References
Ajdari, A. (2000). Pumping liquids using asymmetric electrode arrays.Physical Review E, 61 (1), R45.
Alipanah, M., & Ramiar, A. (2017). High efficiency micromixing technique using periodic induced charge electroosmotic flow: A numerical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524 , 53-65.
Antfolk, M., Kim, S. H., Koizumi, S., Fujii, T., & Laurell, T. (2017). Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Scientific reports, 7 , 46507.
Azarmanesh, M., Dejam, M., Azizian, P., Yesiloz, G., Mohamad, A. A., & Sanati-Nezhad, A. (2019). Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells.Scientific reports, 9 (1), 6723.
Azimi, S., Nazari, M., & Daghighi, Y. (2017). Developing a fast and tunable micro-mixer using induced vortices around a conductive flexible link. Physics of Fluids, 29 (3), 032004.
Azizian, P., Azarmanesh, M., Dejam, M., Mohammadi, M., Shamsi, M., Sanati-Nezhad, A., & Mohamad, A. A. (2019). Electrohydrodynamic formation of single and double emulsions for low interfacial tension multiphase systems within microfluidics. Chemical Engineering Science, 195 , 201-207. doi:10.1016/j.ces.2018.11.050
Barani, A., Paktinat, H., Janmaleki, M., Mohammadi, A., Mosaddegh, P., Fadaei-Tehrani, A., & Sanati-Nezhad, A. (2016). Microfluidic integrated acoustic waving for manipulation of cells and molecules.Biosensors and Bioelectronics, 85 , 714-725.
Bazant, M. Z. (2011). Induced-charge electrokinetic phenomenaElectrokinetics and Electrohydrodynamics in Microsystems (pp. 221-297): Springer.
Bazant, M. Z. (2015). Electrokinetics meets electrohydrodynamics.Journal of Fluid Mechanics, 782 , 1-4.
Bazant, M. Z., Kilic, M. S., Storey, B. D., & Ajdari, A. (2009). Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Advances in colloid and interface science, 152 (1-2), 48-88.
Bazant, M. Z., & Squires, T. M. (2004). Induced-charge electrokinetic phenomena: theory and microfluidic applications. Physical review letters, 92 (6), 066101.
Bazant, M. Z., & Squires, T. M. (2010). Induced-charge electrokinetic phenomena. Current Opinion in Colloid & Interface Science, 15 (3), 203-213.
Bazazi, P., Sanati-Nezhad, A., & Hejazi, S. (2018). Wetting dynamics in two-liquid systems: Effect of the surrounding phase viscosity.Physical Review E, 97 (6), 063104.
Bhagat, A. A. S., Bow, H., Hou, H. W., Tan, S. J., Han, J., & Lim, C. T. (2010). Microfluidics for cell separation. Medical & biological engineering & computing, 48 (10), 999-1014.
Bhaumik, S. K., Roy, R., Chakraborty, S., & DasGupta, S. (2014). Low-voltage electrohydrodynamic micropumping of emulsions. Sensors and Actuators B: Chemical, 193 , 288-293. doi:10.1016/j.snb.2013.11.082
Bown, M., & Meinhart, C. (2006). AC electroosmotic flow in a DNA concentrator. Microfluidics and nanofluidics, 2 (6), 513-523.
Boymelgreen, A. M., & Miloh, T. (2012). Induced‐charge electrophoresis of uncharged dielectric spherical J anus particles.Electrophoresis, 33 (5), 870-879.
Brown, A., Smith, C., & Rennie, A. (2000). Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes.Physical Review E, 63 (1), 016305.
Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing within microfluidic devices. Top Curr Chem, 304 , 27-68. doi:10.1007/128_2011_150
Chen, J.-L., Shih, W.-H., & Hsieh, W.-H. (2013). AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes.Sensors and Actuators B: Chemical, 188 , 11-21.
Chen, X., Ren, Y., Liu, W., Feng, X., Jia, Y., Tao, Y., & Jiang, H. (2017). A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmotic prefocusing and dielectrophoretic separation. Analytical chemistry, 89 (17), 9583-9592.
