Reference
Abebe, D. G., Kandil, R., Kraus, T., Elsayed, M., Merkel, O. M., &
Fujiwara, T. (2015a). Three-layered biodegradable micelles prepared by
two-step self-assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock
copolymers as efficient gene delivery system. Macromolecular
Bioscience , 15 (5), 698–711.
https://doi.org/10.1002/mabi.201400488
Abebe, D. G., Kandil, R., Kraus, T., Elsayed, M., Merkel, O. M., &
Fujiwara, T. (2015b). Three-Layered Biodegradable Micelles Prepared by
Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock
Copolymers as Efficient Gene Delivery System. Macromolecular
Bioscience , 15 (5), 698–711.
Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., & Auras, R. (2016).
Mechanical, structural and thermal properties of Ag–Cu and ZnO
reinforced polylactide nanocomposite films. International Journal
of Biological Macromolecules , 86 , 885–892.
Alibolandi, M., Abnous, K., Sadeghi, F., Hosseinkhani, H., Ramezani, M.,
& Hadizadeh, F. (2016). Folate receptor-targeted multimodal
polymersomes for delivery of quantum dots and doxorubicin to breast
adenocarcinoma: In vitro and in vivo evaluation. International
Journal of Pharmaceutics , 500 (1–2), 162–178.
https://doi.org/10.1016/j.ijpharm.2016.01.040
Amani, A., Kabiri, T., Shafiee, S., & Hamidi, A. (2019). Preparation
and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for
improvement of transfection efficiency and controlled release of DNA in
gene delivery systems. Iranian Journal of Pharmaceutical Research:
IJPR , 18 (1), 125.
Amani, A., Zare, N., Asadi, A., & Asghari-Zakaria, R. (2018).
Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer
nanoparticles. Turkish Journal of Biology , 42 (1), 63–75.
https://doi.org/10.3906/biy-1706-6
Bala, I., Hariharan, S., & Kumar, M. N. V. R. (2004). PLGA
nanoparticles in drug delivery: the state of the art. Critical
ReviewsTM in Therapeutic Drug Carrier Systems ,21 (5).
Bentley-Goode, K. A., Newton, N. J., & Thompson, A. M. (2017). Business
strategy, internal control over financial reporting, and audit reporting
quality. Auditing , 36 (4), 49–69.
https://doi.org/10.2308/ajpt-51693
Camirand, A., Lu, Y., & Pollak, M. (2002). Co-targeting HER2/ErbB2 and
insulin-like growth factor-1 receptors causes synergistic inhibition of
growth in HER2-overexpressing breast cancer cells. Medical Science
Monitor , 8 (12), BR521–BR526.
Cao, N., Cheng, D., Zou, S., Ai, H., Gao, J., & Shuai, X. (2011). The
synergistic effect of hierarchical assemblies of siRNA and
chemotherapeutic drugs co-delivered into hepatic cancer cells.Biomaterials , 32 (8), 2222–2232.
https://doi.org/10.1016/j.biomaterials.2010.11.061
Chatterjee, A. (2013). Reduced glutathione: A radioprotector or a
modulator of DNA-repair activity? Nutrients , 5 (2),
525–542. https://doi.org/10.3390/nu5020525
Chen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015).
Multifunctional envelope-type mesoporous silica nanoparticles for
pH-responsive drug delivery and magnetic resonance imaging.Biomaterials , 60 , 111–120.
Chorny, M., Fishbein, I., Yellen, B. B., Alferiev, I. S., Bakay, M.,
Ganta, S., … Levy, R. J. (2010). Targeting stents with local
delivery of paclitaxel-loaded magnetic nanoparticles using uniform
fields. Proceedings of the National Academy of Sciences ,107 (18), 8346–8351.
Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2017).
Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for
controlled delivery of hydrophilic drugs by micelle formation.Pharmaceutical Development and Technology , 22 (8),
947–957. https://doi.org/10.3109/10837450.2015.1125920
Eggenberger, K., Frey, N., Zienicke, B., Siebenbrock, J., Schunck, T.,
Fischer, R., … Nick, P. (2010). Use of Nanoparticles to Study and
Manipulate Plant cells. Advanced Engineering Materials ,12 (9), B406–B412. https://doi.org/10.1002/adem.201080009
Gultekinoglu, M., Tunc Sarisozen, Y., Erdogdu, C., Sagiroglu, M., Aksoy,
E. A., Oh, Y. J., … Ulubayram, K. (2015). Designing of dynamic
polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to
prevent infections. Acta Biomaterialia , 21 (April), 44–54.
https://doi.org/10.1016/j.actbio.2015.03.037
Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M., & Gilani, K.
