Reference
Abebe, D. G., Kandil, R., Kraus, T., Elsayed, M., Merkel, O. M., & Fujiwara, T. (2015a). Three-layered biodegradable micelles prepared by two-step self-assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromolecular Bioscience , 15 (5), 698–711. https://doi.org/10.1002/mabi.201400488
Abebe, D. G., Kandil, R., Kraus, T., Elsayed, M., Merkel, O. M., & Fujiwara, T. (2015b). Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock Copolymers as Efficient Gene Delivery System. Macromolecular Bioscience , 15 (5), 698–711.
Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., & Auras, R. (2016). Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International Journal of Biological Macromolecules , 86 , 885–892.
Alibolandi, M., Abnous, K., Sadeghi, F., Hosseinkhani, H., Ramezani, M., & Hadizadeh, F. (2016). Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. International Journal of Pharmaceutics , 500 (1–2), 162–178. https://doi.org/10.1016/j.ijpharm.2016.01.040
Amani, A., Kabiri, T., Shafiee, S., & Hamidi, A. (2019). Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems. Iranian Journal of Pharmaceutical Research: IJPR , 18 (1), 125.
Amani, A., Zare, N., Asadi, A., & Asghari-Zakaria, R. (2018). Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles. Turkish Journal of Biology , 42 (1), 63–75. https://doi.org/10.3906/biy-1706-6
Bala, I., Hariharan, S., & Kumar, M. N. V. R. (2004). PLGA nanoparticles in drug delivery: the state of the art. Critical ReviewsTM in Therapeutic Drug Carrier Systems ,21 (5).
Bentley-Goode, K. A., Newton, N. J., & Thompson, A. M. (2017). Business strategy, internal control over financial reporting, and audit reporting quality. Auditing , 36 (4), 49–69. https://doi.org/10.2308/ajpt-51693
Camirand, A., Lu, Y., & Pollak, M. (2002). Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Medical Science Monitor , 8 (12), BR521–BR526.
Cao, N., Cheng, D., Zou, S., Ai, H., Gao, J., & Shuai, X. (2011). The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells.Biomaterials , 32 (8), 2222–2232. https://doi.org/10.1016/j.biomaterials.2010.11.061
Chatterjee, A. (2013). Reduced glutathione: A radioprotector or a modulator of DNA-repair activity? Nutrients , 5 (2), 525–542. https://doi.org/10.3390/nu5020525
Chen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015). Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging.Biomaterials , 60 , 111–120.
Chorny, M., Fishbein, I., Yellen, B. B., Alferiev, I. S., Bakay, M., Ganta, S., … Levy, R. J. (2010). Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proceedings of the National Academy of Sciences ,107 (18), 8346–8351.
Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2017). Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation.Pharmaceutical Development and Technology , 22 (8), 947–957. https://doi.org/10.3109/10837450.2015.1125920
Eggenberger, K., Frey, N., Zienicke, B., Siebenbrock, J., Schunck, T., Fischer, R., … Nick, P. (2010). Use of Nanoparticles to Study and Manipulate Plant cells. Advanced Engineering Materials ,12 (9), B406–B412. https://doi.org/10.1002/adem.201080009
Gultekinoglu, M., Tunc Sarisozen, Y., Erdogdu, C., Sagiroglu, M., Aksoy, E. A., Oh, Y. J., … Ulubayram, K. (2015). Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomaterialia , 21 (April), 44–54. https://doi.org/10.1016/j.actbio.2015.03.037
Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M., & Gilani, K. (2014a). Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation.DARU, Journal of Pharmaceutical Sciences , 22 (1), 1–7. https://doi.org/10.1186/2008-2231-22-30
Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M., & Gilani, K. (2014b). Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation.DARU Journal of Pharmaceutical Sciences , 22 (1), 30.
He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials , 31 (13), 3657–3666.
