References
Altaras, N. E., Etzel, M. R., & Cameron, D. C. (2001). Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnology Progress ,17 (1), 52–56. https://doi.org/10.1021/bp000130b
Amador-Noguez, D., Brasg, I. A., Feng, X. J., Roquet, N., & Rabinowitz, J. D. (2011). Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum . Applied and Environmental Microbiology , 77 (22), 7984–7997. https://doi.org/10.1128/AEM.05374-11
Auch, A. F., Klenk, H.-P., & Göker, M. (2010). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences ,2 (1), 142–148. https://doi.org/10.4056/sigs.541628
Berezina, O. V., Brandt, A., Yarotsky, S., Schwarz, W. H., & Zverlov, V. V. (2009). Isolation of a new butanol-producing Clostridiumstrain: High level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicumisolate. Systematic and Applied Microbiology , 32 (7), 449–459. https://doi.org/10.1016/j.syapm.2009.07.005
Bhandiwad, A., Guseva, A., & Lynd, L. R. (2013). Metabolic Engineering of Thermoanaerobacterium thermosaccharolyticum for Increased n- Butanol Production for n -butanol production. Advances in Microbiology , 2013 (August 2015), 46–51. https://doi.org/10.1016/j.ymben.2013.10.012
Bhandiwad, A., Shaw, A. J., Guss, A., Guseva, A., Bahl, H., & Lynd, L. R. (2014). Metabolic engineering of Thermoanaerobacterium saccharolyticum for n -butanol production. Metabolic Engineering , 21 , 17–25. https://doi.org/10.1016/j.ymben.2013.10.012
Biswas, R., Huntemann, M., Clum, A., Pillay, M., Palaniappan, K., Varghese, N., … Gussc, A. M. (2018). Complete Genome Sequence ofThermoanaerobacterium sp. Strain RBIITD, a Butyrate- and Butanol-Producing Thermophile Ranjita. Genome Announcements ,6 (2), e01411-17.
Cameron, D. C., & Cooney, C. L. (1986). A novel ferementation: The production of R(-)-1,2-propanediol and acetol by Clostridium Thermosaccharolyticum . Nature Biotechnology , 4 (August), 719–725.
Cao, G., Ren, N., Wang, A., Lee, D. J., Guo, W., Liu, B., … Zhao, Q. (2009). Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16.International Journal of Hydrogen Energy , 34 (17), 7182–7188. https://doi.org/10.1016/j.ijhydene.2009.07.009
Cao, G., Zhao, L., Wang, A. J., Wang, Z. Y., & Ren, N. Q. (2014). Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology for Biofuels ,7 (1), 1–13. https://doi.org/10.1186/1754-6834-7-82
Debarbouille, M., Gardan, R., Arnaud, M., & Rapoport, G. (1999). Role of bkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis .Journal of Bacteriology , 181 (7), 2059–2066.
Demain, A. L., Newcomb, M., & Wu, J. H. D. (2005). Cellulase, Clostridia, and Ethanol. Thermophysics and Aeromechanics ,69 (1), 124–154. https://doi.org/10.1128/MMBR.69.1.124-154.2005
Dürre, P. (2007). Biobutanol: An attractive biofuel. Biotechnology Journal , 2 (12), 1525–1534. https://doi.org/10.1002/biot.200700168
Freier-Schröder, D., Wiegel, J. irge., & Gottschalk, G. (1989). Butanol formation by Clostridium thermosaccharolyticum at neutral pH Doris, 11 (11), 831–836.
Hill, J., Nelson, E., Tilman, D., Polasky, S., & Douglas, T. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences , 103 (30), 11206–11210. https://doi.org/10.5506/APhysPolB.44.1379
Hungate, R. E. (1950). The Anaerobic Mesophilic Cellulolytic Bacteria.Bacteriological Reviews , 14 , 1–49.
Jiang, Y., Guo, D., Lu, J., Dürre, P., Dong, W., Yan, W., … Xin, F. (2018). Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5.Biotechnology for Biofuels , 11 (1), 1–14. https://doi.org/10.1186/s13068-018-1092-1
Jones, D. T., & Woods, D. R. (1986). Acetone-Butanol Fermentation Revisited. Microbiological Reviews , 50 (4), 484–524.