Chen, X., Song, Y., Li, D., & Hu, G. (2015). Deformation and interaction of droplet pairs in a microchannel under ac electric fields.Physical Review Applied, 4 (2), 024005.
Cho, M., Chung, S., Kim, Y. T., Jung, J. H., & Seo, T. S. (2015). A fully integrated microdevice for biobarcode assay based biological agent detection. Lab on a Chip, 15 (13), 2744-2748.
Collins, D. J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M., & Neild, A. (2015). Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nature communications, 6 , 8686.
Daghighi, Y., Gao, Y., & Li, D. (2011). 3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochimica Acta, 56 (11), 4254-4262. doi:10.1016/j.electacta.2011.01.083
Daghighi, Y., & Li, D. (2011). Micro-valve using induced-charge electrokinetic motion of Janus particle. Lab on a Chip, 11 (17), 2929. doi:10.1039/c1lc20229d
Daghighi, Y., & Li, D. (2013). Numerical study of a novel induced-charge electrokinetic micro-mixer. Analytica Chimica Acta, 763 , 28-37. doi:10.1016/j.aca.2012.12.010
Daghighi, Y., Sinn, I., Kopelman, R., & Li, D. (2013). Experimental validation of induced-charge electrokinetic motion of electrically conducting particles. Electrochimica Acta, 87 , 270-276. doi:10.1016/j.electacta.2012.09.021
Debesset, S., Hayden, C., Dalton, C., Eijkel, J. C., & Manz, A. (2004). An AC electroosmotic micropump for circular chromatographic applications. Lab on a Chip, 4 (4), 396-400.
Dehghan Manshadi, M. K., Khojasteh, D., Mohammadi, M., & Kamali, R. (2016). Electroosmotic micropump for lab‐on‐a‐chip biomedical applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29 (5), 845-858.
Du, K., Liu, W., Ren, Y., Jiang, T., Song, J., Wu, Q., & Tao, Y. (2018). A High-Throughput Electrokinetic Micromixer via AC Field-Effect Nonlinear Electroosmosis Control in 3D Electrode Configurations.Micromachines, 9 (9), 432.
Flittner, R., & Přibyl, M. (2017). Computational fluid dynamics model of rhythmic motion of charged droplets between parallel electrodes.Journal of Fluid Mechanics, 822 , 31-53.
Gangwal, S., Cayre, O. J., Bazant, M. Z., & Velev, O. D. (2008). Induced-charge electrophoresis of metallodielectric particles.Physical review letters, 100 (5), 058302.
Gao, X., & Li, Y. X. (2018). Ultra-fast AC electro-osmotic micropump with arrays of asymmetric ring electrode pairs in 3D cylindrical microchannel. Journal of Applied Physics, 123 (16), 164301.
Gómez-Pastora, J., Karampelas, I., Bringas, E., Furlani, E. P., & Ortiz, I. (2017). Computational Analysis of a Two-Phase Continuous-Flow Magnetophoretic Microsystem for Particle Separation from Biological Fluids Computer Aided Chemical Engineering (Vol. 40, pp. 1183-1188): Elsevier.
Guo, F., Ji, X.-H., Liu, K., He, R.-X., Zhao, L.-B., Guo, Z.-X., . . . Zhao, X.-Z. (2010). Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 96 (19), 193701.
Haghighi, F., Talebpour, Z., & Nezhad, A. S. (2018). Towards fully integrated liquid chromatography on a chip: Evolution and evaluation.TrAC Trends in Analytical Chemistry, 105 , 302-337.
Hammarström, B. r., Nilson, B., Laurell, T., Nilsson, J., & Ekström, S. (2014). Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS. Analytical chemistry, 86 (21), 10560-10567.
Harnett, C. K., Templeton, J., Dunphy-Guzman, K. A., Senousy, Y. M., & Kanouff, M. P. (2008). Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab on a Chip, 8 (4), 565-572.
Harrison, H., Lu, X., Patel, S., Thomas, C., Todd, A., Johnson, M., . . . Wang, J. (2015). Electrokinetic preconcentration of particles and cells in microfluidic reservoirs. Analyst, 140 (8), 2869-2875.
