Multi-time Scale Co-integration Forecast of Annual Runoff in the Source Area of the Yellow River
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Abstract: In order to reveal the multi-time scale of rainfall, runoff and sediment in the source area of the Yellow River and improve the accuracy of annual runoff forecast, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN) method is introduced to decompose the measured rainfall, runoff and sediment data series of the Tangnahai hydrological station in the source area of the Yellow River of China. With the co-integration theory, two new error correction models(ECM) for the forecast of annual runoff in the source area of the Yellow River are constructed. The results show that rainfall, runoff and sediment in the source area of the Yellow River have multi-time scales and the component sequences have co-integration relationships. For two new ECM models, the CEEMDAN component ECM model has better forecast accuracy than the original sequence one. The relative error of all forecasted values is less than 15% except 2009, and the accuracy has reached level A. 
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1. Introduction
Rainfall, runoff and sediment are important hydrological variables with complex relationships in the source area of the Yellow River. Accurately grasping the changes in these hydrological variables plays a vital role in the change of water resources throughout the Yellow River Basin(Chen & Guo, 2016; Wang et al., 2018a; Wang et al., 2017). Besides, rainfall, runoff, and sediment analysis are hot issues for scholars at home and abroad(Ling, Deng, Long, & Gao, 2017; Ramana, Krishna, Kumar, & Pandey, 2013; Li & Liu, 2018; Wang et al., 2018b). At present, many scholars have conducted a lot of research on the relationship between rainfall and runoff(Nastiti, An, Kim, & Jung, 2018; Tarasova, Basso, Zink, & Merz, 2018; Chu et al., 2019), and many others have also conducted research on the relationship between runoff and sediment(Wang et al., 2015; Zhang, Ding, & You, 2014; Hou, Wang, Guo, & Chu, 2013), and achieved great results. However, the results of combining the three together for research are relatively few. 
Runoff forecast has always been a hot issue in the field of hydrology(Zhang, Zhao, & Lin, 2017; Zhao et al., 2017). The runoff forecasting with the historical data can not only realize the rational development and utilization of runoff resources, but also have important significance for the planning, construction and scheduling of water conservancy projects(Xie et al., 2019). At present, the forecast of river runoff often assume that the time series is stationary. However, because of the influence of climate change, underlying surface and human activities, the statistical characteristics of hydrological time series always change with time. Therefore, most hydrological time series are non-linear and non-stationary(Zhang, Yuan, & Guo, 2013). The commonly runoff forecast models include artificial neural network (ANN) model(Sezen & Partal, 2019; Meng et al., 2015), support vector pegression(SVR) model(Wu et al., 2019; Yaseen et al., 2018) and autoregressive moving average(ARMA) model(Wang, Shen, & Jiang, 2019; Wang, Chau, Xu, & Chen, 2015), etc. These models with non-stationary time series data will lead to pseudo-regression(Jin, Zhang, & Zhang, 2017; Lee & Yu, 2009), so their hydrological element simulation and forecast are unbelievable. 
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)  is an effective method for dealing with nonlinear and non-stationary time series(Torres, Colominas, Schlotthauer, & Flandrin, 2011), which is an improvement on the empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) (Huang et al., 1998; Wu & Huang, 2009). The EMD and EEMD methods are widely used in the fields of hydrology and water resources(Zhang, Ding, Yuan, & Zuo, 2013; Ouyang et al., 2016; Zhang, Xiao, Zhang, & Li, 2019; Adarsh & Reddy, 2018). However, the EMD algorithm may produce the modal confusion, and the EEMD algorithm will remain the noise residual. The CEEMDAN method solves both of these problems(Colominas, Schlotthauer, & Torres, 2014) and is applied in many fields(El Bouny, Khalil, & Adib, 2019; Antico, Torres, & Diaz, 2016), but it is still rare in hydrology.
The co-integration theory was proposed by Engle and Granger in 1987, which can deal with the non-stationary problem of time series and is widely used in econometrics(Engle & Granger, 1987). While dealing with non-stationary variables, co-integration theory can also reveal the long-term equilibrium and short-term fluctuation between variables. Thus, this theory has been widely applied in the field of hydrology in recent years(Zhang, Zhao, & Xiao, 2015; Yoo, 2007). Meanwhile, this theory can also be combined with other data analysis methods so as to improve the accuracy of calculation(Zhang, Li, Zhao, & Hong, 2017; Zhang, Li, Shi, & Hong, 2019). 
The innovation of this paper is to combine the CEEMDAN method with the co-integration theory to construct the three-variable CEEMDAN co-integration error correction model (ECM) for rainfall, runoff and sediment in the source area of the Yellow River of China to forecast the river runoff. The first is to use CEEMDAN to decompose rainfall, runoff and sediment in multi-time scales, and know the changing laws and poly-cycle and obtain the corresponding stationary time series; The second is to reveal the long-term equilibrium and short-term fluctuation relationship of the original and component time series of rainfall, runoff and sediment in the source area of the Yellow River according to the co-integration theory, and to clarify their influencing relationships; The last is to construct two new ECM models of rainfall, runoff and sediment including the CEEMDAN component ECM model and the original sequence ECM model to forecast the river runoff.
2. Study Methods and Steps
2.1 CEEMDAN Method
The CEEMDAN method is a time-frequency domain analysis method. It can further eliminate the mode effect by adding adaptive noise, and has the strong adaptability and better convergence. Usually, the CEEMDAN method is mostly used to deal with non-linear and non-stationary time series.
The CEEMDAN algorithm steps are as follows:
Step 1: Add Gaussian white noise s(t) to the original signal x(t) and perform I test. The signal of the i-th test can be expressed as: 