(2014a). Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle
for tumor-targeted delivery: Synthesis and in vitro evaluation.DARU, Journal of Pharmaceutical Sciences , 22 (1), 1–7.
https://doi.org/10.1186/2008-2231-22-30
Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M., & Gilani, K.
(2014b). Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle
for tumor-targeted delivery: Synthesis and in vitro evaluation.DARU Journal of Pharmaceutical Sciences , 22 (1), 30.
He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of
particle size and surface charge on cellular uptake and biodistribution
of polymeric nanoparticles. Biomaterials , 31 (13),
3657–3666.
He, Q., Liu, J., Sun, X., & Zhang, Z. R. (2004). Preparation and
characteristics of DNA-nanoparticles targeting to hepatocarcinoma cells.World Journal of Gastroenterology , 10 (5), 660–663.
https://doi.org/10.3748/wjg.v10.i5.660
Heald, C. R., Stolnik, S., Kujawinski, K. S., De Matteis, C., Garnett,
M. C., Illum, L., … Gellert, P. R. (2002). Poly(lactic
acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the
central solidlike PLA core and the liquid PEG corona. Langmuir ,18 (9), 3669–3675. https://doi.org/10.1021/la011393y
Jadhav, N. V, Prasad, A. I., Kumar, A., Mishra, R., Dhara, S., Babu, K.
R., … others. (2013). Synthesis of oleic acid functionalized
Fe3O4 magnetic nanoparticles and studying their interaction with tumor
cells for potential hyperthermia applications. Colloids and
Surfaces B: Biointerfaces , 108 , 158–168.
Jain, S., Rathi, V. V., Jain, A. K., Das, M., & Godugu, C. (2012).
Folate-decorated PLGA nanoparticles as a rationally designed vehicle for
the oral delivery of insulin. Nanomedicine , 7 (9),
1311–1337. https://doi.org/10.2217/nnm.12.31
Kapse-Mistry, S., Govender, T., Srivastava, R., & Yergeri, M. (2014).
Nanodrug delivery in reversing multidrug resistance in cancer cells.Frontiers in Pharmacology , 5 JUL , 1–31.
https://doi.org/10.3389/fphar.2014.00159
Kircheis, R., Schüller, S., Brunner, S., Ogris, M., Heider, K.-H.,
Zauner, W., & Wagner, E. (1999). Polycation-based DNA complexes for
tumor-targeted gene deliveryin vivo. The Journal of Gene
Medicine , 1 (2), 111–120.
https://doi.org/10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-Y
Kumar, M., Yigit, M., Dai, G., Moore, A., & Medarova, Z. (2010).
Image-guided breast tumor therapy using a small interfering RNA
nanodrug. Cancer Research , 70 (19), 7553–7561.
https://doi.org/10.1158/0008-5472.CAN-10-2070
Kwon, S. K., & Kim, D. H. (2006). Effect of process parameters of
UV-assisted gas-phase cleaning on the removal of PEG
(polyethyleneglycol) from a Si substrate. JOURNAL-KOREAN PHYSICAL
SOCIETY , 49 (4), 1421.
Li, J., Ma, F.-K., Dang, Q.-F., Liang, X.-G., & Chen, X.-G. (2014).
Glucose-conjugated chitosan nanoparticles for targeted drug delivery and
their specific interaction with tumor cells. Frontiers of
Materials Science , 8 (4), 363–372.
Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., …
Liang, X.-J. (2016). Multifunctional aptamer-based nanoparticles for
targeted drug delivery to circumvent cancer resistance.Biomaterials , 91 , 44–56.
Lu, J., Chuan, X., Zhang, H., Dai, W., Wang, X., Wang, X., & Zhang, Q.