Hassanpour‐Tamrin, S., Taheri, H., Mahdi Hasani‐Sadrabadi, M., Hamed Shams Mousavi, S., Dashtimoghadam, E., Tondar, M., . . . Jacob, K. I. (2017). Nanoscale optoregulation of neural stem cell differentiation by intracellular alteration of redox balance. Advanced Functional Materials, 27 (38), 1701420.
Hilber, W., Weiss, B., Saeed, A., Holly, R., & Jakoby, B. (2009). Density-dependent particle separation in microchannels using 3D AC-driven electro-osmotic pumps. Sensors and Actuators A: Physical, 156 (1), 115-120.
Hu, Q., Guo, J., Cao, Z., & Jiang, H. (2018). Asymmetrical Induced Charge Electroosmotic Flow on a Herringbone Floating Electrode and Its Application in a Micromixer. Micromachines, 9 (8), 391.
Hu, Q., Ren, Y., Liu, W., Chen, X., Tao, Y., & Jiang, H. (2017). Fluid flow and mixing induced by ac continuous electrowetting of liquid metal droplet. Micromachines, 8 (4), 119.
Huang, C.-C., Bazant, M. Z., & Thorsen, T. (2010). Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab on a Chip, 10 (1), 80-85.
Huang, K.-R., Hong, Z.-H., & Chang, J.-S. (2014). Microfluidic mixing on application of traveling wave electroosmosis. European Journal of Mechanics-B/Fluids, 48 , 153-164.
Islam, N., & Reyna, J. (2012). Bi‐directional flow induced by an AC electroosmotic micropump with DC voltage bias. Electrophoresis, 33 (7), 1191-1197.
Jain, M., Yeung, A., & Nandakumar, K. (2009). Induced charge electro osmotic mixer: Obstacle shape optimization. Biomicrofluidics, 3 (2), 022413.
Jain, M., Yeung, A., & Nandakumar, K. (2010). Analysis of Electrokinetic Mixing Techniques Using Comparative Mixing Index.Micromachines, 1 (2), 36-47. doi:10.3390/mi1020036
Jain, M., Yeung, A., & Nandakumar, K. (2010). Induced charge electro-osmotic concentration gradient generator.Biomicrofluidics, 4 (1), 014110.
Jia, X., Wang, W., Han, Q., Wang, Z., Jia, Y., & Hu, Z. (2016). Micromixer based preparation of functionalized liposomes and targeting drug delivery. ACS medicinal chemistry letters, 7 (4), 429-434.
Jia, Y., Ren, Y., Hou, L., Liu, W., Deng, X., & Jiang, H. (2017). Sequential Coalescence Enabled Two‐Step Microreactions in Triple‐Core Double‐Emulsion Droplets Triggered by an Electric Field. Small, 13 (46), 1702188.
Jia, Y., Ren, Y., Hou, L., Liu, W., Jiang, T., Deng, X., . . . Jiang, H. (2018). Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on a Chip, 18 (7), 1121-1129.
Jia, Y., Ren, Y., & Jiang, H. (2015). Continuous-flow focusing of microparticles using induced-charge electroosmosis in a microfluidic device with 3D AgPDMS electrodes. RSC Advances, 5 (82), 66602-66610. doi:10.1039/c5ra14854e
Jung, Y.-M., Oh, H.-C., & Kang, I. S. (2008). Electrical charging of a conducting water droplet in a dielectric fluid on the electrode surface.Journal of colloid and interface science, 322 (2), 617-623.
Kamali, R., & Manshadi, M. K. D. (2016). Numerical simulation of the leaky dielectric microdroplet generation in electric fields.International Journal of Modern Physics C, 27 (01), 1650012.
Kamali, R., Manshadi, M. K. D., & Mansoorifar, A. (2016). Numerical analysis of non Newtonian fluid flow in a low voltage cascade electroosmotic micropump. Microsystem Technologies, 22 (12), 2901-2907.
Kazemi, S., Nourian, V., Nobari, M., & Movahed, S. (2017). Two dimensional numerical study on mixing enhancement in micro-channel due to induced charge electrophoresis. Chemical Engineering and Processing: Process Intensification, 120 , 241-250.