                                                                                                            (1)
Step 2: Perform EMD decomposition on the signal xi(t) of the i-th white noise addition, and perform an average of I test, and obtain the first IMF component IIMF1as: 

                                                                                                             (2)

In the formula, is the first IMF component after EMD decomposition of signal xi(t) with white noise for the i-th time. 

Step 3: After decomposing to obtain the first IMF component, calculate the difference r1(t) between the original signal and  component: 

                                                                                                             (3)
Step 4: Add white noise again to the difference signal r1(t)and perform I test. Then the difference signal ri1(t) of the white noise added to the i-th time can be expressed as: 

                                                                                                           (4)


Step 5: Perform EMD decomposition on the i-th white noise signal ri1(t), the i-th is  component, and the second-order IMF component  obtained by the I test is: 

                                                                                                            (5)

Step 6: At this time, the difference obtained by the decomposition is, and steps 4 and 5 are repeated until rn(t) satisfies one of the following conditions: (1) can not be further decomposed by EMD; (2) meet IMF conditions; (3) the number of local extreme points is less than 3. Finally, the original signal x(t) can be decomposed into n IMF components and a trend term rn(t): 

                                                                                                       (6)                                                         
2.2 Co-integration Theory
2.2.1 Co-integration Concept


Co-integration describes the long-term equilibrium relationship between time series. If a time series is non-stationary but becomes stationary after d-difference, it is called d-order simple integer, which is recorded as I (d). If the time series itself is stationary, it is recorded as I (0). The two time series are defined as and. If meeting the following conditions: 
(1) Xit ~I(d) and Yit~I(d), (i=1,2,…,n), d is an integer;
(2) There is a constant β, which makes Yt-βXt~ I(0);
Then, Xt and Yt are co-integrated, and β is called co-integration vector.
2.2.2 Stationary Test
Before the co-integration test, it is necessary to conduct the stationary test of time series, and the commonly used method is ADF unit root test(Dickey & Fuller, 1979). The formula is as follows: 

                                                                             (7)

In the formula,is the first-order difference of variable yt; α、β、δ、ζi are all parameters; t is time; p is lag order; εt is white noise process. 
2.2.3 Co-integration Test
The EG two-step method is a common method for testing the co-integration relationship between time series, which was proposed by Engle and Granger in 1987(Engle & Granger, 1987). The test procedure of this method is: 
The first step is to use the ordinary least square method(OLS) to regress multiple variables and get a residual sequence; 
The second step is to conduct ADF unit root test on the residual sequence obtained in the first step. If the residual sequence is stationary, it is proved that the variables are co-integrated.
2.2.4 ECM
If the time series is co-integrated, an ECM can be constructed. This model describes the long-term equilibrium and short-term fluctuations between variables and the modeling steps are as follows: 
The first step is to perform a co-integration regression to the variables:


，                                                                        (8)
to obtaining k0、k1、k2 and the residual sequence ut;

                                                                                                  (9)
The second step is to make ecm(-1) = ut-1 as an error correction term and substitute the error correction model:

                                                                   (10)



In the formula,is a constant term,andare the coefficients of the difference terms of each variable, which reflects the short-term dynamic changes of the model; ecm(-1) is an error correction term, which reflects the degree to which the former term deviates from the long-term equilibrium in short-term fluctuations; φ is the correction coefficient, also called the adjustment speed, usually a negative value; εt is a white noise sequence. 
2.3 Study Steps
By using CEEMDAN method, the time series of rainfall, runoff and sediment in the source area of the Yellow River are decomposed to obtain IMF component sequences at different time scales. Furthermore, the co-integration theory is used to construct the ECM for the original time series (ECM-OTS) and the CEEMDAN component sequences (ECM-CEEMDAN), and then the runoff is forecasted by ECM-OTS and ECM-CEEMDAN respectively. Finally, the runoff forecasted value of each IMF component is reconstructed to get the runoff forecasted value of ECM-CEEMDAN, and the fitting value and forecast accuracy of these two ECM models are compared to draw a conclusion. The flow chart of study steps is shown in Fig. 1.


Fig. 1 Flow Chart of Study Steps
3. Results and Conclusion
3.1 Data Source
The source area of the Yellow River refers to the area above the Tangnaihai hydrological station, which is located in the northeast of the Qinghai Tibet Plateau of China. The geographic coordinates are between 95°50 '~103°30' E and 32°10 '~36°05' N, the basin area is 122,000 km2, and the average annual runoff is 20.37 billion m3. The water source is mainly supplied by rainfall, followed by glacial snow melting water and groundwater. The change of runoff in the source area of the Yellow River has a vital influence on the change of water resources in the whole Yellow River Basin. 
The measured rainfall, runoff and sediment time series from 1966 to 2013 at Tangnaihai hydrological station are shown as in Fig. 2. 


Fig. 2 Time series of rainfall, runoff and sediment at Tangnaihai station in the source area of the Yellow River
3.2 CEEMDAN Decomposition
The CEEMDAN method is used to decompose the time series of rainfall, runoff and sediment in the source area of the Yellow River for multi-time scales. The decomposition results are shown in Fig. 3-5. 
With the CEEMDAN method, the annual runoff, rainfall and sediment data seires at Tangnaihai hydrological station from 1966 to 2013 are decomposed into a fifth-order mode, including four IMF components and one residual. It reflects the multi-time scale evolution characteristics of rainfall, runoff, and sediment in the source area of the Yellow River. The IMF1 component of each variable has the shortest period and the highest frequency, and the period of other components gradually gets longer and their frequency gradually decreases. The periodic changes of the component time series are shown in Table 1. 


Fig. 3 Time series of rainfall components in the source area of the Yellow River


Fig. 4 Time series of runoff components in the source area of the Yellow River


Fig. 5 Time series of sediment components in the source area of the Yellow River
Table 1 Periodic changes of rainfall, runoff and sediment component time series
	component time series
	Periodic changes (year) / Res changes