(2014). Free paclitaxel loaded PEGylated-paclitaxel nanoparticles:
Preparation and comparison with other paclitaxel systems in vitro and in
vivo. International Journal of Pharmaceutics , 471 (1–2),
525–535. https://doi.org/10.1016/j.ijpharm.2014.05.032
Lv, S., Tang, Z., Li, M., Lin, J., Song, W., Liu, H., … Chen, X.
(2014). Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide
nanovehicle for the treatment of non-small cell lung cancer.Biomaterials , 35 (23), 6118–6129.
https://doi.org/10.1016/j.biomaterials.2014.04.034
Macheda, M. L., Rogers, S., & Best, J. D. (2005). Molecular and
cellular regulation of glucose transporter (GLUT) proteins in cancer.Journal of Cellular Physiology , 202 (3), 654–662.
Mamaeva, V., Niemi, R., Beck, M., Özliseli, E., Desai, D., Landor, S.,
… others. (2016). Inhibiting notch activity in breast cancer stem
cells by glucose functionalized nanoparticles carrying $γ$-secretase
inhibitors. Molecular Therapy , 24 (5), 926–936.
Mancini, M., Gariboldi, M. B., Taiana, E., Bonzi, M. C., Craparotta, I.,
Pagin, M., & Monti, E. (2014). Co-targeting the IGF system and HIF-1
inhibits migration and invasion by (triple-negative) breast cancer
cells. British Journal of Cancer , 110 (12), 2865.
Marques, J. G., Gaspar, V. M., Markl, D., Costa, E. C., Gallardo, E., &
Correia, I. J. (2014). Co-delivery of sildenafil (Viagra®) and
crizotinib for synergistic and improved anti-tumoral therapy.Pharmaceutical Research , 31 (9), 2516–2528.
https://doi.org/10.1007/s11095-014-1347-x
Mojica Pisciotti, M. L., Lima, E., Vasquez Mansilla, M., Tognoli, V. E.,
Troiani, H. E., Pasa, A. A., … Zysler, R. D. (2014). In vitro and
in vivo experiments with iron oxide nanoparticles functionalized with
DEXTRAN or polyethylene glycol for medical applications: Magnetic
targeting. Journal of Biomedical Materials Research - Part B
Applied Biomaterials , 102 (4), 860–868.
https://doi.org/10.1002/jbm.b.33068
Moret, I., Peris, J. E., Guillem, V. M., Benet, M., Revert, F.,
Das\í, F., … Aliño, S. F. (2001). Stability of
PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin
and serum. Journal of Controlled Release , 76 (1–2),
169–181.
Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for
drug and gene delivery to cells and tissue. Advanced Drug Delivery
Reviews , 55 (3), 329–347.
Patil, Y., & Panyam, J. (2009). Polymeric nanoparticles for siRNA
delivery and gene silencing. International Journal of
Pharmaceutics , 367 (1–2), 195–203.
Peng, S. F., Hsu, H. K., Lin, C. C., Cheng, Y. M., & Hsu, K. H. (2017).
Novel PEI/Poly-γ-gutamic acid nanoparticles for high efficient siRNA and
plasmid DNA co-delivery. Molecules , 22 (1), 1–16.
https://doi.org/10.3390/molecules22010086
Perez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M.
J. (2001a). Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new
carriers for the delivery of plasmid DNA. Journal of Controlled
Release , 75 (1–2), 211–224.
https://doi.org/10.1016/S0168-3659(01)00397-2
Perez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M.
J. (2001b). Poly (lactic acid)-poly (ethylene glycol) nanoparticles as
new carriers for the delivery of plasmid DNA. Journal of
Controlled Release , 75 (1–2), 211–224.
Pouponneau, P., Leroux, J.-C., & Martel, S. (2009). Magnetic
nanoparticles encapsulated into biodegradable microparticles steered
with an upgraded magnetic resonance imaging system for tumor
chemoembolization. Biomaterials , 30 (31), 6327–6332.
Puppo, C., Massollo, M., Paparo, F., Camellino, D., Piccardo, A.,
Shoushtari Zadeh Naseri, M., … Cimmino, M. A. (2014). Giant cell
arteritis: a systematic review of the qualitative and semiquantitative
methods to assess vasculitis with 18F-fluorodeoxyglucose positron
emission tomography. BioMed Research International , 2014 .