Khetani, S., Mohammadi, M., & Nezhad, A. S. (2018). Filter‐based isolation, enrichment, and characterization of circulating tumor cells.Biotechnology and bioengineering, 115 (10), 2504-2529.
Kilic, M. S., & Bazant, M. Z. (2011). Induced‐charge electrophoresis near a wall. Electrophoresis, 32 (5), 614-628.
Kim, B. J., Yoon, S. Y., Sung, H. J., & Smith, C. G. (2007). Simultaneous mixing and pumping using asymmetric microelectrodes.Journal of Applied Physics, 102 (7), 074513.
Kim, D., Luo, J., Arriaga, E. A., & Ros, A. (2018). Deterministic Ratchet for Sub-micrometer (Bio) particle Separation. Analytical chemistry, 90 (7), 4370-4379.
Kim, S.-J., Wang, F., Burns, M. A., & Kurabayashi, K. (2009). Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Analytical chemistry, 81 (11), 4510-4516.
Kim, S., Han, S.-I., Park, M.-J., Jeon, C.-W., Joo, Y.-D., Choi, I.-H., & Han, K.-H. (2013). Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Analytical chemistry, 85 (5), 2779-2786.
Kinahan, D. J., Mangwanya, F., Garvey, R., Chung, D. W. Y., Lipinski, A., Julius, L. A. N., . . . Ducrée, J. (2016). Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform. Journal of Physics: Conference Series, 757 . doi:10.1088/1742-6596/757/1/012013
Kung, Y. C., Huang, K. W., Chong, W., & Chiou, P. Y. (2016). Tunnel Dielectrophoresis for Tunable, Single‐Stream Cell Focusing in Physiological Buffers in High‐Speed Microfluidic Flows. Small, 12 (32), 4343-4348.
Kuo, C.-T., & Liu, C.-H. (2008). A novel microfluidic driver via AC electrokinetics. Lab on a Chip, 8 (5), 725-733.
Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic mixing: a review. International journal of molecular sciences, 12 (5), 3263-3287.
Lee, C.-Y., Wang, W.-T., Liu, C.-C., & Fu, L.-M. (2016). Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 288 , 146-160.
Lenshof, A., Magnusson, C., & Laurell, T. (2012). Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.Lab on a Chip, 12 (7), 1210-1223.
Li, M., & Li, D. (2016a). Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Advances in colloid and interface science, 236 , 142-151.
Li, M., & Li, D. (2016b). Vortices around Janus droplets under externally applied electrical field. Microfluidics and nanofluidics, 20 (5), 79.
Li, M., & Li, D. (2017). Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. Journal of Chromatography A, 1501 , 151-160.
Li, M., & Li, D. (2018). Microvalve using electrokinetic motion of electrically induced Janus droplet. Analytica chimica acta, 1021 , 85-94.
Lian, M., & Wu, J. (2009). Ultrafast micropumping by biased alternating current electrokinetics. Applied Physics Letters, 94 (6), 064101.
Lin, Y., Skjetne, P., & Carlson, A. (2012). A phase field model for multiphase electro-hydrodynamic flow. International Journal of Multiphase Flow, 45 , 1-11.
Liu, R. H., Lenigk, R., & Grodzinski, P. A. (2003). Acoustic micromixer for enhancement of DNA biochip systems. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2 (3), 178-185.
Liu, W., Ren, Y., Tao, Y., Chen, X., Yao, B., Hui, M., & Bai, L. (2017). Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Physics of Fluids, 29 (11), 112002.
Liu, W., Shao, J., Ren, Y., Liu, J., Tao, Y., Jiang, H., & Ding, Y. (2016). On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.Biomicrofluidics, 10 (3), 034105.
Loucaides, N., Ramos, A., & Georghiou, G. E. (2007). Novel systems for configurable AC electroosmotic pumping. Microfluidics and nanofluidics, 3 (6), 709-714.
Manshadi, M. K., Saadat, M., Mohammadi, M., Shamsi, M., Dejam, M., Kamali, R., & Sanati-Nezhad, A. (2018). Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug delivery, 25 (1), 1963-1973.
