measure the number of extra classes that a method creates
for a given simulation, a metric called ‘Additional Classes’ was defined as the total number of classes in
the solution minus the number of clusters labeled as the best match of neurons in the simulation (to avoid
negative values if an algorithm merges two neurons). A large value of this quantity could be an important
limitation for long-term recordings because the final number of classes to analyze, curate and compare
will grow with the duration of the recording. On the other hand, to measure the general agreement of
the sorting with the ground truth, we used the Adjusted Rand Index (Steinley, 2004). Figure 8 shows
the results, where Spikes link WC always obtained a better agreement (higher Adjusted Rand Index)
with the ground truth (p<7e-5) and a significantly lower number of additional classes (p<4e-3). These
results support the idea that the design choices of the Spikes link framework can improve spike sorting
algorithms during long-term recordings with possible nonstationarities(e.g. under drifting conditions).
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Figure 6: Example of results of the simulated recording number 21. The mean waveforms of the
classes and the peak to peak amplitude of their spikes are shown for the ground truth (top) and each
algorithm. The dotted vertical lines delimit the segments that are used by Spikes Link as blocks; the mean
waveforms for each class are also calculated within these segments. For each algorithm we computed the
mean value of the accuracy (µa), recall (µr) and precision (µp), and their range ([min,max]) across all the
simulated classes. Accuracy of each algorithm; Spikes Link WC: µa=0.998, [0.99, 1]; Wave clus: µa=0.52,
[0.26, 0.83]; Combinato: µa=0.49, [0.21, 0.73]. Recall of each algorithm; Spikes Link WC: µr=0.99,
[0.996, 1]; Wave clus: µr=0.53, [0.26, 0..83]; Combinato: µr=0.66, [0.5, 0.76]. Precision of each algorithm;
Spikes Link WC: µp=0.99, [0.997, 1]; Wave clus: µp=0.99, [0.97, 1]; Combinato: µp=0.75, [0.23, 1].
In this example, Spikes Link WC tracked the drifting classes correctly, Wave clus generated a strong
overclustering, and Combinato also presented overclustering but merging two neurons together as well.
The other metrics are shown in Fig. 8.
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Figure 7: Performance per simulated neuron. This figure shows the performance obtained from
each simulated neuron using the compared algorithms. Box-and-whisker plots were constructed for each
algorithm and metric to summarize their results. Paired sign tests were used to evaluate the differences
in performance between Spikes link WC and the other methods. Spikes link WC showed better results
in all cases; accuracy led to p<2e-19; precision led to p<2e-3, and recall led to p<1e-15.
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Figure 8: Clustering performance per simulation. On the top panel, the number of Additional
Classes was calculated for each simulation and algorithm. Computing a paired sign test for this metric,
Spikes link WC obtained p<4e-3 against the other algorithms. On the bottom panel, the Adjusted Rand
Index measures the similarity between the ground truth and the spike sorting output (i.e. the class label
assigned to each spike). A paired sign test was used to evaluate the differences between Spikes link WC
and the other methods, leading to p<7e-5.
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4 Discussion

The simplest approach that has been used to decide if clusters from different recording sessions could be
associated to the same neurons is based on comparing their waveforms and other metrics (e.g. mean firing
rate) and link the clusters that conserve similar proprieties (Tolias et al., 2007; Fraser & Schwartz, 2012;
Emondi et al., 2004; Eleryan et al., 2014; Dickey et al., 2009). This approach requires the recording to be
stable enough so that the waveforms and the firing dynamics of the neurons do not change significantly
across sessions. The main advantage of this simple cluster-comparison approach is that any spike sorting
algorithm could be used to obtain the clusters on each session.

The application of a Bayesian framework to model blocks of spikes and then apply previous informa-
tion and transition probabilities to track the neurons can be used to follow gradual changes across the
recording (Bar-Hillel et al., 2006; Wolf & Burdick, 2009; Shalchyan & Farina, 2014; Shan et al., 2017).
However, some of these methods require a fixed number of neurons across the recording (Shalchyan &
Farina, 2014; Shan et al., 2017) and others use algorithms with high computational cost to handle a vari-
able number of neurons (Wolf & Burdick, 2009; Bar-Hillel et al., 2006). The approach has the advantage
of dividing the tracking procedure in two smaller problems: a clustering on each stable block and the
calculation of the transition probabilities.