Rafat, M., Cléroux, C. A., Fong, W. G., Baker, A. N., Leonard, B. C.,
O’Connor, M. D., & Tsilfidis, C. (2010). PEG-PLA microparticles for
encapsulation and delivery of Tat-EGFP to retinal cells.Biomaterials , 31 (12), 3414–3421.
https://doi.org/10.1016/j.biomaterials.2010.01.031
Sadeghi, F., Hadizadeh, F., Sazmand, S., Shahrokhi, S., Seifi, M., &
Alibolandi, M. (2015). Synthesis and self-assembly of biodegradable
polyethylene glycol-poly (lactic acid) diblock copolymers as
polymersomes for preparation of sustained release system of doxorubicin.International Journal of Pharmaceutical Investigation ,5 (3), 134. https://doi.org/10.4103/2230-973X.160846
Sant, S., Iyer, D., Gaharwar, A., Patel, A., & Khademhosseini, A.
(2013). Effect of biodegradation and de novo matrix synthesis on the
mechanical properties of VIC-seeded PGS-PCL scaffolds. Acta
Biomater , 9 (4), 5963–5973.
https://doi.org/10.1016/j.actbio.2012.11.014
Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber
(BF) biodegradable green composites. Journal of Polymer Research ,18 (6), 2335–2340.
Sim, T., Park, G., Min, H., Kang, S., Lim, C., Bae, S., … Oh, K.
T. (2017). Development of a gene carrier using a triblock
co-polyelectrolyte with poly(ethylene imine)-poly(lactic
acid)-poly(ethylene glycol). Journal of Bioactive and Compatible
Polymers , 32 (3), 280–292.
https://doi.org/10.1177/0883911516671154
Smith, C. J., Volkert, W. A., & Hoffman, T. J. (2005). Radiolabeled
peptide conjugates for targeting of the bombesin receptor superfamily
subtypes. Nuclear Medicine and Biology , 32 (7), 733–740.
Son, S., & Kim, W. J. (2010). Biodegradable nanoparticles modified by
branched polyethylenimine for plasmid DNA delivery. Biomaterials ,31 (1), 133–143.
Talpur, N., Echard, B., Ingram, C., Bagchi, D., & Preuss, H. (2005).
Effects of a novel formulation of essential oils on glucose–insulin
metabolism in diabetic and hypertensive rats: a pilot study.Diabetes, Obesity and Metabolism , 7 (2), 193–199.
Wang, J., Xu, C.-F., Liu, A., Sun, C.-Y., & Yang, X.-Z. (2016).
Delivery of siRNA with nanoparticles based on PEG–PLA block polymer
for cancer therapy. Nanomedicine: Nanotechnology, Biology, and
Medicine , 2 (12), 464.
Wang, Qian, Li, C., Ren, T., Chen, S., Ye, X., Guo, H., … others.
(2017). Poly (vinyl methyl ether/maleic anhydride)-Doped PEG–PLA
Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive
Efficiency. Molecular Pharmaceutics , 14 (10), 3598–3608.
Wang, Qiang, Frolova, A. I., Purcell, S., Adastra, K., Schoeller, E.,
Chi, M. M., … Moley, K. H. (2010). Mitochondrial dysfunction and
apoptosis in cumulus cells of type I diabetic mice. PLoS One ,5 (12), e15901.
Wang, S., Luo, Y., Zeng, S., Luo, C., Yang, L., Liang, Z., & Wang, Y.
(2013). Dodecanol-poly(d,l-lactic acid)-b-poly (ethylene glycol)-folate
(Dol-PLA-PEG-FA) nanoparticles: Evaluation of cell cytotoxicity and
selecting capability in vitro. Colloids and Surfaces B:
Biointerfaces , 102 , 130–135.
https://doi.org/10.1016/j.colsurfb.2012.07.030
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors
in the body. The Journal of General Physiology , 8 (6), 519.
Xia, B., Dong, C., Zhang, W. Y., Lu, Y., Chen, J. H., & Shi, J. Sen.
(2013). Highly efficient uptake of ultrafine mesoporous silica
nanoparticles with excellent biocompatibility by Liriodendron hybrid
suspension cells. Science China Life Sciences , 56 (1),
82–89. https://doi.org/10.1007/s11427-012-4422-8
Xiong, J., Meng, F., Wang, C., Cheng, R., Liu, Z., & Zhong, Z. (2011).