Manshadi, M. K. D., Khojasteh, D., Mansoorifar, A., & Kamali, R. (2016). Efficiency enhancement of ICEK micromixer by a rectangular obstacle. Paper presented at the 3rd annual international conference on new research achievements in chemistry and chemical engineering. Ferdowsi University of Mashhad, Tehran Google Scholar.
Manshadi, M. K. D., Nikookar, H., Saadat, M., & Kamali, R. (2019). Numerical analysis of non-uniform electric field effects on induced charge electrokinetics flow with application in micromixers.Journal of Micromechanics and Microengineering .
Mirzajani, H., Cheng, C., Wu, J., Ivanoff, C. S., Aghdam, E. N., & Ghavifekr, H. B. (2016). Design and characterization of a passive, disposable wireless AC-electroosmotic lab-on-a-film for particle and fluid manipulation. Sensors and Actuators B: Chemical, 235 , 330-342.
Mohammadi, M., Kinahan, D. J., & Ducrée, J. (2016). Lumped-Element Modeling for Rapid Design and Simulation of Digital Centrifugal Microfluidic Systems Lab-on-a-Chip Fabrication and Application .
Mohammadi, M., Madadi, H., Casals-Terré, J., & Sellarès, J. (2015). Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Analytical and bioanalytical chemistry, 407 (16), 4733-4744.
Morgan, H., Green, N. G., Ramos, A., & García-Sánchez, P. (2007). Control of two-phase flow in a microfluidic system using ac electric fields. Applied Physics Letters, 91 (25), 254107.
Mori, Y., & Young, Y.-N. (2018). From electrodiffusion theory to the electrohydrodynamics of leaky dielectrics through the weak electrolyte limit. Journal of Fluid Mechanics, 855 , 67-130.
Nobari, M., Movahed, S., Nourian, V., & Kazemi, S. (2016). A numerical investigation of a novel micro-pump based on the induced charged electrokinetic phenomenon in the presence of a conducting circular obstacle. Journal of Electrostatics, 83 , 97-107.
Olesen, L. H., Bruus, H., & Ajdari, A. (2006). ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Physical Review E, 73 (5), 056313.
Park, B.-O., & Song, S. (2012). Effects of multiple electrode pairs on the performance of a micromixer using dc-biased ac electro-osmosis.Journal of Micromechanics and Microengineering, 22 (11), 115034.
Paustian, J. S., Pascall, A. J., Wilson, N. M., & Squires, T. M. (2014). Induced charge electroosmosis micropumps using arrays of Janus micropillars. Lab on a Chip, 14 (17), 3300-3312.
Piñón, M. V., Benítez, B. C., Pramanick, B., Perez-Gonzalez, V. H., Madou, M. J., Martinez-Chapa, S. O., & Hwang, H. (2017). Direct current-induced breakdown to enhance reproducibility and performance of carbon-based interdigitated electrode arrays for AC electroosmotic micropumps. Sensors and Actuators A: Physical, 262 , 10-17.
Ramos, A., García-Sánchez, P., & Morgan, H. (2016). AC electrokinetics of conducting microparticles: A review. Current Opinion in Colloid & Interface Science, 24 , 79-90. doi:10.1016/j.cocis.2016.06.018
Ramos, A., Garcia, P., Gonzalez, A., Castellanos, A., Morgan, H., & Green, N. G. (2005). AC electrokinetic pumping of liquids using arrays of microelectrodes. Paper presented at the Bioengineered and Bioinspired Systems II.
Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., & Morgan, H. (2003). Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Physical Review E, 67 (5), 056302.
Ramos, A., Morgan, H., Green, N. G., & Castellanos, A. (1999). AC electric-field-induced fluid flow in microelectrodes. Journal of colloid and interface science, 217 (2).
Rashidi, S., Bafekr, H., Valipour, M. S., & Esfahani, J. A. (2018). A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing-Process Intensification, 126 , 108-122.