	
	Rainfall
	Runoff
	Sediment

	IMF1
	2~5
	2~5
	2~5

	IMF2
	5~8
	6~9
	5~10

	IMF3
	9~11
	29~30
	11~30

	IMF4
	28
	32
	41

	Res
	first reduce and then increase
	reduce
	reduce


As can be seen from Table 1 that if it is assumed that the time periods of IMF1, IMF2, IMF3 and IMF4 components are short period, medium period, medium-long period and long period, the rainfall, runoff and sediment have a good correlation in periodic changes. Specifically, rainfall, runoff, and sediment all have the same short-period change, and the periodic year is 2 to 5 years; In the medium period, though the changing periodic years of the three are different, there is little difference, among which the rainfall is 5-8 years, runoff is 6-9 years, and sediment is 5-10 years; There are great differences between rainfall, runoff and sediment in the medium-long period, among which the span of sediment change is large with 11-30 years, 29-30 years for runoff and 9-11 years for rainfall; In terms of the long-period scale, rainfall is 28 years, runoff is 32 years and sediment is 41 years; The redidual component shows the overall trend of rainfall, runoff, and sediment. The rainfall showed a decreasing trend from 1966 to 1981, and an increasing trend from 1982 to 2013, but both runoff and sediment showed a decreasing trend. It can be seen that rainfall, runoff and sediment all have a complex multi-time scale periodic change laws, but they have a good correlation in the short and the medium periods. However, from the medium-long period, the periods of rainfall, runoff, and sediment present different, but for their residuals, they show the better synchronization. 
3.3 Co-integration Analysis
3.3.1 Unit Root Test
The original time series and components of rainfall, runoff and sediment in the source area of the Yellow River are tested by unit root test. Assuming that xi, zi and yi (i = 0, 1, 2, 3, 4, 5) are used to represent the CEEMDAN component of rainfall, runoff, and sediment, and x0, z0, and y0 are their original sequences respectively. The optimal lag order is determined by the AIC criterion, and the unit root test results are given in Table 2.
The test results are shown in Table 2. The ADF test values of the original time series of rainfall, runoff and sediment in the source area of the Yellow River are all larger than the critical value of t test, so they belong to non-stationary time series, but their first-order difference time series are stationary. Meanwhile, their CEEMDAN components are stationary. 
Table 2 Unit root test results of the original time series and components
	Time series
	Variables
	ADF value
	Test type (c, t, k)
	Test critical values
	Stationary or not

	
	
	
	
	1%
	5%
	10%
	

	The original
	x0
	-0.5138
	(0, 0, 3)
	-2.6186
	-1.9485
	-1.6121
	No

	
	y0
	-0.8657
	(0, 0, 3)
	-2.6186
	-1.9485
	-1.6121
	No

	
	z0
	-0.3647
	(0, 0, 3)
	-2.6186
	-1.9485
	-1.6121
	No

	
	Δx0
	-7.4505
	(0, 0, 2)
	-2.6186
	-1.9485
	-1.6121
	Yes

	
	Δy0
	-6.2861
	(0, 0, 2)
	-2.6186
	-1.9485
	-1.6121
	Yes

	
	Δz0
	-6.5489
	(0, 0, 2)
	-2.6186
	-1.9485
	-1.6121
	Yes

	The IMF1 
	x1
	-7.8693
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	y1
	-7.6006
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	z1
	-8.3002
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	The IMF2 
	x2
	-10.8127
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	y2
	-14.1319
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	z2
	-14.2495
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	The IMF3 
	x3
	-14.6845
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	y3
	-10.0076
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	
	z3
	-8.6862
	(c, 0, 1)
	-3.5812
	-2.9266
	-2.6014
	Yes

	The IMF4 
	x4
	-26.8800
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes

	
	y4
	-23.9409
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes

	
	z4
	-26.7954
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes

	The residual
	x5
	-20.3586
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes

	
	y5
	-13.4521
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes

	
	z5
	-25.1841
	(c, t, 1)
	-4.1706
	-3.5107
	-3.1855
	Yes


Note: In the test type (c, t, k), c is the intercept item, t is the time trend term (t=0 means no trend) and k is the optimal lag length.
3.3.2 Co-integration Test
Co-integration test is conducted on their original time series and CEEMDAN decomposition sequence of rainfall, runoff and sediment with EG two-step method. The first step is to perform OLS regression on the original sequence and the same time scale component sequence of rainfall, runoff, sediment to establish a co-integration equation; the second step is to perform a unit root test on the residuals of each co-integration equation. If the residual sequence is stationary, the co-integration relationship exists; otherwise this relationship does not exist. It can be seen from table 3 that the ADF test values of the residual sequences of all co-integration equations are less than the critical values of the significance levels of 1%, 5% and 10%, so the co-integration relationship exists. 