Khamtib, S., & Reungsang, A. (2012). Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment. International Journal of Hydrogen Energy ,37 (17), 12219–12228. https://doi.org/10.1016/j.ijhydene.2012.06.038
Lamed, R., & Zeikus, J. G. (1980). Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum andThermoanaerobium brockii . Journal of Bacteriology ,144 (2), 569–578. https://doi.org/10.1038/ng1296-461
Li, T., Zhang, C., Yang, K. L., & He, J. (2018). Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Science Advances , 4 (3). https://doi.org/10.1126/sciadv.1701475
Lynd, L. R., Weimer, P. J., Zyl, W. H. van, & Pretorius, I. S. (2002). Microbial Cellulose Utilization: Fundamentals and Biotechnology.Microbiology and Molecular Biology Reviews , 63 (3), 506–577. https://doi.org/10.1128/MMBR.66.3.506
Mendez, B. S., Pettinari, M. J., Ivanier, S. E., Ramos, C. A., & Siñeriz, F. (1991). Clostridium thermopapyrolyticum sp. nov., a cellulolytic thermophile. International Journal of Systematic Bacteriology , 281–283. https://doi.org/10.1099/00207713-41-2-281
O-Thong, S., Khongkliang, P., Mamimin, C., Singkhala, A., Prasertsan, P., & Birkeland, N. K. (2017). Draft genome sequence ofThermoanaerobacterium sp. strain PSU-2 isolated from thermophilic hydrogen producing reactor. Genomics Data , 12 , 49–51. https://doi.org/10.1016/j.gdata.2017.02.012
O-Thong, S., Prasertsan, P., Karakashev, D., & Angelidaki, I. (2008). Thermophilic fermentative hydrogen production by the newly isolatedThermoanaerobacterium thermosaccharolyticum PSU-2.International Journal of Hydrogen Energy , 33 (4), 1204–1214. https://doi.org/10.1016/j.ijhydene.2007.12.015
Onyenwoke, R. U., & Wiegel, J. (2015). Thermoanaerobacterium .Bergey’s Manual of Systematics of Archaea and Bacteria , 1–18. https://doi.org/10.1002/9781118960608.gbm00755
Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research , 42 (D1), 206–214. https://doi.org/10.1093/nar/gkt1226
Panitz, J. C., Zverlov, V. V., Pham, V. T. T., Stürzl, S., Schieder, D., & Schwarz, W. H. (2014). Isolation of a solventogenicClostridium sp. strain: Fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements.Systematic and Applied Microbiology , 37 (1), 1–9. https://doi.org/10.1016/j.syapm.2013.10.004
Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., & Peplies, J. (2016). JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics ,32 (6), 929–931. https://doi.org/10.1093/bioinformatics/btv681
Romano, I., Dipasquale, L., Orlando, P., Lama, L., d’Ippolito, G., Pascual, J., & Gambacorta, A. (2010). Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles , 14 (2), 233–240. https://doi.org/10.1007/s00792-010-0303-x
Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P. G., … Lynd, L. R. (2008). Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.Proceedings of the National Academy of Sciences , 105 (37), 13769–13774. https://doi.org/10.1073/pnas.0801266105
Shaw, J. A., Covalla, S. F., Miller, B. B., Firliet, B. T., Hogsett, D. A., & Herring, C. D. (2012). Urease expression in aThermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metabolic Engineering , 14 (5), 528–532. https://doi.org/10.1016/j.ymben.2012.06.004
Tian, L., Papanek, B., Olson, D. G., Rydzak, T., Holwerda, E. K., Zheng, T., … Lynd, L. R. (2016). Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum .Biotechnology for Biofuels , 9 (1), 1–11. https://doi.org/10.1186/s13068-016-0528-8
Vazquez, G. J., Pettinari, M. J., & Méndez, B. S. (2001). Phosphotransbutyrylase expression in Bacillus megaterium .Current Microbiology , 42 (5), 345–349. https://doi.org/10.1007/s002840010227
Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.MBio , 5 (2), 1–11. https://doi.org/10.1128/mBio.00889-14
Wang, S., Huang, H., Moll, J., & Thauer, R. K. (2010). NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri .Journal of Bacteriology , 192 (19), 5115–5123. https://doi.org/10.1128/JB.00612-10
Wietzke, M., & Bahl, H. (2012). The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum . Applied Microbiology and Biotechnology ,96 (3), 749–761. https://doi.org/10.1007/s00253-012-4112-2
Yamada, R., Hasunuma, T., & Kondo, A. (2013). Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnology Advances , 31 (6), 754–763. https://doi.org/10.1016/j.biotechadv.2013.02.007
Table 1: Genome to genome comparisons of GSU5 with otherThermoanaerobacterium .