Ren, Y., Liu, J., Liu, W., Lang, Q., Tao, Y., Hu, Q., . . . Jiang, H. (2016). Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip, 16 (15), 2803-2812.
Ren, Y., Liu, W., Jia, Y., Tao, Y., Shao, J., Ding, Y., & Jiang, H. (2015). Induced-charge electroosmotic trapping of particles. Lab on a Chip, 15 (10), 2181-2191.
Ren, Y., Liu, W., Tao, Y., Hui, M., & Wu, Q. (2018). On ac-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing. Micromachines, 9 (3), 102.
Ren, Y., Liu, X., Liu, W., Tao, Y., Jia, Y., Hou, L., . . . Jiang, H. (2018). Flexible particle flow‐focusing in microchannel driven by droplet‐directed induced‐charge electroosmosis. Electrophoresis, 39 (4), 597-607.
Rose, K. A., Meier, J. A., Dougherty, G. M., & Santiago, J. G. (2007). Rotational electrophoresis of striped metallic microrods. Physical Review E, 75 (1), 011503.
Rouabah, H. A., Park, B. Y., Zaouk, R. B., Morgan, H., Madou, M. J., & Green, N. G. (2011). Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8.Journal of Micromechanics and Microengineering, 21 (3), 035018.
Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507 (7491), 181-189.
Saintillan, D. (2008). Nonlinear interactions in electrophoresis of ideally polarizable particles. Physics of Fluids, 20 (6), 067104.
Saintillan, D., Darve, E., & Shaqfeh, E. S. (2006). Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. Journal of Fluid Mechanics, 563 , 223-259.
Saintillan, D., Shaqfeh, E. S., & Darve, E. (2006). Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis.Physics of Fluids, 18 (12), 121701.
Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications.Lab on a chip, 16 (13), 2376-2396.
Sasaki, N., Kitamori, T., & Kim, H.-B. (2006). AC electroosmotic micromixer for chemical processing in a microchannel. Lab on a Chip, 6 (4), 550-554.
Sasaki, N., Kitamori, T., & Kim, H.-B. (2010). Experimental and theoretical characterization of an AC electroosmotic micromixer.Analytical Sciences, 26 (7), 815-819.
Senousy, Y., & Harnett, C. (2010). Fast three dimensional ac electro-osmotic pumps with nonphotolithographic electrode patterning.Biomicrofluidics, 4 (3), 036501.
Shamloo, A., Madadelahi, M., & Abdorahimzadeh, S. (2017). Three-dimensional numerical simulation of a novel electroosmotic micromixer. Chemical Engineering and Processing: Process Intensification, 119 , 25-33. doi:10.1016/j.cep.2017.05.005
Shamsi, M., Mohammadi, A., Manshadi, M. K., & Sanati-Nezhad, A. (2019). Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release .
Shoji, S., & Kawai, K. (2011). Flow control methods and devices in micrometer scale channels Microfluidics (pp. 1-25): Springer.
Song, Y., Wang, C., Li, M., Pan, X., & Li, D. (2016). Focusing particles by induced charge electrokinetic flow in a microchannel.Electrophoresis, 37 (4), 666-675.
Squires, T. M. (2009). Induced-charge electrokinetics: fundamental challenges and opportunities. Lab on a Chip, 9 (17), 2477. doi:10.1039/b906909g
Squires, T. M., & Bazant, M. Z. (2004). Induced-charge electro-osmosis.Journal of Fluid Mechanics, 509 , 217-252.
Squires, T. M., & Bazant, M. Z. (2006). Breaking symmetries in induced-charge electro-osmosis and electrophoresis. Journal of Fluid Mechanics, 560 , 65-101.
Studer, V., Pepin, A., Chen, Y., & Ajdari, A. (2002). Fabrication of microfluidic devices for AC electrokinetic fluid pumping.Microelectronic Engineering, 61 , 915-920.
Studer, V., Pépin, A., Chen, Y., & Ajdari, A. (2004). An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst, 129 (10), 944-949.
Sugioka, H. (2010). High-speed rotary microvalves in water using hydrodynamic force due to induced-charge electrophoresis. Physical Review E, 81 (3), 036301.