                                                                          (11)
(0.014418)            (0.005056)

                                                                           (12)
(0.071956)            (0.005192)

                                                                          (13)
(0.094843)            (0.004324)

                                                                          (14)
(0.220190)            (0.017521)

                                                                          (15)
(0.025683)            (0.002785)

                                                                          (16)
(0.001172)            (0.000456)
In the formula, ut represents the residual sequence of the equation, and the data in bracket is the standard deviation of the corresponding coefficient of the equation. 
Table 3 Unit root test results of residual sequences of co-integration equations
	Residual sequences 
	ADF value
	Test type (c, t, k)
	Test critical values
	Stationary or not

	
	
	
	1%
	5%
	10%
	

	u0
	-4.6011
	(c, 0, 1)
	-3.6105
	-2.9390
	-2.6079
	Yes

	u1
	-6.8268
	(c, 0, 1)
	-3.6105
	-2.9390
	-2.6079
	Yes

	u2
	-7.7600
	(c, 0, 1)
	-3.6156
	-2.9411
	-2.6091
	Yes

	u3
	-6.1780
	(c, 0, 1)
	-3.6156
	-2.9411
	-2.6091
	Yes

	u4
	-8.7148
	(c, 0, 1)
	-3.6156
	-2.9411
	-2.6091
	Yes

	u5
	-5.5610
	(c, 0, 1)
	-3.6156
	-2.9411
	-2.6091
	Yes



3.3.3 Establishing ECM
According to the ECM method, The ECM-OTS for x0, z0 and y0 and the ECM-CEEMDAN model for xi, zi and yi (i=1, 2, 3, 4, 5) is as follows: 

                  (17)                                                 
(0.061223)                (0.004417)               (0.149456)                        (3.221133)

                    (18)                                                 
(0.045599)                (0.003267)               (0.164667)                        (2.288407)

                  (19)                                                 
(0.075293)                (0.004075)               (0.143114)                        (1.268256)

                  (20)                                                 
(0.073105)                (0.010246)               (0.040804)                        (0.482288)

                  (21)                                                 
(0.013844)                (0.001382)               (0.025256)                        (0.061591)

                  (22)                                                 
(0.061745)                (0.005481)               (0.023369)                        (0.051960)
In the formula, ecmt(-1) represents the error correction term, and the coefficient before ecmt(-1) is the short-period adjustment coefficient, and the coefficient before the difference terms of each variable represent the short-period dynamic change of the model. 
It can be seen that the rainfall, runoff and sediment in the source area of the Yellow River show a long-term equilibrium relationship. The component time series also has a long-term equilibrium relationship at different time scales, and the error correction term coefficients of all equations are all negative, which is consistent with the reverse correction mechanism. It can be seen from equation (17) that runoff is not only affected by rainfall and sediment, but also by the deviation of runoff from equilibrium level in the previous year. The coefficients of Δx0 and Δy0 are 0.23665 and 0.03767 respectively, which indicates that the short-term influence of rainfall and sediment on runoff in the source area of the Yellow River is different, and the influence of rainfall is stronger than that of sediment. The coefficient before ecmt(-1) is -0.70057, which indicates that the deviation of runoff from equilibrium in this year will be adjusted by 70.06% in the next year. 
3.3.4 Annual Runoff Forecast
The ECM-OTS and the ECM-CEEMDAN models are established by using the measured data series of rainfall, runoff, and sediment from 1966 to 2005, and the forecast test is conducted with the measured data series from 2006 to 2013. Fig. 6 shows the fitting between the measured value and the fitted value of the two models. Fig. 7 shows the relative error between the fitting value and the measured value of the two models. Table 5 shows the forecasted values and relative errors of the two models during the forecast period.


Fig. 6 Fitting between the fitted value and measured value of two models
It can be seen from Fig. 6 that both models can well describe the dynamic equilibrium relationship between rainfall, runoff and sediment in the source area of the Yellow River. Moreover, the accuracy of runoff fitting value of the ECM-CEEMDAN model is better than that of ECM-OTS. 