Other methods allow neurons to gradually drift from an initial analyzed segment (Franke et al., 2009;
Calabrese & Paninski, 2011; Pouzat et al., 2004), but they are sensitive to errors produced in the sorting
of the initial segment and the change of the number of neurons throughout the recording. These methods
remark the necessity of an error-correcting approach with enough flexibility to update the number of
neurons being tracked. A method called FAST (Dhawale et al., 2017) is a clear example that it is possible
to implement such a method, but its high computational cost and lack of intuition on the effect of some
of its parameters and how to control them makes it difficult to use this method in practice.

Some well-known spike sorting methods can handle drifting waveforms (Chung et al., 2017; Jun et al.,
2017; Niediek et al., 2016), yet it is possible that, for long-term recordings, all the spikes with a similar
waveform will be assigned to the same cluster without taking in consideration the time difference between
them.

We combined all these observations and developed Spikes Link, a general framework to fully track neurons
and handle spike sorting errors and stability fluctuations using ad hoc rules. The method requires a
certain spike sorting algorithm (the one preferred by the user) to sort a block of spikes and then includes
on the next block subsets of the spikes of the classes being tracked. Based on these sets, we introduced
a metric between clusters from a given block and classes being tracked from previous blocks. As all the
classes are equally represented in the sets, this provides an advantage for tracking sparsely-firing neurons.
In addition, after analyzing all the available blocks, we implement a graph reduction step to reduce the
number of spurious classes.

The metric and the relationship between clusters in Spikes Link have some similarities to the MONIC
framework (Spiliopoulou et al., 2006) for modeling and tracking general cluster transitions. However,
MONIC tracks the dynamics of classes without considering the possibility of clustering errors, and uses
overlapping time windows instead of sets as we do, which would affect tracking over sparse neurons.
Finally, the framework presented in this work can be applied to other problems, such as data streams
with concept drift and class imbalance (Hoens et al., 2012).

The main parameters used by Spikes Link are:

• Nmin: minimum number of spikes recommended for a given block (it could depend on the spike
sorting algorithm chosen).

• Nmax: maximum number of spikes recommended for a given block.
• Tmax: maximum period of time where the recording can be presumed stable.
• NOS : number of samples per class in the overlapping set.
• pout: proportion of spikes that would be discarded as potential outliers to create the overlapping

set.
• MS: number of consecutive blocks for a temporal merger before it is confirmed.
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• CS: number of consecutive blocks that a class can survive without a matched cluster. Note the
constraint MS ≤ CS.

• STH : minimum amount of blocks with spikes for a non-spurious class.

Some parameters can depend on the specific spike sorting algorithm of choice (Nmin, Nmax) or the
expected quality of the clustering (pout). An initial expected stability is parameterized by Tmax, with
some drifting being allowed within a block without compromising the performance (as seen in Fig. 6),
although this might depend on the chosen spike sorting algorithm. In this work, NOS was set to 500; a
much larger value would increase the computing time used by the spike sorting algorithm, whereas a
much smaller value would affect the performance of the overlapping metric. For sparse neurons that
could be absent in some blocks, the parameter CS will cap the number of blocks in which the same
waveform will be searched. MS measures how many mergers of previous classes need to be detected
before loss of isolation is confirmed. This is also important, as blocks with high levels of noise can affect
the performance on a given block, and having MS > 1 gives the chance to the algorithm to continue
isolating individual clusters in the following blocks. Finally, STH defines the minimum scale in blocks at
which a class is considered as valuable. Therefore, the parameters are very intuitive and have a direct
relationship with the experimental conditions. Moreover, it is not necessary to define other thresholds
like the maximum distance between clusters, which is hard to estimate but commonly used in tracking
algorithms.

We implement Spikes Link with Wave clus as its spike sorter and used long-term simulated recordings
with drifting neurons to validate the method, comparing its performance with the standard Wave clus and
Combinato. Spikes Link obtained significantly better values for all the tested metrics: accuracy, recall,
precision, number of additional classes, and Adjusted Rand Index. Currently, we are in the process of
using real long-term recordings to fully validate the utility of the proposed method.

It could be possible to use Spikes Link in conjunction with SpikeInterface (Buccino et al., 2019), a
framework that unifies multiple spike sorting methods. First, a comparison of the results in a single
block could determine which spike sorting algorithm is the best for a given type of recording. Then, with
a proper interface between both frameworks, all the methods available on SpikeInterface will be available
as Spikes Link sorters.
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