Tang, M., Wang, G., Kong, S.-K., & Ho, H.-P. (2016). A Review of Biomedical Centrifugal Microfluidic Platforms. Micromachines, 7 (2). doi:10.3390/mi7020026
Tao, Y., Ren, Y., Liu, W., Wu, Y., Jia, Y., Lang, Q., & Jiang, H. (2016). Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis, 37 (10), 1326-1336.
Tatlιsoz, M. M., & Canpolat, Ç. (2018). Pulsatile flow micromixing coupled with ICEO for non-Newtonian fluids. Chemical Engineering and Processing-Process Intensification, 131 , 12-19.
Tawfik, M. E., & Diez, F. J. (2017). Maximizing fluid delivered by bubble‐free electroosmotic pump with optimum pulse voltage waveform.Electrophoresis, 38 (5), 563-571.
Taylor, G. I. (1966). Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A, 291 (1425), 159-166.
Tikka, A. C., Faulkner, M., & Al-Sarawi, S. F. (2011). Secure wireless actuation of an implanted microvalve for drug delivery applications.Smart Materials and Structures, 20 (10), 105011.
Urbanski, J. P., Thorsen, T., Levitan, J. A., & Bazant, M. Z. (2006). Fast ac electro-osmotic micropumps with nonplanar electrodes.Applied Physics Letters, 89 (14), 143508.
Vigolo, D., Rusconi, R., Stone, H. A., & Piazza, R. (2010). Thermophoresis: microfluidics characterization and separation.Soft matter, 6 (15), 3489-3493.
Wang, C., Li, M., Song, Y., Pan, X., & Li, D. (2018). Electrokinetic motion of a spherical micro particle at an oil− water interface in microchannel. Electrophoresis, 39 (5-6), 807-815.
Wang, C., Song, Y., Pan, X., & Li, D. (2016). A novel microfluidic valve controlledby induced charge electro-osmotic flow. Journal of Micromechanics and Microengineering, 26 (7), 075002. doi:10.1088/0960-1317/26/7/075002
Wang, C., Song, Y., Pan, X., & Li, D. (2018a). Electrokinetic motion of a submerged oil droplet near an air–water interface. Chemical Engineering Science, 192 , 264-272.
Wang, C., Song, Y., Pan, X., & Li, D. (2018b). Electrokinetic Motion of an Oil Droplet Attached to a Water–Air Interface from Below. The Journal of Physical Chemistry B, 122 (5), 1738-1746.
Wang, X., Zandi, M., Ho, C.-C., Kaval, N., & Papautsky, I. (2015). Single stream inertial focusing in a straight microchannel. Lab on a Chip, 15 (8), 1812-1821.
Wu, J. (2008). Ac electro-osmotic micropump by asymmetric electrode polarization. Journal of Applied Physics, 103 (2), 024907.
Wu, J., He, Z., Chen, Q., & Lin, J.-M. (2016). Biochemical analysis on microfluidic chips. TrAC Trends in Analytical Chemistry, 80 , 213-231.
Wu, X., Ramiah Rajasekaran, P., & Martin, C. R. (2016). An alternating current electroosmotic pump based on conical nanopore membranes.ACS nano, 10 (4), 4637-4643.
Wu, Y., Ren, Y., Tao, Y., Hou, L., Hu, Q., & Jiang, H. (2017). A novel micromixer based on the alternating current-flow field effect transistor. Lab on a Chip, 17 (1), 186-197.
Wu, Y., Ren, Y., Tao, Y., Hou, L., & Jiang, H. (2016). Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis. Analytical chemistry, 88 (23), 11791-11798.
Wu, Z., Gao, Y., & Li, D. (2009). Electrophoretic motion of ideally polarizable particles in a microchannel. Electrophoresis, 30 (5), 773-781.
Wu, Z., & Li, D. (2008a). Micromixing using induced-charge electrokinetic flow. Electrochimica Acta, 53 (19), 5827-5835. doi:10.1016/j.electacta.2008.03.039
Wu, Z., & Li, D. (2008b). Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluidics and nanofluidics, 5 (1), 65-76.