He, Q., Liu, J., Sun, X., & Zhang, Z. R. (2004). Preparation and characteristics of DNA-nanoparticles targeting to hepatocarcinoma cells.World Journal of Gastroenterology , 10 (5), 660–663. https://doi.org/10.3748/wjg.v10.i5.660
Heald, C. R., Stolnik, S., Kujawinski, K. S., De Matteis, C., Garnett, M. C., Illum, L., … Gellert, P. R. (2002). Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir ,18 (9), 3669–3675. https://doi.org/10.1021/la011393y
Jadhav, N. V, Prasad, A. I., Kumar, A., Mishra, R., Dhara, S., Babu, K. R., … others. (2013). Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids and Surfaces B: Biointerfaces , 108 , 158–168.
Jain, S., Rathi, V. V., Jain, A. K., Das, M., & Godugu, C. (2012). Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine , 7 (9), 1311–1337. https://doi.org/10.2217/nnm.12.31
Kapse-Mistry, S., Govender, T., Srivastava, R., & Yergeri, M. (2014). Nanodrug delivery in reversing multidrug resistance in cancer cells.Frontiers in Pharmacology , 5 JUL , 1–31. https://doi.org/10.3389/fphar.2014.00159
Kircheis, R., Schüller, S., Brunner, S., Ogris, M., Heider, K.-H., Zauner, W., & Wagner, E. (1999). Polycation-based DNA complexes for tumor-targeted gene deliveryin vivo. The Journal of Gene Medicine , 1 (2), 111–120. https://doi.org/10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-Y
Kumar, M., Yigit, M., Dai, G., Moore, A., & Medarova, Z. (2010). Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Research , 70 (19), 7553–7561. https://doi.org/10.1158/0008-5472.CAN-10-2070
Kwon, S. K., & Kim, D. H. (2006). Effect of process parameters of UV-assisted gas-phase cleaning on the removal of PEG (polyethyleneglycol) from a Si substrate. JOURNAL-KOREAN PHYSICAL SOCIETY , 49 (4), 1421.
Li, J., Ma, F.-K., Dang, Q.-F., Liang, X.-G., & Chen, X.-G. (2014). Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells. Frontiers of Materials Science , 8 (4), 363–372.
Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., … Liang, X.-J. (2016). Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.Biomaterials , 91 , 44–56.
Lu, J., Chuan, X., Zhang, H., Dai, W., Wang, X., Wang, X., & Zhang, Q. (2014). Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo. International Journal of Pharmaceutics , 471 (1–2), 525–535. https://doi.org/10.1016/j.ijpharm.2014.05.032
Lv, S., Tang, Z., Li, M., Lin, J., Song, W., Liu, H., … Chen, X. (2014). Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer.Biomaterials , 35 (23), 6118–6129. https://doi.org/10.1016/j.biomaterials.2014.04.034
Macheda, M. L., Rogers, S., & Best, J. D. (2005). Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.Journal of Cellular Physiology , 202 (3), 654–662.
Mamaeva, V., Niemi, R., Beck, M., Özliseli, E., Desai, D., Landor, S., … others. (2016). Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying $γ$-secretase inhibitors. Molecular Therapy , 24 (5), 926–936.
Mancini, M., Gariboldi, M. B., Taiana, E., Bonzi, M. C., Craparotta, I., Pagin, M., & Monti, E. (2014). Co-targeting the IGF system and HIF-1 inhibits migration and invasion by (triple-negative) breast cancer cells. British Journal of Cancer , 110 (12), 2865.
Marques, J. G., Gaspar, V. M., Markl, D., Costa, E. C., Gallardo, E., & Correia, I. J. (2014). Co-delivery of sildenafil (Viagra®) and crizotinib for synergistic and improved anti-tumoral therapy.Pharmaceutical Research , 31 (9), 2516–2528. https://doi.org/10.1007/s11095-014-1347-x
Mojica Pisciotti, M. L., Lima, E., Vasquez Mansilla, M., Tognoli, V. E., Troiani, H. E., Pasa, A. A., … Zysler, R. D. (2014). In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: Magnetic targeting. Journal of Biomedical Materials Research - Part B Applied Biomaterials , 102 (4), 860–868. https://doi.org/10.1002/jbm.b.33068
Moret, I., Peris, J. E., Guillem, V. M., Benet, M., Revert, F., Das\í, F., … Aliño, S. F. (2001). Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release , 76 (1–2), 169–181.
Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews , 55 (3), 329–347.
Patil, Y., & Panyam, J. (2009). Polymeric nanoparticles for siRNA delivery and gene silencing. International Journal of Pharmaceutics , 367 (1–2), 195–203.
Peng, S. F., Hsu, H. K., Lin, C. C., Cheng, Y. M., & Hsu, K. H. (2017). Novel PEI/Poly-γ-gutamic acid nanoparticles for high efficient siRNA and plasmid DNA co-delivery. Molecules , 22 (1), 1–16. https://doi.org/10.3390/molecules22010086
Perez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M. J. (2001a). Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release , 75 (1–2), 211–224. https://doi.org/10.1016/S0168-3659(01)00397-2
Perez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M. J. (2001b). Poly (lactic acid)-poly (ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release , 75 (1–2), 211–224.
Pouponneau, P., Leroux, J.-C., & Martel, S. (2009). Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials , 30 (31), 6327–6332.
Puppo, C., Massollo, M., Paparo, F., Camellino, D., Piccardo, A., Shoushtari Zadeh Naseri, M., … Cimmino, M. A. (2014). Giant cell arteritis: a systematic review of the qualitative and semiquantitative methods to assess vasculitis with 18F-fluorodeoxyglucose positron emission tomography. BioMed Research International , 2014 .
Rafat, M., Cléroux, C. A., Fong, W. G., Baker, A. N., Leonard, B. C., O’Connor, M. D., & Tsilfidis, C. (2010). PEG-PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells.Biomaterials , 31 (12), 3414–3421. https://doi.org/10.1016/j.biomaterials.2010.01.031
Sadeghi, F., Hadizadeh, F., Sazmand, S., Shahrokhi, S., Seifi, M., & Alibolandi, M. (2015). Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin.International Journal of Pharmaceutical Investigation ,5 (3), 134. https://doi.org/10.4103/2230-973X.160846
Sant, S., Iyer, D., Gaharwar, A., Patel, A., & Khademhosseini, A. (2013). Effect of biodegradation and de novo matrix synthesis on the mechanical properties of VIC-seeded PGS-PCL scaffolds. Acta Biomater , 9 (4), 5963–5973. https://doi.org/10.1016/j.actbio.2012.11.014
Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research ,18 (6), 2335–2340.
Sim, T., Park, G., Min, H., Kang, S., Lim, C., Bae, S., … Oh, K. T. (2017). Development of a gene carrier using a triblock co-polyelectrolyte with poly(ethylene imine)-poly(lactic acid)-poly(ethylene glycol). Journal of Bioactive and Compatible Polymers , 32 (3), 280–292. https://doi.org/10.1177/0883911516671154
Smith, C. J., Volkert, W. A., & Hoffman, T. J. (2005). Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nuclear Medicine and Biology , 32 (7), 733–740.
Son, S., & Kim, W. J. (2010). Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Biomaterials ,31 (1), 133–143.
Talpur, N., Echard, B., Ingram, C., Bagchi, D., & Preuss, H. (2005). Effects of a novel formulation of essential oils on glucose–insulin metabolism in diabetic and hypertensive rats: a pilot study.Diabetes, Obesity and Metabolism , 7 (2), 193–199.
Wang, J., Xu, C.-F., Liu, A., Sun, C.-Y., & Yang, X.-Z. (2016). Delivery of siRNA with nanoparticles based on PEG–PLA block polymer for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine , 2 (12), 464.
Wang, Qian, Li, C., Ren, T., Chen, S., Ye, X., Guo, H., … others. (2017). Poly (vinyl methyl ether/maleic anhydride)-Doped PEG–PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency. Molecular Pharmaceutics , 14 (10), 3598–3608.
Wang, Qiang, Frolova, A. I., Purcell, S., Adastra, K., Schoeller, E., Chi, M. M., … Moley, K. H. (2010). Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS One ,5 (12), e15901.