Fig. 7 Relative error between the fitted value and the measured value of the two models
It can be seen from Fig. 7 that in the year that the relative error is greater than 20% from 1967 to 2005, the ECM-CEEMDAN model has only one 28.11% in 2002, but ECM-OTS model has two years, 20.83% in 1997 and 32.17% in 2002. The average relative error of the ECM-CEEMDAN model is 6.21%, which is 1.42% lower than the 7.63% of the ECM-OTS model. It can be seen that the ECM-CEEMDAN model has better fitting accuracy.
According to the Standard for Hydrological Information and Hydrological Forecasting (GB / T 22482-2008) of China, 20% of the measured value is taken as the allowable error for runoff forecasting. When the error is less than the allowable error, it is available. The percent of qualified forecast times and total forecast times is the qualified rate of forcast. Meanwhile, the degree of agreement between the runoff forecasting process and the measured process can be evaluated by the deterministic coefficient, which is calculated as follows: 

                                                    (23)





In the formula, is the deterministic coefficient, is the measured value, is the forecasted value, is the mean of the measured values, and is the length of the sequence.
The accuracy of runoff forecast is divided into three grades according to the qualification rate or the deterministic coefficient, as shown in Table 4. 
Table 4  Runoff forecast accuracy class table
	Accuracy class
	A
	B
	C

	Pass rate / %
	QR≥85
	85>QR≥70
	70>QR≥60

	Deterministic coefficient
	DC>0.9
	0.9≥DC>0.7
	0.7>DC≥0.5


Table 5 The forecasted values and relative errors of the two models during the forecast period
	Year
	Measured value(108m3)
	ECM-OTS model
	ECM-CEEMDAN model

	
	
	Predicted value(108m3)
	Relative error (%)
	Predicted value(108m3)
	Relative error (%)

	2006
	141.26
	164.72
	16.60
	157.08
	11.19

	2007
	189.04
	177.12
	6.31
	181.34
	4.07

	2008
	174.60
	157.93
	9.55
	165.21
	5.37

	2009
	263.48
	197.06
	25.21
	213.92
	18.81

	2010
	197.08
	210.72
	6.92
	209.32
	6.21

	2011
	211.21
	198.11
	6.20
	193.63
	8.32

	2012
	284.04
	232.62
	18.10
	249.97
	11.99

	2013
	194.64
	191.92
	1.40
	189.24
	2.77


It can be seen from Table 5 that for the ECM-OTS model, in the forecasted 8 years of 2006-2013, only the relative error of runoff in 2009 exceeded 20%, and its forecasted qualified rate was 87.5%, reaching the level A. Meanwhile, for the whole predicted years, the relative error of runoff forecast that is less than 10% are 5 years, accounting for 62.5%. While for the ECM-CEEMDAN model, only in 2009, its forecasted relative error is 18.81% which is close to 20%. The whole forecasted qualified rate was 100%. Although the ECM-CEEMDAN model has the same as the ECM-OTS model, with the runoff forecast relative error of 10% in 5 years, its relative error value tend to smaller on the whole, which indicates that the overall forecast accuracy of the ECM-CEEMDAN model is better. Moreover, the average relative error of the ECM-CEEMDAN model is 8.59%, which is 2.7% lower than 11.29% of the ECM-OTS model. This shows that the ECM-CEEMDAN model has the higher forecast accuracy than the ECM-OTS model.
Furthermore, from the deterministic coefficient of runoff forecast, the DC value of the ECM-OTS model is 0.842, which is the level B, while the DC value of the ECM-CEEMDAN model is 0.901, reaching the level A. This shows that the ECM-CEEMDAN model has the high degree of agreement between the runoff forecasting process and the measured process. 
4. Conclusion
(1) The CEEMDAN method can reveal the periodic characteristics of rainfall, runoff and sediment on the multi-time scales in the source area of the Yellow River. These three variables have a good correlation in the short and the medium periods. In addition, runoff and sediment show a better synchronization in the trend item, which reveals the law of periodic fluctuations of rainfall, runoff and sediment. 
(2) With the co-integration theory and ECM, the ECM-OTS model and the ECM-CEEMDAN model are established. They can reveal the long-term equilibrium and short-term fluctuations of the original sequence and component sequence of rainfall, runoff and sediment in the source area of the Yellow River, and also can effectively forecast the runoff in this source area. 
(3) Both the ECM-OTS model and the ECM-CEEMDAN model can well describe the dynamic equilibrium relationship between rainfall, runoff and sediment in the source area of the Yellow River. However, the forecast period error of the ECM-CEEMDAN model is less than 20%, and its forecast qualified rate can attains to 100%, and the accuracy reaches the level A. Compared with the ECM-OTS model, it has the better forecasting accuracy, which provides a new and more accurate runoff forecasting method. 
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