Wu, Z., & Li, D. (2009). Induced-charge electrophoretic motion of ideally polarizable particles. Electrochimica Acta, 54 (15), 3960-3967. doi:10.1016/j.electacta.2009.02.016
Wuzhang, J., Song, Y., Sun, R., Pan, X., & Li, D. (2015). Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 36 (19), 2489-2497.
Yalcin, S. E., Sharma, A., Qian, S., Joo, S. W., & Baysal, O. (2011). On-demand particle enrichment in a microfluidic channel by a locally controlled floating electrode. Sensors and Actuators B: Chemical, 153 (1), 277-283.
Yang, H., Jiang, H., Ramos, A., & García-Sánchez, P. (2009). AC electrokinetic pumping on symmetric electrode arrays.Microfluidics and nanofluidics, 7 (6), 767.
Yang Ng, W., Ramos, A., Cheong Lam, Y., & Rodriguez, I. (2012). Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes. Biomicrofluidics, 6 (1), 012817.
Yariv, E. (2005). Induced-charge electrophoresis of nonspherical particles. Physics of Fluids, 17 (5), 051702.
Yariv, E. (2008). Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles. Journal of Fluid Mechanics, 613 , 85-94.
Yoon, M. S., Kim, B. J., & Sung, H. J. (2008). Pumping and mixing in a microchannel using AC asymmetric electrode arrays. International Journal of Heat and Fluid Flow, 29 (1), 269-280. doi:10.1016/j.ijheatfluidflow.2007.10.002
Yoshida, K., Sato, T., Eom, S. I., Kim, J.-w., & Yokota, S. (2017). A study on an AC electroosmotic micropump using a square pole–Slit electrode array. Sensors and Actuators A: Physical, 265 , 152-160.
Zeng, J., Chen, C., Vedantam, P., Tzeng, T.-R., & Xuan, X. (2013). Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluidics and nanofluidics, 15 (1), 49-55.
Zhang, F., & Li, D. (2014). A novel particle separation method based on induced‐charge electro‐osmotic flow and polarizability of dielectric particles. Electrophoresis, 35 (20), 2922-2929.
Zhang, F., & Li, D. (2015). Separation of dielectric Janus particles based on polarizability-dependent induced-charge electroosmotic flow.Journal of colloid and interface science, 448 , 297-305.
Zhang, K., Mi, X., & Sheng, B. (2013). Design of T-shaped micropump based on induced charge electroosmotic. Paper presented at the Abstract and Applied Analysis.
Zhang, K., Ren, Y., Hou, L., Feng, X., Chen, X., & Jiang, H. (2018). An efficient micromixer actuated by induced-charge electroosmosis using asymmetrical floating electrodes. Microfluidics and nanofluidics, 22 (11), 130.
Zhang, K., Tian, F.-Z., & Yu, M.-Z. (2012). Induced-charge electroosmosis around conducting and Janus cylinder in microchip.Thermal Science, 16 (5), 1502-1505.
Zhao, C. (2012). Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics.
Zhao, C., & Yang, C. (2012). Advances in electrokinetics and their applications in micro/nano fluidics. Microfluidics and nanofluidics, 13 (2), 179-203.
Zhao, C., & Yang, C. (2013). Electrokinetics of non-Newtonian fluids: a review. Adv Colloid Interface Sci, 201-202 , 94-108. doi:10.1016/j.cis.2013.09.001
Zhao, C., & Yang, C. (2018). Continuous-flow trapping and localized enrichment of micro-and nano-particles using induced-charge electrokinetics. Soft matter, 14 (6), 1056-1066.
Zhao, H., & Bau, H. H. (2007). On the effect of induced electro-osmosis on a cylindrical particle next to a surface. Langmuir, 23 (7), 4053-4063.
Zhao, K., & Li, D. (2018). Manipulation and separation of oil droplets by using asymmetric nano-orifice induced DC dielectrophoretic method.Journal of colloid and interface science, 512 , 389-397.
Zhou, C., Zhang, H., Li, Z., & Wang, W. (2016). Chemistry pumps: a review of chemically powered micropumps. Lab on a Chip, 16 (10), 1797-1811.