Folate-conjugated crosslinked biodegradable micelles for
receptor-mediated delivery of paclitaxel. Journal of Materials
Chemistry , 21 (15), 5786–5794.
https://doi.org/10.1039/c0jm04410e
Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C., … Chu, P. K.
(2014). Self-assembled magnetic fluorescent polymeric micelles for
magnetic resonance and optical imaging. Biomaterials ,35 (1), 344–355.
https://doi.org/10.1016/j.biomaterials.2013.09.035
Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C., … others.
(2014). Self-assembled magnetic fluorescent polymeric micelles for
magnetic resonance and optical imaging. Biomaterials ,35 (1), 344–355.
Yang, S.-J., Lin, F.-H., Tsai, K.-C., Wei, M.-F., Tsai, H.-M., Wong,
J.-M., & Shieh, M.-J. (2010). Folic acid-conjugated chitosan
nanoparticles enhanced protoporphyrin IX accumulation in colorectal
cancer cells. Bioconjugate Chemistry , 21 (4), 679–689.
Yang, X. Z., Dou, S., Sun, T. M., Mao, C. Q., Wang, H. X., & Wang, J.
(2011). Systemic delivery of siRNA with cationic lipid assisted PEG-PLA
nanoparticles for cancer therapy. Journal of Controlled Release ,156 (2), 203–211. https://doi.org/10.1016/j.jconrel.2011.07.035
Zhang, L. (2014). Modified Inorganic Nanostructures: Cytotoxicity
and Biological Applications in Gene and Drug Delivery . The Chinese
University of Hong Kong (Hong Kong).
Zhang, L., Gong, F., Zhang, F., Ma, J., Zhang, P., & Shen, J. (2013).
Targeted therapy for human hepatic carcinoma cells using
folate-functionalized polymeric micelles loaded with superparamagnetic
iron oxide and sorafenib in vitro. International Journal of
Nanomedicine , 8 , 1517–1524. https://doi.org/10.2147/IJN.S43263
Zintchenko, A., Philipp, A., Dehshahri, A., & Wagner, E. (2008). Simple
modifications of branched PEI lead to highly efficient siRNA carriers
with low toxicity. Bioconjugate Chemistry , 19 (7),
1448–1455. https://doi.org/10.1021/bc800065f
Zou, S., Cao, N., Cheng, D., Zheng, R., Wang, J., Zhu, K., & Shuai, X.
(2012). Enhanced apoptosis of ovarian cancer cells via
nanocarrier-mediated codelivery of siRNA and doxorubicin.International Journal of Nanomedicine , 7 , 3823–3835.
https://doi.org/10.2147/IJN.S29328
Zwicke, G. L., Mansoori, G. A., & Jeffery, C. J. (2012). Targeting of
Cancer Nanotherapeutics. Nano Reviews , 1 , 1–11.
https://doi.org/10.3402/nano.v3i0.18496
Fig. 1. 1H NMR spectra of PLA-PEG-FA (A) and
PLA-PEG-Glu (B) in D2O solvent
Fig. 2. FT-IR spectrum of various copolymers and magnetic nanoparticles
Fig. 3. TGA thermograms of magnetic nanoparticles and different
copolymers
Fig. 4. the particle size and zeta potential of the both PTX/siRNA
encapsulated and blank nanoparticles
Fig. 5. TEM image of NPsA/siRNA/PTX, NPsB/siRNA/PTX and NPsAB/siRNA/PTX
nanoparticles
Fig. 6. Magnetic behavior (A) and encapsulation efficiency (B) of the
nanoparticles
Fig. 7. DNA release profiles of the nanoparticles in PBS buffer (pH=7.4)
(Mean ± standard deviation) (n = 3).
Fig. 8. Biocompatibility of nanoparticles (A) and the effect of PTX and
siRNA loaded into the nanoparticles on MCF-7 cells (B) Fluorescence
microscopy images of MCF-7 cells were treated with NPsA/PTX/siRNA,
NPsB/PTX/siRNA and NPsAB/PTX/siRNA after 48 hours incubation.