Wang, S., Luo, Y., Zeng, S., Luo, C., Yang, L., Liang, Z., & Wang, Y. (2013). Dodecanol-poly(d,l-lactic acid)-b-poly (ethylene glycol)-folate (Dol-PLA-PEG-FA) nanoparticles: Evaluation of cell cytotoxicity and selecting capability in vitro. Colloids and Surfaces B: Biointerfaces , 102 , 130–135. https://doi.org/10.1016/j.colsurfb.2012.07.030
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology , 8 (6), 519.
Xia, B., Dong, C., Zhang, W. Y., Lu, Y., Chen, J. H., & Shi, J. Sen. (2013). Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells. Science China Life Sciences , 56 (1), 82–89. https://doi.org/10.1007/s11427-012-4422-8
Xiong, J., Meng, F., Wang, C., Cheng, R., Liu, Z., & Zhong, Z. (2011). Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. Journal of Materials Chemistry , 21 (15), 5786–5794. https://doi.org/10.1039/c0jm04410e
Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C., … Chu, P. K. (2014). Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials ,35 (1), 344–355. https://doi.org/10.1016/j.biomaterials.2013.09.035
Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C., … others. (2014). Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials ,35 (1), 344–355.
Yang, S.-J., Lin, F.-H., Tsai, K.-C., Wei, M.-F., Tsai, H.-M., Wong, J.-M., & Shieh, M.-J. (2010). Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjugate Chemistry , 21 (4), 679–689.
Yang, X. Z., Dou, S., Sun, T. M., Mao, C. Q., Wang, H. X., & Wang, J. (2011). Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. Journal of Controlled Release ,156 (2), 203–211. https://doi.org/10.1016/j.jconrel.2011.07.035
Zhang, L. (2014). Modified Inorganic Nanostructures: Cytotoxicity and Biological Applications in Gene and Drug Delivery . The Chinese University of Hong Kong (Hong Kong).
Zhang, L., Gong, F., Zhang, F., Ma, J., Zhang, P., & Shen, J. (2013). Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. International Journal of Nanomedicine , 8 , 1517–1524. https://doi.org/10.2147/IJN.S43263
Zintchenko, A., Philipp, A., Dehshahri, A., & Wagner, E. (2008). Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chemistry , 19 (7), 1448–1455. https://doi.org/10.1021/bc800065f
Zou, S., Cao, N., Cheng, D., Zheng, R., Wang, J., Zhu, K., & Shuai, X. (2012). Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin.International Journal of Nanomedicine , 7 , 3823–3835. https://doi.org/10.2147/IJN.S29328
Zwicke, G. L., Mansoori, G. A., & Jeffery, C. J. (2012). Targeting of Cancer Nanotherapeutics. Nano Reviews , 1 , 1–11. https://doi.org/10.3402/nano.v3i0.18496
Fig. 1. 1H NMR spectra of PLA-PEG-FA (A) and PLA-PEG-Glu (B) in D2O solvent
Fig. 2. FT-IR spectrum of various copolymers and magnetic nanoparticles
Fig. 3. TGA thermograms of magnetic nanoparticles and different copolymers
Fig. 4. the particle size and zeta potential of the both PTX/siRNA encapsulated and blank nanoparticles
Fig. 5. TEM image of NPsA/siRNA/PTX, NPsB/siRNA/PTX and NPsAB/siRNA/PTX nanoparticles
Fig. 6. Magnetic behavior (A) and encapsulation efficiency (B) of the nanoparticles
Fig. 7. DNA release profiles of the nanoparticles in PBS buffer (pH=7.4) (Mean ± standard deviation) (n = 3).
Fig. 8. Biocompatibility of nanoparticles (A) and the effect of PTX and siRNA loaded into the nanoparticles on MCF-7 cells (B) Fluorescence microscopy images of MCF-7 cells were treated with NPsA/PTX/siRNA, NPsB/PTX/siRNA and NPsAB/PTX/siRNA after 48 hours incubation.